
Making multi-cores mainstream – from
security to scalability

Chris JESSHOPE, Michael HICKS, Mike LANKAMP, Raphael POSS and Li ZHANG
Institute for Informatics, University of Amsterdam, The Netherlands

Abstract. In this paper we will introduce work being supported by the EU in the
Apple-CORE project (http://www.apple-core.info). This project is pushing the
boundaries of programming and systems development in multi-core architectures
in an attempt to make multi-core go mainstream, i.e. continuing the current trends
in low-power, multi-core architecture to thousands of cores on chip and supporting
this in the context of the next generations of PCs. This work supports dataflow
principles but with a conventional programming style. The paper describes the
underlying execution model, a core design based on this model and its emulation
in software. We also consider system issues that impact security. The major
benefits of this approach include asynchrony, i.e. the ability to tolerate long
latency operations without impacting performance and binary compatibility. We
present results that show very high efficiency and good scalability despite the high
memory access latency in the proposed chip architecture.

Keywords. Concurrency model, multi-core, multi-threading, resource deadlock.

Introduction

One of the principle research goals in parallel computing is the ability to write code
once, or to take legacy sequential code, and to execute it on any parallel computer with
a high efficiency and with scalable speedup. This need only be constrained by the
concurrency exposed in the algorithm and the characteristics of the target parallel
computer. Problems arise because these characteristics vary significantly and that most
developments in tools target a particular architecture rather than a generic parallel
execution model. The characteristics that vary include synchronisation and scheduling
overhead, which determine the granularity of the units of concurrency that can be
executed efficiently and the ratio of computation to communication rates, which
determines whether it is worthwhile distributing code at a given level of granularity.

Whether this goal of general-purpose parallel computing can be achieved across a
wide range of targets is still an open question but one that we are working towards. Our
first steps have focused on the narrower field of achieving genericity of target when
programming many-core processors. Here we see the same issues affecting different
generations of the same processor or dynamic partitions of a multi-core chip. We want
to be able to compile code once and execute it on any number of cores, anywhere on
chip and to deal with systems issues such as scalability and security in a multi-user
environment. Our execution model, SVP [1], provides concurrent composition by
default. This invited paper describes an implementation of that model in the ISA of a
conventional, in-order issue RISC core. More details on various aspects of this EU-
funded project can be found at (http://www.apple-core.info/).

1. Motivation

That there is a practical urgency in this matter is common knowledge. On the one
hand, there is an inescapable requirement to manage power dissipation on chip, which
requires many simple cores rather than fewer, more complex ones. On the other hand, a
many-core approach requires tools supporting massive explicit concurrency, which are
difficult to implement and error prone to use. In embedded and special purpose systems,
e.g. picoChips [2], NVIDIA [3, 4], Intel [5, 6, 7] and ClearSpeed [8], this is common.
However, here the focus is on a limited set of applications, where skilled effort can be
applied to find and map the applications’ concurrency. Moore’s law still predicts that
the number of cores on chip will double every 18 to 24 months (for at least for another
decade [9]) and this raises compatibility issues even in a specific processor.

In a more general market, the labour-intensive approach of hand mapping an
application is not feasible, as the effort required is large and compounded by the many
different applications. A more automated approach from the tool chain is necessary.
This investment in the tool chain, in turn, demands an abstract target to avoid these
compatibility issues. That target or concurrency model then needs to be implemented
on a variety of platforms to give portability, whatever the granularity of that platform.

Our experience suggests that an abstract target should adopt concurrent rather than
sequential composition, but admit a well-defined sequential schedule. It must capture
locality without specifying explicit communication. Ideally, it should support
asynchrony using data-driven scheduling to allow for high latency operations. However,
above all, it must provide safe program composition, i.e. guaranteed freedom from
deadlock when two concurrent programs are combined.

Our SVP model is designed to meet all of these requirements. Whether it is
implemented in the ISA of a conventional core, as described here or encapsulated as a
software API will only effect the parameters described above, which in turn will
determine at what level of granularity one moves from parallel to sequential execution
of the same code. The work presented in this paper describes the execution model, its
implementation as an extension to the Alpha ISA and its core compiler that compiles
the language µTC, which captures SVP in an architecture neutral form, to a Microgrid
of SVP-enabled cores. Compilers to this model, emitting µTC, are also being
developed from the functional, data-parallel language SAC [10, 11], the high-level
coordination language and component technology S-Net [12, 13] as well as an
automatically parallelising compiler for legacy C code [14].

2. The Self-adaptive Virtual Processor - SVP

SVP is a hierarchical thread-based model developed in the EU AETHER project
(http://www.aether-ist.org/) to support adaptive computing. It provides a complete
separation of concerns between the two most important aspects of concurrent
programming. The first is the description of an application's functionality expressed
concurrently and the second is the mapping of that program onto a set of resources.
This separation is achieved by binding processing resources to units of work
dynamically using opaque, implementation-defined objects called places. In this paper,
a place is a ring of SVP-enabled cores but it could just as easily be a conventional core
or cluster of cores or even dynamically configured logic (e.g. an FPGA), as was
implemented in the AETHER project.

