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Abstract. Many-core architectures are a commercial reality, but pro-
gramming them efficiently is still a challenge, especially if the mix is het-
erogeneous. Here granularity must be addressed, i.e. when to make use of
concurrency resources and when not to. We have designed a data-driven,
fine-grained concurrent execution model (SVP) that captures concur-
rency in a resource-agnostic way. Our approach separates the concern
of describing a concurrent computation from its mapping and schedul-
ing. We have implemented this model as a novel many-core architecture
programmed with a language called µTC. In this paper we demonstrate
how we achieve our goal of resource-agnostic programming on this target,
where heterogeneity is exposed as arbitrarily sized clusters of cores.

Keywords: Concurrent execution model, many core architecture, resource-
agnostic parallel programming.

1 Introduction

Many-core architectures provide the only solution to the various barriers oppos-
ing advances in mainstream computing performance [8]. However, programming
applications on such platforms is still notoriously difficult [6,1,7]. Concurrency
must be exposed, and in most programming paradigms it must be also explicitly
managed [11]. For example, low-level constructs must be carefully assembled to
map computations to hardware threads and achieve the desired synchronisation
without introducing deadlocks, livelocks, race conditions, etc. From a perfor-
mance perspective, any overhead associated with concurrency creation and syn-
chronisation must be amortised with a computation of a sufficient granularity.
The difficulty of the latter is under-estimated and in this paper we argue that
this mapping task is too ill-defined statically and too complex to remain the
programmer’s responsibility. With widely varying resource characteristics, gen-
erality is normally discarded in favour of performance on a given target, requiring
a full development cycle each time the concurrency granularity evolves.

1 This work is supported by the European Union through the Apple-CORE project,
grant no. FP7-ICT-215216.



We have addressed these issues in our work on SVP (for Self-adaptive Virtual
Processor), which combines fine-grained threads with both barrier and dataflow
synchronisation. Concurrency is created hierarchically and dependencies are cap-
tured explicitly. Hierarchical composition aims to capture concurrency at all
granularities, without the need to explicitly manage it. Threads are not mapped
to processing resources until run-time and the concurrency exploited depends
only on the resources made available dynamically. Dependencies are captured
using dataflow synchronisers and threads are only scheduled for execution when
they have data to proceed. In this way, we automate thread scheduling and
support asynchrony in operations. More detail on the model can be found in [3].

Asynchrony is exposed at the function level by delegating a unit of com-
putation to independent processing resources where it can execute concurrently
with its parent. It is also exposed in the dependencies captured between threads.
In the context of this paper, where the model is implemented in a processor’s
ISA [5], we have efficient concurrency creation and synchronisation, requiring
just a few processor cycles to distribute an arbitrary number of identical, indexed
threads to a cluster of cores. Moreover, asynchronous operations are supported
at a granularity of individual instructions and we can therefore tolerate latency
in long-latency operations, such as loads from a distributed shared memory. The
mapping of threads to a cluster of cores in our Microgrid chip architecture is
automatic, and the compiled code may also express more concurrency than is
available in a cluster. To resolve this mismatch, cores automatically switch from
space scheduling to time scheduling when all hardware thread slots are in use.
Hence, the minimal resource requirement for any SVP program is a single thread
slot on a single core, which implies pure sequential execution, even though the
code is expressed concurrently. It is through this technique and the latency tol-
erance that we achieve resource-agnostic code with predictable performance.

The main contribution of this paper is that we show simply implemented,
resource agnostic SVP programs adapt automatically to the concurrency effec-
tively available in hardware and can achieve extremely high execution efficiency.
We also show that we can predict the performance of these programs based on
simple throughput calculations even in the presence of non-deterministic instruc-
tion execution times. This demonstrates the effectiveness of the self-scheduling
supported by SVP. In other words, we promote our research goal:

“Implement once, compile once, run anywhere.”

2 The SVP concurrency model

We have built an implementation of SVP into a system language µTC and
a compiler that maps this code to the Microgrid implementation. µTC is not
intended as an end-user language; work is ongoing to target µTC from a data-
parallel functional language (SaC [10]) and a parallelising C compiler [14,9].

