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Abstract. In this paper we will introduce work being supported by the EU in the 
Apple-CORE project (http://www.apple-core.info). This project is pushing the 
boundaries of programming and systems development in multi-core architectures 
in an attempt to make multi-core go mainstream, i.e. continuing the current trends 
in low-power, multi-core architecture to thousands of cores on chip and supporting 
this in the context of the next generations of PCs. This work supports dataflow 
principles but with a conventional programming style. The paper describes the 
underlying execution model, a core design based on this model and its emulation 
in software. We also consider system issues that impact security. The major 
benefits of this approach include asynchrony, i.e. the ability to tolerate long 
latency operations without impacting performance and binary compatibility. We 
present results that show very high efficiency and good scalability despite the high 
memory access latency in the proposed chip architecture. 
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Introduction 

One of the principle research goals in parallel computing is the ability to write code 
once, or to take legacy sequential code, and to execute it on any parallel computer with 
a high efficiency and with scalable speedup. This need only be constrained by the 
concurrency exposed in the algorithm and the characteristics of the target parallel 
computer. Problems arise because these characteristics vary significantly and that most 
developments in tools target a particular architecture rather than a generic parallel 
execution model. The characteristics that vary include synchronisation and scheduling 
overhead, which determine the granularity of the units of concurrency that can be 
executed efficiently and the ratio of computation to communication rates, which 
determines whether it is worthwhile distributing code at a given level of granularity. 

Whether this goal of general-purpose parallel computing can be achieved across a 
wide range of targets is still an open question but one that we are working towards. Our 
first steps have focused on the narrower field of achieving genericity of target when 
programming many-core processors. Here we see the same issues affecting different 
generations of the same processor or dynamic partitions of a multi-core chip. We want 
to be able to compile code once and execute it on any number of cores, anywhere on 
chip and to deal with systems issues such as scalability and security in a multi-user 
environment. Our execution model, SVP [1], provides concurrent composition by 
default. This invited paper describes an implementation of that model in the ISA of a 
conventional, in-order issue RISC core. More details on various aspects of this EU-
funded project can be found at (http://www.apple-core.info/). 



1. Motivation 

That there is a practical urgency in this matter is common knowledge. On the one 
hand, there is an inescapable requirement to manage power dissipation on chip, which 
requires many simple cores rather than fewer, more complex ones. On the other hand, a 
many-core approach requires tools supporting massive explicit concurrency, which are 
difficult to implement and error prone to use. In embedded and special purpose systems, 
e.g. picoChips [2], NVIDIA [3, 4], Intel [5, 6, 7] and ClearSpeed [8], this is common. 
However, here the focus is on a limited set of applications, where skilled effort can be 
applied to find and map the applications’ concurrency. Moore’s law still predicts that 
the number of cores on chip will double every 18 to 24 months (for at least for another 
decade [9]) and this raises compatibility issues even in a specific processor. 

In a more general market, the labour-intensive approach of hand mapping an 
application is not feasible, as the effort required is large and compounded by the many 
different applications. A more automated approach from the tool chain is necessary. 
This investment in the tool chain, in turn, demands an abstract target to avoid these 
compatibility issues. That target or concurrency model then needs to be implemented 
on a variety of platforms to give portability, whatever the granularity of that platform. 

Our experience suggests that an abstract target should adopt concurrent rather than 
sequential composition, but admit a well-defined sequential schedule. It must capture 
locality without specifying explicit communication. Ideally, it should support 
asynchrony using data-driven scheduling to allow for high latency operations. However, 
above all, it must provide safe program composition, i.e. guaranteed freedom from 
deadlock when two concurrent programs are combined.  

Our SVP model is designed to meet all of these requirements. Whether it is 
implemented in the ISA of a conventional core, as described here or encapsulated as a 
software API will only effect the parameters described above, which in turn will 
determine at what level of granularity one moves from parallel to sequential execution 
of the same code. The work presented in this paper describes the execution model, its 
implementation as an extension to the Alpha ISA and its core compiler that compiles 
the language µTC, which captures SVP in an architecture neutral form, to a Microgrid 
of SVP-enabled cores. Compilers to this model, emitting µTC, are also being 
developed from the functional, data-parallel language SAC [10, 11], the high-level 
coordination language and component technology S-Net [12, 13] as well as an 
automatically parallelising compiler for legacy C code [14].  