In its resource-neutral form, SVP provides an abstract target for high-level
language compilation, which need not be concerned with mapping and scheduling. The
code generated is highly concurrent and guaranteed to be free from deadlock [15].
Mapping is performed by the core-compiler (i.e. the µTC compiler) and a run-time
system that provides dynamic allocation of places in a manner similar to memory
allocation. Scheduling is controlled using synchronising communication. SVP defines
shared and global objects giving pair-wise and collective, one-way synchronisation
channels respectively. These are implemented with i-structures [16]. They are written
once in one thread and are read-only in one or more other threads. I-structures provide
the data-driven scheduling in an SVP implementation. An i-structure suspends a thread
attempting to read it in an empty or unwritten state and stores these continuations until
data is written, at which point it must reschedule the suspended threads.

Currently SVP is described by the language µTC [17], for which we have a core
compiler tool chain based on GCC [18]. This has multiple targets that currently
include:

• a sequential implementation for program validation;
• a cycle-accurate multi-core chip emulation, where SVP is implemented

directly in the core's ISA [19, 20] - a Microgrid of SVP cores; and
• a POSIX-thread-based SVP API [21] for general use, developed in the EU

AETHER project.
SVP programs are composed concurrently, at all levels, from the smallest threads

(maybe a few instructions) up to complete systems. This means that there is always an
appropriate level of granularity that will map to a given target at some point in the
concurrency tree. Hence, when a target is selected, the SVP program is transformed to
that level of granularity using its sequential schedule. In the Microgrid of SVP cores,
no code transformation is required. Places are selected at run time and the hardware
provides support for the automatic sequencing of SVP binary code, if too few
concurrent contexts are available. This is described in more detail in Section 3.

Figure 1. Three variants of an SVP create showing synchronisations: (a) concurrent function execution with
synchronising parameters; (b) concurrent loop execution (n.b. each thread is created with a unique index in a
specified range); and (c) concurrent loop execution with loop-carried dependencies (linear pipelines).

2.1. SVP concurrency controls

SVP provides concurrency controls to create and terminate (kill and break) a named
unit of work. That unit is a family of identical indexed threads and any subordinate
families that those threads may create. The index is specified on create by a triple of
(start, step, limit) or (start, step) for unbounded families. Unbounded families must be
terminated dynamically with a break instruction executed in one of the family's threads.

The parent thread may execute and communicate asynchronously with the family it
creates. SVP provides a barrier (sync), which signals the completion of a family to the
parent thread. Communication between the parent and its children may occur anywhere
in the parent from create to sync, using shared and/or global objects.

The create/sync pair is used to compose both functions and loops as concurrently
executing threads, including loops with dependencies. This is shown in Figure 1. As
can be seen, we allow communication only between parent and first child and between
adjacent children defined on the thread's index value. For shared objects, an association
is made between a local in the creating thread and the shared object defined in the
thread's parameters. A write in the parent thread is only seen by the first child thread
and, with more than one thread created in the family, a write to a shared in one thread
will be seen by its successor in index sequence. For global objects, a similar association
is made between a local in the parent thread and the global object defined in the
thread's parameters. Global objects may be read by all threads. The write to a shared
object in the last thread in index sequence will update (on sync) the initialising variable
in the creating thread. This restriction on communication has a threefold advantage:

• it provides a well defined sequential schedule for any SVP program;
• it guarantees freedom of deadlock in the abstract model, although failure to

write to synchronising objects where visible and dealing with finite resource
can still cause deadlock; and

• it provides an abstract notion of locality to the high-level compiler, which
must transform dependencies to conform to this restriction.

So, what appears as a restriction in the model has advantages. The obvious question
that follows is whether the model is still sufficiently general. Work on the C-to-SVP
compiler [14] has shown that such transformations are possible in loops for all regular
dependencies. Moreover, irregular dependencies can be made regular by a gather
and/or scatter stage.

2.2. SVP memory model

We wish to support a very relaxed memory consistency model in SVP that would map
naturally onto shared memory but, at the same time, ease any implementation on
distributed memory. Consider a branch of the SVP concurrency tree (at any level); then
for any memory location used anywhere in that branch and known not to be accessed
concurrently by other (unrelated) branches while this branch is running, SVP provides
Gao and Sakar's Location Consistency (LC) semantics, but without the synchronising
acquire and release operations described in [22]. Instead, the synchronising operations
that establish partial order on memory accesses are SVP's create and sync operations,
which have different semantics to LC's acquire and release.