In SVP programs create multiple threads at once as statically homogeneous,
but dynamically heterogeneous families. The parent thread can then perform a
barrier wait on termination of a named family using a sync action. This fork-join



pattern captures concurrency hierarchically, from software component composi-
tion down to inner loops. A family is characterised by its index sequence, the
initial PC for threads and the definition of unidirectional dataflow channels from,
to and within the family. Channels are I-structures [2], i.e. blocking reads and
single non-blocking writes; either from parent to all children (“globals”) or side-
ways in the family (“shareds”). For more details see [5].

In the Microgrid implementation, the number of active threads per core is
constrained by a block size specified for each family or by exhaustion of thread
contexts. Additional expressed concurrency is then scheduled by reusing thread
contexts non-preemptively. Deadlock freedom is guaranteed by restricting com-
munication to forward-only dependency chains [17].

A key characteristic of SVP is the separation of concerns between the program
and its scheduling onto computing nodes. Space scheduling is achieved by binding
a collection of computing nodes, called a place, to a family upon its creation.
This can happen at any level in the hierarchy, dynamically. Although in principle,
SVP can be implemented at any level of granularity, we focus in this paper on
the finest granularity, where clusters of cores implement an SVP run-time system
in hardware. The SVP create distributes families equally to all cores in a cluster
or locally depending on the place specifier. Clusters of cores are connected in
rings and may be configured either at design-time or run-time.

On the Microgrid, SVP channels are mapped onto the cores’ registers. De-
pendencies between threads mapped to the same core share the same physi-
cal registers to allow fast communication and when distributed between cores,
communication is induced automatically upon register access. The latter is still
a low-latency operation since constraints on dependency patterns ensure that
communicating cores are adjacent on chip. Implementing I-structures on the
registers also enforces scheduling dependencies between consumers and produc-
ers. Hence, long-latency operations may be allowed to complete asynchronously
giving out-of-order completion with non-deterministic delay. Examples include
memory operations, floating point operations (with FPU sharing between cores)
and family synchronisation. This mechanism, together with support for a large
number of threads per core provides the latency tolerance necessary to achieve a
high utilisation of the cores’ pipeline cycles. More information is available in [5].

3 An SVP implementation

The Microgrid evaluated in this paper comprises 128 cores sharing 64 FPUs with
separate add, mul, div and sqrt pipelines. Each core supports up to 256 threads
in 16 families using up to 1024 integer and 512 floating-point registers. On-chip
memory comprises a modest 32×32KB L2 caches, shared in groups of 4 cores.
There are 4 rings of 8 L2 caches; the 4 directories are connected in a top-level
ring subordinated to a master directory. Two DDR3-1600 channels connect the
master directory to external storage. The on-chip memory network implements
a Cache-Only Memory Architecture (COMA) protocol with synchronisation at
family creation, termination and on communication between threads. A cache



line has no home location and migrates to the point of most recent use. This is
described in more detail in [18].
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Fig. 1. Functional diagram of a 128 core Microgrid.

The following parameters are relevant to the numerical results: the two
DDR channels provide 1600 million 64-bit transfers/s, i.e. a peak bandwidth
of 25.6GB/s overall; each COMA ring provides a total bandwidth of 64GB/s,
shared among its participants; the bus between cores and L2 caches provides
64GB/s of bandwidth; the SVP cores are clocked at 1GHz.

The Microgrid runs a minimal operating system. This includes initialisation,
collection of system metrics, heap allocation, input of data from the environ-
ment through memory, and text output. A software SVP place allocation service
allows to select dynamic cluster sizes, to subject benchmarks to heterogeneous
concurrency parameters. We highlight that compiled program code is indepen-
dent from all the architectural parameters of the Microgrid.

4 Experiments and results

Our aim in this paper is to show how we can obtain deterministic performance
figures, even though the code is compiled from naive µTC code, with no knowl-
edge of the target. We evaluate results from executing a range of benchmarks
across a range of problem sizes on clusters of size 1-64 cores. These include both
sequential and parallel algorithms with various data access patterns. The results
are presented with performance on cold and warm caches. In order to analyse the
performance, we need to understand the constraints on performance. For this
we define two measures of arithmetic intensity (AI). The first AI1 is the ratio
of floating point operations to instructions issued. For a given kernel that is not
I/O bound, this limits the floating point performance. For P cores at 1 GHz, the
peak performance we can expect therefore is P × AI1. In some circumstances,
we know that execution is constrained by dependencies between floating point
operations and here we modify AI1 to take this into account giving an effec-
tive intensity AI ′1. The second measure of arithmetic intensity is the ratio of
Floating point operations to I/O operations, AI2 FLOPs/Byte. I/O bandwidth
IO is usually measured at the chip boundary (25.6GB/s) unless we can identify
bottlenecks internally on the COMA rings (64GB/s). As these I/O bandwidths



are independent of the number of cores used, this measure will provide a hard
performance limit when P ×AI1 ≥ AI2 × IO.