Thus, SVP's concurrency model provides support for non-synchronising,
competing shared memory accesses (using the terminology proposed by Mosberger
[23]) from different threads in a family, but exposes memory state from one thread to
all its subordinate threads. Location consistency is then resolved for a thread on
termination of a subordinate concurrency tree. In the hierarchy proposed by Mosberger
[23], this model is a hybrid of LC (between parent threads and child families) and a
weaker model without any synchronisation (between sibling threads).

Communication via memory is not defined in SVP between sibling threads. The
only guaranteed synchronisation is through shared objects, which have different
semantics, as described in Section 2.1, and which can be of arbitrary size. Whether

these shared objects are supported by a specific SVP implementation using a shared-
memory architecture with more constrained consistency semantics, via explicit
communication channels or via some other mechanism, is not specified in the abstract
SVP model.

In some circumstances it is necessary to provide consistency between global
objects used in unrelated threads. We support this through the use of SVP's exclusive
place. Exclusive place are shared between threads and sequence requests to create
families of threads at that place. SVP's exclusive places in effect implement Dijkstra's
"secretary" concept [24], where communication can occur between independent
sequential processes by means of changing the secretary's local (private) state.

3. The SVP core

We have implemented SVP's concurrency controls and shared object semantics for
basic types (integer and floats) as extensions to the ISA of an in-order Alpha core.
Support is also provided in the form of memory barriers for arbitrary shared objects
using pointers to objects stored in memory. This implementation is a full software
emulation of the extended instruction set. It is supported by a set of tools to compile,
assemble, link, load and execute µTC programs. This implementation takes account of
all internal processor state in each of the six stages of the Alpha pipeline. It also
restricts concurrent reads to an implementable number of ports on memory structures
and hence provides a cycle-accurate simulation of the execution time of SVP programs.

As an example, consider the register file. This is the largest memory structure in
the core and if silicon layout constraints were not taken into account, the core could not
be implemented in a reasonable area and with a reasonable clock frequency; the area of
a memory cell grows as the square of the number of its ports. Single instruction issue
requires two reads and one write to the register file to support the pipeline’s operation.
However, the register file is also written with a thread’s index value by the thread
create process (potentially once every cycle). The register file must also be accessed for
shared-register communication between threads that are mapped to adjacent processors
and for operations that terminate asynchronously (described below). To support all of
this, we provide 5 ports to the register file: 3 for pipeline operation and one read and
one write port with arbitration for all other uses. Static analysis predicted this to be
sufficient [24] and subsequent emulation has shown that while some processes may
stall for a few cycles, overall progress is assured.

3.1. Synchronising registers

In SVP (unlike pure dataflow), constraints in a program are captured using two
mechanisms, namely program sequence and by capturing dependencies. The latter uses
SVP's synchronising objects, as described in Section 2.1. Ideally each should be
implemented at the same level of granularity and hence we implement synchronising
communication in the register file of the SVP core. By synchronising at this level,
threads mapped to the same core can synchronise in a single cycle using the pipeline's
bypass bus and between cores in a time not much longer than the pipeline's length.

Each register can be used either as an i-structure or as a conventional register. A
state transition diagram for the i-structure is given in Figure 2. It will block any thread
attempting to read in the empty state (i.e. before it the location has been written),

continue to suspend thread continuations while it is waiting and reschedule those
threads for execution upon being made full (i.e. when the location has been written). In
the waiting state therefore, a register-file location contains a link to all threads that have
attempted to read that location before its value was defined.

Figure 2. I-structure state-transitions

SVP instructions
 Family/thread management Family parameter setting
allocate Takes a place at which a family will execute,

allocates a family table entry and returns a
family table index - FTid (asynchronous).

setstart Sets a start index value for the
given family – threads start from
this index

create Takes an FTid and creates threads described
by the parameters stored there and returns a
termination code, the sync (asynchronous).

setlimit Sets a limit index value for the
given family.

setstep Sets a step index value for the
given family

break Terminates a thread’s family and all
subordinate families and returns a break
value. Only one thread in a family may
succeed in breaking its family
(asynchronous).

setblock Sets the maximum number of
threads created on a given core.

kill Terminates a family identified by a family
table index and all subordinate families.

setbreak Nominates the register that will be
used to return the break value

Table 1. SVP instructions.

3.2. Family and thread management

In the SVP core, only a finite number of families and threads may be defined and these
are stored in dedicated tables. This information is managed by instructions added to the
Alpha ISA, which are listed in Table 1. Family state is stored in the family table and
thread state is stored in the thread table. Both families and threads are identified by
their index into these respective tables. Instructions in Table 1: allocate a family table
entry, which comes with a default set of parameters; overwrite the default parameters
where required; and initiate thread creation. The latter takes a single pipeline cycle to
create an unlimited number of threads at a rate of one per cycle until resources are
exhausted or the block size has been reached. Kill terminates a family based on its
index in the family table and is fully recursive, i.e. all subordinate families are also
killed. From a program’s perspective only the family table index is visible, however, all
instructions executed in an SVP core are tagged with their family and thread indices.
This allows us to suspend and resume threads using the i-structures, which maintain
linked lists of suspended thread indices.

Figure 3. SVP pipeline phases

3.3. Instruction execution

The SVP pipeline is illustrated in Figure 3. It comprises three phases, each of which
may comprise multiple pipeline stages. Instructions are issued from the head of the
queue of active threads, where threads that can make progress are stored. These threads
are not suspended and have their next instruction in the I-cache. Context switching
(selecting the next thread from the active list) occurs on branches, when the current
program counter increments over a cache-line boundary and, for efficiency, on
instructions tagged by the compiler that are dependent on asynchronous instructions. In
the latter case, this avoids flushing the pipeline if that instruction finds one of its
operands empty at the register-file read. Thus, the core only executes sequences of
statically schedulable instructions without context switching and then only when it can
be guaranteed that instruction fetch will hit the I-cache. This makes for a very efficient
instruction execution. In the limit, threads can context switch on each cycle and thread
creation or wakeup can meet this rate.

In the next phase, instructions read their operands from the synchronising register
file. Only when both operands are available can the instruction be dispatched for
execution. The thread is suspended if either of the instruction’s source registers is
empty. A suspended thread will be rescheduled and re-execute the same instruction
when the register it is suspended on is written to. This differs from dataflow execution
where an instruction is only issued when all of its operations are available. The benefit
is that statically scheduled instructions from multiple threads can be executed with
RISC-like efficiency.

At execution, all instructions write back to the register file in their allocated
pipeline slot, however, at this stage, asynchronous instructions simply set the target
register’s i-structure state to empty. Data is written when the operation completes. This
may be the completion of a family, i.e. create writing a return code, or other long-
latency operation (including memory fetches, floating point operations and any
instructions labeled asynchronous in Table 1). In this way, no dependent instruction
can execute until the asynchronous operation completes.

3.4. Thread-to-thread communication

Most of the bandwidth for thread-to-thread communication in a Microgrid of SVP
cores is provided by the implementation of shared memory on-chip. We adopt an on-
chip COMA memory that has already been reported elsewhere [26]. This uses a

hierarchy of cache-line-wide ring networks to implement an attraction memory with a
large aggregate bandwidth. In this memory, cache lines have no home. They can be
copied and invalidated anywhere on chip so that data always migrates to the point of
last update. A token-based cache-coherence protocol implements the memory
consistency model described in Section 2.2.

An inter-place network provides low-latency communication between clusters of
cores on a chip (the implementation of SVP’s place). The place at which a family is
created is defined on allocating its family table entry and if this is neither the core nor
the cluster on which the parent thread is executing, then the inter-place network is used
to implement the instructions listed in Table 1. The remote execution of a subordinate
family on another place is called a delegation and requires a proxy family table entry
on the creating core, which identifies the remote place. It also requires a family table
entry at the remote place that controls thread creation in the normal manner. Parameters
that define the family of threads are communicated across this network using these
instructions. The Proxy must also manage communication of global and shared
parameters between parent and child, which need not have been defined prior to create.

Figure 4. Mapping of the overlapping register windows on creating a family of two threads with three local,
two global and one shared/dependent defined in its register context. Shared register communication is
illustrated with dashed arrows. The base addresses for the mapping of globals (BG) and shareds (BS) to the
parent’s locals is shown. N.b. this picture is repeated for ints and floats in the Alpha architecture.

An intra-place network manages communication between cores in a cluster. This
includes the distributed implementation of create and sync actions that result in the
distribution of the threads in a family to a multi-core place. It also implements a
distributed-shared register file between the cores. This network is a word-wide ring
network between adjacent cores in a cluster. To understand how this communication is
specified it is necessary to understand the mapping of SVP’s four classes of variables
onto the distributed-shared register file. Register variables are divided into a number of
overlapping windows, these are:

• local - visible only to one thread;
• global - written in a parent thread and read only in all threads in a family;
• shared - written once and visible to the next thread in index sequence;
• dependent - read-only access to the previous thread’s shareds.

When a thread function is compiled, a partition is made of the architectural register
context between these classes and this is defined in a header to its binary code, e.g. NL,
NG, NS, where:

€

NG + NL + 2∗NS ≤ 31, n.b. not all registers need be mapped. To
create n threads on a single core, n*(NL+ NS) registers are dynamically allocated from
its register file, where n is determined by the number of threads in a family, a limit on
the number of contexts available for a given core or by the block size defined in
setblock (see Table 1). In Figure 4, eight registers are allocated on the creation of a
family of two threads, with NL=3 and NS=1.

In order to pass parameters between parent and child threads the creating thread
identifies offsets into its local variables to map to the globals (BG) and shareds (BS) of
the created threads. These registers are written in the parent thread and are visible to all
threads for globals and to the first thread only for shareds. Between siblings, a write to
a shared in one thread can be read as a dependent in the subsequent thread. In the last
thread, the shared write is visible to the parent thread in its locals via BS, i.e. on sync,
the location used as the parent’s shared is updated.