The results presented in this paper are produced using cycle-accurate emu-
lation of a Microgrid chip that implements SVP in the ISA. It assumes custom
silicon with current technology [5]. It defines all states that would exist in a
silicon implementation and captures cycle-by-cycle interactions in all pipeline
stages. We have used realistic multi-ported memory structures, with queueing
and arbitration where we have more channels than ports. The timing assump-
tions are based on evaluation using CACTI [16]. We also simulate the timing
of standard DDR3 channels. As details of the architecture have been described
elsewhere we include only sufficient detail here to support the discussion.

4.1 Sequential code

The first kernel we consider is DNRM2 from the BLAS library, which computes
the Euclidean norm of a vector. Here we do not parallelise the loop, which uses
a carried dependency to calculate the sum. We are interested in how well the
Microgrid tolerates the memory latency of hundreds of cycles. Branch prediction
and out-of-order instruction issue can provide some latency tolerance, typically
tens of cycles, which is sufficient to optimise performance when working from
on-chip cache but not for larger data sets. Prefetching can do better on constant-
stride accesses but as memory latencies rise, the probability that prefetched data
will remain in cache diminishes. In our approach, the hardware provides latency
hiding through interleaving multiple threads in the pipeline. In this kernel, a
memory load and a mul form an independent prefix to the dependent add which
computes the sum using a shared variable.

The thread code compiles to 4 instructions of which two are FP operations.
So AI1 = 0.5. However, every thread must wait for its predecessor to produce
its result before computing its FP add. The cost of communicating the result
from thread to thread requires between 6 and 11 cycles per add depending on
the scheduling of threads, with the difference representing the cost of waking
up a waiting thread and getting it to the read stage of the pipeline, which may
be overlapped by other independent instructions in the pipeline. This implies
0.14 ≤ AI ′1 ≤ 0.22, i.e. an expected single core performance of 0.14 to 0.22
GFLOP/s. As Figure 2 shows, provided we have enough threads we observe just
under 0.20 GFLOP/s on one core.

We do not expect to see any performance increase by increasing the number
of cores, because the independent prefix instructions that can be scheduled inde-
pendently represent less than one third of the cycles required by the thread, i.e.
3÷AI ′1. Even with ideal scheduling and no overhead, Amdahl’s law would limit
speedup to a factor 1.5. The fact that we see a 10% increase is testament to the
low overhead in this architecture of managing concurrency and communication.
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Fig. 2. Performance of DNRM2 on one SVP place. Working set: 8×#psize bytes.
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Fig. 3. IP performance, using N/P reduction. Working set: 16×#psize bytes.

4.2 Reductions

Any reduction can be parallelised for commutative and associative operations.
The second benchmark is parallelised inner product (IP, Livermore kernel 3).
The code is a straightforward extension of the naive implementation in µTC. It
relies on the number of cores in the ‘current place’ being exposed to programs
as a language primitive and splits the reduction into two stages, the first creates
a family of one thread per core, which performs a local reduction and then
completes the reduction between cores. When the number of threads per core
is significantly larger than the number of cores, the cost of the final reduction
is small and the performance should scale linearly with the number of cores.
Figure 3 shows the experimental results for this code.

For IP, AI1 = 0.29; however, again we must consider the effective intensity:
0.12 ≤ AI ′1 ≤ 0.17, i.e. an expected single core performance of 0.12 to 0.17
GFLOP/s. The outer loop is parallel and hence we would expect a maximum
performance of 0.15 × 64 or 9.6 GFLOP/s. However, for this code AI2 = 0.125
FLOPs/byte and so performance would be memory limited to 3.2 GFLOP/s.