The intra-place network implements a distributed-shared register file over the
windowing scheme described above, so that the register files of all cores in a place
provide a uniform mechanism for reading and writing registers regardless of their
location. For efficient communication between cores, the global registers are replicated
with a copy in each core’s register file. These are allocated in the distributed create
operation over the intra-place network. When threads on a core read an empty global,
they will be suspended on that core and at most one read request is sent to the parent
thread, which eventually responds with a broadcast around the ring, rescheduling any
waiting threads. Similarly, when a shared communication is mapped between two cores
the shared/dependent registers are also replicated. In this case, a read request is made to
the adjacent core, which is eventually satisfied. The latter requires an additional NS
registers to be allocated per family, per core when a family is distributed. Again the
dependent thread can be suspended and rescheduled at the core it executes on.

3.5. SVP security

To make multi-core mainstream, we described in the introduction a requirement to
execute binary programs on an arbitrary number of cores (i.e. on one or more places of
various sizes) by automating whether families of threads execute concurrently or
sequentially. However, we also need to guarantee freedom from deadlock when finite
resources are applied to an abstract SVP program and to guarantee this in the presence
of potentially many different jobs competing for those resources in a multi-user
environment. Note that we have to consider the situation where some of those
programs may be hostile. It is not only deadlock that is an issue; programs can execute
very powerful instructions in an open environment (for example to kill a family of
threads and its descendants, see Table 1). We do have solutions to most of these
problems although some are not yet implemented in our emulation environment. We
deal with each of these issues in turn starting with the latter.

To protect a family from being the subject of an accidental or even malicious kill
instruction, we protect families with capabilities. When a family is created, a key of
arbitrary entropy is generated, which is stored in the family table and combined with
the family table index to comprise a family identifier. This can be made arbitrarily
secure. In order to issue an asynchronous kill on a family, the thread issuing the kill

instruction must provide a family identifier that matches the security key stored in the
family table, otherwise the instruction is ignored. In practical terms, this means that it
must have been passed the capability by the creator of that family.

To protect a program from resource deadlock we have two strategies. The first is to
analyse the resource requirements of a µTC program and to ensure that those resources
are exclusively allocated to that program. The issue at hand is not the breadth of the
concurrency tree, since a single context on one core is sufficient to execute any family
regardless of its breadth. The problem is recursion of creates in the presence of finite
concurrency resources. If that can be bounded, then deadlock freedom can be
guaranteed by restricting the number of contexts allocated to families using setblock
and to allocate places at appropriate points in the concurrency tree. At what point in the
execution of a family those resources are guaranteed is an issue requiring further
research. However, at present we can assume that they are allocated prior to the
execution of the program, in which case we have a static solution, although not
necessarily the most efficient one. To provide a more dynamic mapping, some
guarantee of obtaining minimal resources in a finite time is required.

We must also consider how to ensure that if a program is allocated a place, then no
other thread is allowed to create a family at the same place. This could consume those
resources required to guarantee freedom from deadlock. This is achieved by including a
capability in the place identifier, in the same way as described above for securing
against kill. If the place identifier used in a create does not match the one-time key
stored at that place when it was allocated, then the create will be ignored. Note that the
only guarantee we can give on sharing the concurrency resources on a processor is
when legacy code is executed. Here a single processor place can be shared between a
number of legacy programs, where each is guaranteed to run in a single SVP thread.

Where it is not possible to statically analyse resource usage, we provide a software
solution with an instruction that allows the code to determine whether any contexts
remain. The procedure is to request a family table entry and then to check whether a
context is still available. If so it continues its recursion concurrently. If it has the last
context, it is obliged to use it to execute its recursion sequentially using the thread's
memory stack. In this way we can guarantee progress, even if every other thread may
have suspended in attempting to obtain a new context, as eventually that context will be
released and the same procedure will be followed by the other suspended threads. Of
course there must be a guarantee that the recursion terminates.

4. Results and analysis

We have configured our Microgrid emulator to implement the following chip design,
which will be used in obtaining the results on scalability presented in this paper.

• A 64-bit Alpha core with 1Kbyte, 4-way set associative L1 I- and D-caches,
1024 integer registers, 512 floating-point registers, supporting a maximum of
256 threads. The clock rate is assumed to be 1.6 GHz.

• A pipelined floating point unit shared between two cores with 3, 8 and 10
cycles latency for add/mult, division and sqrt respectively.

• An on-chip COMA memory with two-levels of ring network and two DDR3
2400 channels off chip. At the top level are four COMA directories each
supporting rings of eight 32 Kbyte, 4-way, set-associative L2 caches (i.e. 128
sets of 64-Byte cache lines). This gives a modest 1 MByte of L2 cache on chip.

• 128 cores configured with an inter-place cross-bar network as nine places
comprising the following number of cores: {64, 32, 16, 8, 4, 2, 1, 1}.

Figure 5 is a schematic illustration of this chip. Prior work indicates that such a
chip is feasible in current technology [20].

Figure 5. The Microgrid of 128 SVP cores and 32 by 32 KByte L2 caches.

The results presented here use code compiled from µTC versions of the Livermore

loop kernels. We have verified this tool chain by comparing the execution of the same
µTC code on both the emulator platform and on conventional processors, by applying
SVP's sequential schedule. The specific kernels are not chosen to highlight the best
results but rather to stress various aspects of the architecture and to illustrate the three
different programming patterns found in loop-based code.

Each benchmark creates one or more families of threads on places of size 1 to 64
cores and measures the time to create, execute and synchronise the threads. For each
kernel, we execute and time the code twice, the first execution with cold-caches, i.e. all
code and data loaded from off-chip memory. The second execution (labeled warm) is
run with whatever data remains in the caches and hence we would expect temporal
locality when the problem fits into on-chip cache. As the COMA memory injects
evicted cache lines into other caches on the same ring, when possible, the maximum
cache is 256KBytes for places up to 32 cores and 512KBytes for 64 cores. We evaluate
three different problem sizes: n=1K stressing concurrency overheads and limiting
virtual concurrency in large places (1K threads is just 16 threads per core at 64-cores);
n=8K where at least four arrays of this size map to the on-chip cache; and n=64K
where the cache would accommodate at most one array of this size (only on 64 cores).

4.1. Data-parallel loops

The results for the data parallel benchmarks are shown in Figure 6. The hydro fragment
executes the following simple expression n times, once per thread created.

x[k] = q + y[k]*(r*z[k+10] + t*z[k+11]);

Figure 6. Data-parallel kernels: hydro fragment (top left), ICCG (top right), Matrix Multiplication (bottom
left) and equation of state (bottom right), showing performance in GFLOPS and upper and lower bounds on
pipeline efficiencies averaged over all cores. Execution is on places of size 1 to 64 cores.

The best execution times for the different problem sizes are 0.55µs, 2.4µs and 150µsec
on 64 cores. For n=8K warm we get the best speedup, with a factor of 33 over the
single core result and an average pipeline efficiency of 42-85%. For n=1K warm, the
speedup drops to 17 on 64 cores. Here the total execution time is 893 processor cycles
of which 208 are required to execute the 16 threads on one core. The remainder arise
from distributing and synchronising the family of threads over a given number of cores
and from pipeline stalls due to fewer threads to hide memory access latency. Even so,
1024 threads are created, executed and synchronised across 64 cores in less than one
cycle per thread. This demonstrates the efficiency of our heavily overlapped process of
thread creation and distribution.

The results for cold caches and for the 64K problem, where the caches are also
effectively cold (they will hold the high index array values), we see saturation due to
memory-bandwidth limitation between 8 and 32 cores. The peak memory bandwidth is
38.4 GBytes/sec and the peak bandwidth required by the code is 4 GBytes/sec per core
at full pipeline efficiency, so these results are not unexpected.

ICCG shows a similar overall pattern but the performance is lower and for n=8K
warm the maximum speedup is only 19 on 64 cores. However, ICCG has more steps
and less concurrency. A total of log2n families are created, where at each step the
number of threads varies from 2 to n/2. Thus, like the smaller problem size above, we
have fewer threads and more concurrency-management overhead. Best execution times
for ICCG are 2, 3.5 and 57 µsecs for 1K, 8K and 64K respectively.

Matrix multiplication is shown for sizes of n=20 (S), 32 (M), 90 (L). This gives
array sizes of 400, 1K and 8K, i.e. n2 elements, however the algorithm performs O(n3)
operations for n2 results. The simplest algorithm was implemented, where n2 threads
each compute one element of the result by performing an inner product. It can be seen
that the results scale well for both warm and cold caches, due to the amount of
computation required in obtaining the result for a single element. This problem stresses
the on-chip cache organisation, as although it has temporal on-chip locality, accesses to
columns have no spatial locality. This can be seen in the results for the large problem,
where both cold and warm performance is reduced due to capacity misses. Maximum
speedup is a factor is 53 (warm) and 34 (cold) for n=32 on 64 cores. The best execution
times were 1.6, 5 and 90 µsecs, respectively for three problem sizes.

Equation of state is also a single family of n threads, although the thread in this
instance are more complex than hydro and give a better overall performance. We have
near perfect speedup for n=8K warm, 54 fold speedup on 64 cores. Even allowing for
concurrency overheads, the pipelines are still operating at over 78% on 64 cores, i.e.
less than 1 bubble in 4 cycles. The best execution times are 1.6, 4.8 and 113 µsecs for
the three problem sizes.

Figure 7. Inner product and first min reductions for 1k, 8K and 64K points.