We achieve only 1.4 GFLOP/s, dropping to 0.88 GFLOP/s, for cold caches
with the largest problem size. This deviation occurs when the working set does
not fit in the L2 caches, because then loads to memory must be interleaved
with line evictions. Even though evictions do not require I/O bandwidth, they



do consume COMA ring bandwidth. It is more difficult to reason about ring
bandwidth under such circumstances. In the worst case a single load may evict a
cache line where the loaded line is used only by one thread before being evicted
again. A single 8 byte load could require as much as two 64-byte line transfers,
i.e. a perceived bandwidth for loads of 4 GB/s rising to 32GB/s if all 8 words are
used. This translates into a peak performance of between 0.5 and 4 GFLOP/s
with AI2 = 0.125 FLOPs/Byte, when the caches become full. Note also, at a
problem size of 20K on 64 cores, between 17 and 22% of the cycles required are
for the sequential reduction, a large overhead and at a problem size of 100K,
when this overhead is significantly smaller, only 1/6th of the problem fits in
cache for up to 32 cores (1/3 for 64 cores).

With warm caches, this transition to on-chip bandwidth limited performance
is delayed and more abrupt. For P = 32 the maximum in-cache problem size
is N=16K and for P = 64, N=32K (ignoring code etc.). As would be expected
for ring-limited performance, we see peak performance at N=10K and 20K resp.
for these two cases. Any increase in problem size beyond this increases ring
bandwidth to the same level as with cold caches.

4.3 Data-parallel code

We show here the behaviour of three data-parallel algorithms which exhibit dif-
ferent, yet typical communication patterns. Again, our µTC code is a straight-
forward parallelisation of the obvious sequential implementation and do not at-
tempt any explicit mapping to hardware resources. The equation of state frag-
ment (ESF, Livermore kernel 7) is a data parallel kernel with a high arithmetic
intensity, AI1 = 0.48. It has 7 local accesses to the same array data by different
threads. If this locality can be exploited, then AI2 = 0.5 FLOPs/Byte from off-
chip memory. Matrix-matrix product (MM, Livermore kernel 21) has significant
non-local access to data, in that every result is a combination of all input data.
MM is based on multiple inner products and hence AI1 = 0.29. However, for
cache bound problems and best case for problems that exceed the cache size,
AI2 = 3 FLOPs/Byte from off-chip memory. Finally, FFT lies somewhere be-
tween these two extremes: it has a logarithmic number of stages that can exploit
reuse but has poor locality of access. Here AI1 = 0.33 and for cache-bound
problems 1.6 ≤ AI2 ≤ 2.9 (logarithmic growth with problem size if there are no
evictions). However, with evictions this is defined per FFT stage and AI2 = 0.21.

For ESF, with sufficient threads, the observed single core performance is 0.43
GFLOP/s, i.e. 90% of the expected maximum based on AI1 for this problem (see
Figure 4a). Also, while the problem is cache bound, for cold caches, we see linear
speedup on up to 8 cores, 3.8 GFLOP/s. For 8 cores this problem size has 128
threads per core, reducing to 8 at 64 cores. This is an insufficient number of
threads to tolerate latency and we obtain 6.6 GFLOP/s for 64 cores, 54% of
the maximum limited by AI2 (12.3 GFLOP/s). As the problem size is increased,
cache evictions limit effective I/O bandwidth to 12.3GB/s at the largest problem
sizes, i.e. an AI2 constraint of around 6 GFLOP/s. We see saturation at 67%
of this limit for both warm and cold caches. With warm caches and smaller
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Fig. 4. Performance of the ESF. Working set: 32×#psize bytes.

problem sizes, greater speedups can be achieved (see Figure 4b) and we achieve
9.87 GFLOP/s or 80% of the AI2 constrained limit for a cache bound problem.
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Fig. 5. Performance of the matrix-matrix product. Working set: ≈ 200×#psize bytes.

MM naively multiplies 25×25 matrices by 25×N matrices using a local IP
algorithm. As AI2 = 3.1 FLOPs/Byte, the I/O limit of 75 GFLOP/s exceeds the
theoretical peak performance, namely 18.3 GFLOP/s. Our experiments show an
actual peak of 8.57 GFLOP/s, or 47% of the maximum. As there are sufficient
threads, we suspect the limit is on the COMA ring, as a significant amount of
traffic is required to distribute rows and columns to cores.