4.2. Reductions

We implemented two reductions from the Livermore loops, inner product and first min.
The code for both is quite general although they require the system to provide the
number of cores, in order to implement four partial reductions on each core before
completing the reductions across the cores. As can be seen in Figure 7, we get a similar
pattern of performance to the data-parallel loops. Efficiencies overall are lower due to
the higher concurrency overheads and the sequential reduction between the cores. For
the warm caches we get speedups of 7, 12 and 34 for the different problem sizes.

4.3. Parallel prefix sum

The prefix sum operation is one of the simplest and most useful building blocks for
designing parallel algorithms. It appears to be inherently sequential but has an efficient
parallel implementation that requires log2n steps. For example, linear recurrences,
including many of the sequential Livermore loops can be expressed in parallel using it.
Blelloch in [28] lists a range of applications, including parsing, sorting, variable
precision arithmetic, regular expression searching, etc. The same algorithm is also used
in hardware in most ALUs to perform binary addition (carry look-ahead adders).
Parallel prefix sum can be generalised to any binary associative operation and is also
known as the scan operation.

Scan takes a binary associative operator ⊕, and an ordered set of n elements:
 [a0 , a1 , ..., an−1],

and returns the ordered set:

 [a0 , (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an−1)].

Figure 8. Parallel prefix sum (PPS) and sequential prefix sum (SPS) for 1K, 8K and 64K points respectively.
The same results are plotted at two different scales.

Because of its importance, we have investigated the implementation of this algorithm
using floating-point addition. We have implemented both parallel (PPS) and sequential
(SPS) versions in µTC and compared the results. The sequential version also generates
threads but implements the algorithm with a thread-to-thread dependency. The parallel
algorithm requires log2n/2 more operations than the sequential one, i.e. a factor of 5,
6.5 and 8 for the 1K, 8K and 64K problem sizes. Figure 8 compares the relative

performance of both algorithms, i.e. effective GFLOPS are computed using the
sequential operation count in both sets of performance curves. The sequential algorithm
shows a speedup of 1.1 at 64 cores. The parallel version has a speedup of 18, 38 and 46
on 64 cores (warm caches) compared to its single core performance and 7.2, 8.2. and
8.5 when compared to the performance of the single-core sequential code. Note also,
that the cold- and warm-cache performance is very similar due to the locality over the
algorithm’s log2n stages. The exception is the small problem size, where only 8 threads
are created per core, on the 64-core place, which is insufficient to tolerate the latency of
off-chip memory accesses.

5. Conclusions

This paper presents a significant amount of work, which spans more than a decade of
research and engineering effort. It is exciting to see the fruition of this work, made
possible with the support of the EU funded Apple-CORE project, which we gratefully
acknowledge. We have demonstrated here results obtained from our core compiler and
a realistic emulation of a processor chip that could be implemented in today’s
technology. We have only just begun to investigate the characteristics of this
disruptive approach to many-core computing but these initial results are very
encouraging. We have evaluated the performance of a range of common, loop-based
programming paradigms and have shown speedup on every one. Although performance
saturates due to memory bandwidth constraints in these simple benchmarks,
distributing them as concurrent components of a larger application, executing at
different places on chip, will minimise this problem. What we have shown is arguably
the worst case scenario, where very simple kernels are executed from start to finish
where all data and code is sourced off chip.

We still have a significant amount of work to complete in order to demonstrate that
this approach is viable in the context of commodity computing. We have started
evaluating more complex algorithms and have begun the process of automating the
management of resources on chip. Moreover we have shown that solutions exist to the
issues of security when using such a chip in an open, many-user environment. Thus the
results presented here, we believe, demonstrate a significant first step towards this goal.

Furthermore, the Apple-CORE project has enabled this work to be extended into
other research groups working in complimentary areas. Partners in this project are
developing high-level compilers from both standard and novel languages targeting this
core tool chain. In addition work is almost complete in developing an FPGA prototype
based of an SVP core based on the LEON 3 soft core.

References

[1] C.R. Jesshope, A model for the design and programming of multi-cores, in (L. Grandinetti, ed.), High
Performance Computing and Grids in Action, Advances in Parallel Computing, 16, IOS Press, 2008,
37–55.

[2] A. Duller, G. Panesar, and D. Towner. Parallel processing—the picoChip way, in (J.F. Broenink and G.H.
Hilderink, eds.) Communicating Process Architectures 2003, Concurrent Systems Engineering Series,
61, IOS Press, 2003, 1-14.

[3] D. Kirk, NVIDIA CUDA software and GPU parallel computing architecture, in Proc. 6th international
symposium on Memory management, ISMM ’07, ACM, 2007, 103–104.

[4] NVIDIA Corporation, CUDA Zone - the resource for CUDA developers, http://www.nvidia.com/cuda,
2009.