For FFT, the observed performance (cf. Figure 6) on one core is 0.23 GFLOP/s,
or 78% of the AI1 limit. When the number of cores and the problem size increase,
the program becomes AI2 constrained, as now every stage will require loads and
evictions, giving an effective bandwidth of 12.3GB/s and as AI2 = 0.21, an I/O
constrained limit of 2.6 GFLOP/s. We observe 2.24 GFLOP/s, or 86% of this.

5 Related work

SVP addresses many-core programming from hardware thread contexts up to
the programming model. In this vertical approach, it relates to XMT [13].
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Fig. 6. Performance of the 1-D FFT. Working set: 8×#psize bytes + a lookup table.

However, the ability to define concurrency hierarchically and its data-driven
scheduling bring it closer to Cilk [4] and the DDM architecture [12]. SVP differs
from DDM mainly in that synchronisation is implemented in registers instead of
cache, and that yet unsatisfied dependencies cause threads to suspend. Register-
based synchronisation can also be found in the WaveScalar architecture [15],
but WaveScalar requires pure dataflow program expression while SVP also al-
lows thread-local sequential schedules using a regular RISC ISA.

6 Conclusion

The results presented in the previous section show efficient use of the hardware
resources of single SVP places by naive implementations of computation kernels.
We are able to analyse performance based on two bandwidth constrained mea-
sures and provided we have sufficient threads we observe performances that are
very close (in the region of 80%) of the observed performance. Even in the worst
cases we are within 50% of these predicted performances.

In conclusion, the SVP concurrency model facilitates the writing and gener-
ation of concurrent programs that need only be written and compiled once but
yet can still exploit the varying parallel resources provided by particular hard-
ware configurations. Programs can thus be expressed in the µTC language free
from the restraints of resource awareness; the program only needs to express the
available concurrency in algorithms and the desired synchronisations.

Acknowledgements

The development of SVP, the Microgrid architecture and the µTC compiler was
initially supported by the NWO Microgrids project, then by the EU Apple-
CORE project. SVP and its implementation is a group effort of the CSA group
at the University of Amsterdam. The authors would like to thank especially Mike
Lankamp for his work on emulation.



References

1. Amarasinghe, S.: (How) can Programmers Conquer the Multicore Menace? In:
PACT ’08: Proceedings of the 17th international conference on Parallel architec-
tures and compilation techniques. pp. 133–133. ACM, New York, NY, USA (2008)

2. Arvind, Nikhil, S., R., Pingali, K.K.: I-Structures: Data Structures for Parallel
Computing. ACM Trans. Program. Lang. Syst. 11(4), 598–632 (1989)

3. Bernard, T., Bousias, K., Guang, L., Jesshope, C.R., Lankamp, M., van Tol, M.W.,
Zhang, L.: A General Model of Concurrency and its Implementation as Many-core
Dynamic RISC Processors. In: Proc. Intl. Conf. on Embedded Computer Systems:
Architecture, Modeling and Simulation, SAMOS-2008. pp. 1–9 (2008)

4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., et al.: Cilk: an effi-
cient multithreaded runtime system. SIGPLAN Not. 30(8), 207–216 (1995)

5. Bousias, K., Guang, L., Jesshope, C., Lankamp, M.: Implementation and Evalua-
tion of a Microthread Architecture. J. Systems Architecture 55(3), 149–161 (2009)

6. Chapman, B.M.: The Multicore Programming Challenge. In: Advanced Parallel
Processing Technologies. p. 3 (2007)

7. Gabb, H., Mattson, T., Breshears, C.: Thinking in Parallel - Three engineers’
Viewpoints. Intel Software Insight Magazine 16, 24–26 (Feb 2009)

8. Geer, D.: Industry Trends: Chip Makers Turn to Multicore Processors. Computer
38(5), 11–13 (2005)

9. Grelck, C., Herhut, S., Jesshope, C., Joslin, C., Lankamp, M., Scholz, S.B., Sha-
farenko, A.: Compiling the Functional Data-Parallel Language SaC for Microgrids
of Self-Adaptive Virtual Processors. In: 14th Workshop on Compilers for Parallel
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