[5] J. Held, J. Bautista and S. Koehl, From a few cores to many: a Tera-scale computing research overview,
Intel Corporation technical report,
http://download.intel.com/research/platform/ terascale/terascale_overview_paper.pdf, 2006.

[6] Intel Corporation, Tera-scale computing research programme,
http:// techresearch.intel.com/articles/Tera-Scale/1421.htm.

[7] Intel Corporation, Teraflops research chip. http://techresearch. intel.com/articles/Tera-Scale/1449.htm.
[8] Clearspeed, CSX Processor Architecture. Whitepaper, Clearspeed Technology plc, Bristol, UK, 2007.
[9] ITRC, International Technology Roadmap for Semiconductors. http://public.itrs.net, 2007.
[10] C. Grelck and S-B. Scholz. SAC: A functional array language for efficient multithreaded execution,

International Journal of Parallel Programming, 34(4), 2006, 383–427.
[11] C. Grelck and S-B. Scholz. SAC: off-the-shelf support for data-parallelism on multicores, in Proc.

2007 workshop on Declarative aspects of multicore programming, DAMP ’07, ACM, 2007, 25-33.
[12] C. Grelck, S-B Scholz, and A. Shafarenko. Streaming networks for coordinating data-parallel programs,

in (I. Virbitskaite and A Voronkov, eds), Perspectives of System Informatics, 6th International Andrei
Ershov Memorial Conference (PSI’06), Novosibirsk, 4378 LNCS, Springer-Verlag, 2007, 441–445.

[13] C. Grelck, S-B Scholz, and A. Shafarenko. A gentle introduction to S-Net: Typed stream processing
and declarative coordination of asynchronous components, Parallel Processing Letters, 18(1), 2008,
221- 237.

[14] D. Saougkos, D. Evgenidou, and G. Manis. Specifying loop transformations for C2µTC source-to-
source compiler, in 14th Workshop on Compilers for Parallel Computing (CPC’09), 2009.

[15] T.D Vu and C. R. Jesshope, Formalizing SANE virtual processor in thread algebra, in (M. Butler, M. G.
Hinchley and M. M. Larrondo-Petrie, eds.) Proc. ICFEM 2007, 4789 LNCS, Springer-Verlag, 2007,
345-365.

[16] Arvind, R.S. Nikhil, and K.K. Pingali, I-structures: data structures for parallel computing, ACM Trans.
Program. Lang. Syst., 11(4), 1989, 598-632.

[17] C.R. Jesshope, µTC - an intermediate language for programming chip multiprocessors, in Asia-Pacific
Computer Systems Architecture Conference, 4186 LNCS, 2006, 147-160.

[18] GCC, the GNU compiler collection. http://gcc.gnu.org.
[19] T. Bernard, K. Bousias, L. Guang, C.R. Jesshope, M. Lankamp, M.W. van Tol and L. Zhang, A general

model of concurrency and its implementation as many-core dynamic RISC processors, in (W. Najjar
and H. Blume Eds.) Proc. Intl.Conf. on Embedded Computer Systems: Architecture, Modeling and
Simulation, SAMOS-2008, 2008, 1-9.

[20] K. Bousias, L. Guang, C.R. Jesshope, M. Lankamp, Implementation and Evaluation of a Microthread
Architecture, Journal of Systems Architecture, 55(3) 2009, 149-161.

[21] M.W. van Tol, C.R. Jesshope, M. Lankamp and S. Polstra, An implementation of the SANE Virtual
Processor using POSIX threads, Journal of Systems Architecture, 55(3), 2009,162-169.

[22] G. R. Gao and V. Sarkar, Location consistency – a new memory model and cache consistency protocol.
IEEE Transactions on Computers, 1998.

[23] D. Mosberger, Memory consistency models. SIGOPS Oper. Syst. Rev., 27(1), 1993, 18–26.
[24] E. W. Dijkstra, Hierarchical ordering of sequential processes. Acta Informatica, 1(2), 1971, 115-138.
[25] K. Bousias, N. M. Hasasneh and Jesshope C R (2006) Instruction-level parallelism through

microthreading - a scalable Approach to chip multiprocessors, Computer Journal, 49 (2), 211-233.
[26] C. Jesshope, M. Lankamp and L Zhang, Evaluating CMPs and their memory architecture, in (Eds. M

Berekovic, C. Muller-Schoer, C. Hochberger and S. Wong) Proc. Architecture of Computing Systems,
ARCS 2009, 5455 LNCS, 2009, pp246-257.

[27] J. Masters, M. Lankamp, C.R. Jesshope, R. Poss, E. Hielscher, Report on memory protection in
microthreaded processors, Apple-CORE deliverable D5.2, http://www.apple-core.info/wp-
content/apple-core/2008/12/d52.pdf.

[28] G. E. Blelloch, Prefix Sums and Their Applications, in Synthesis of Parallel Algorithms, (J. H. Reif,
ed.) Morgan Kaufmann, 1991.