2. The Self-adaptive Virtual Processor - SVP 

SVP is a hierarchical thread-based model developed in the EU AETHER project 
(http://www.aether-ist.org/) to support adaptive computing. It provides a complete 
separation of concerns between the two most important aspects of concurrent 
programming. The first is the description of an application's functionality expressed 
concurrently and the second is the mapping of that program onto a set of resources. 
This separation is achieved by binding processing resources to units of work 
dynamically using opaque, implementation-defined objects called places. In this paper, 
a place is a ring of SVP-enabled cores but it could just as easily be a conventional core 
or cluster of cores or even dynamically configured logic (e.g. an FPGA), as was 
implemented in the AETHER project. 



In its resource-neutral form, SVP provides an abstract target for high-level 
language compilation, which need not be concerned with mapping and scheduling. The 
code generated is highly concurrent and guaranteed to be free from deadlock [15]. 
Mapping is performed by the core-compiler (i.e. the µTC compiler) and a run-time 
system that provides dynamic allocation of places in a manner similar to memory 
allocation. Scheduling is controlled using synchronising communication. SVP defines 
shared and global objects giving pair-wise and collective, one-way synchronisation 
channels respectively. These are implemented with i-structures [16]. They are written 
once in one thread and are read-only in one or more other threads. I-structures provide 
the data-driven scheduling in an SVP implementation. An i-structure suspends a thread 
attempting to read it in an empty or unwritten state and stores these continuations until 
data is written, at which point it must reschedule the suspended threads. 

Currently SVP is described by the language µTC [17], for which we have a core 
compiler tool chain based on GCC [18]. This has multiple targets that currently 
include: 

• a sequential implementation for program validation; 
• a cycle-accurate multi-core chip emulation, where SVP is implemented 

directly in the core's ISA [19, 20] - a Microgrid of SVP cores; and 
• a POSIX-thread-based SVP API [21] for general use, developed in the EU 

AETHER project. 
SVP programs are composed concurrently, at all levels, from the smallest threads 

(maybe a few instructions) up to complete systems. This means that there is always an 
appropriate level of granularity that will map to a given target at some point in the 
concurrency tree. Hence, when a target is selected, the SVP program is transformed to 
that level of granularity using its sequential schedule. In the Microgrid of SVP cores, 
no code transformation is required. Places are selected at run time and the hardware 
provides support for the automatic sequencing of SVP binary code, if too few 
concurrent contexts are available. This is described in more detail in Section 3. 

 

 
Figure 1. Three variants of an SVP create showing synchronisations: (a) concurrent function execution with 
synchronising parameters; (b) concurrent loop execution (n.b. each thread is created with a unique index in a 
specified range); and (c) concurrent loop execution with loop-carried dependencies (linear pipelines). 

2.1. SVP concurrency controls 

SVP provides concurrency controls to create and terminate (kill and break) a named 
unit of work. That unit is a family of identical indexed threads and any subordinate 
families that those threads may create. The index is specified on create by a triple of 
(start, step, limit) or (start, step) for unbounded families. Unbounded families must be 
terminated dynamically with a break instruction executed in one of the family's threads. 



The parent thread may execute and communicate asynchronously with the family it 
creates. SVP provides a barrier (sync), which signals the completion of a family to the 
parent thread. Communication between the parent and its children may occur anywhere 
in the parent from create to sync, using shared and/or global objects. 

The create/sync pair is used to compose both functions and loops as concurrently 
executing threads, including loops with dependencies. This is shown in Figure 1. As 
can be seen, we allow communication only between parent and first child and between 
adjacent children defined on the thread's index value. For shared objects, an association 
is made between a local in the creating thread and the shared object defined in the 
thread's parameters. A write in the parent thread is only seen by the first child thread 
and, with more than one thread created in the family, a write to a shared in one thread 
will be seen by its successor in index sequence. For global objects, a similar association 
is made between a local in the parent thread and the global object defined in the 
thread's parameters. Global objects may be read by all threads. The write to a shared 
object in the last thread in index sequence will update (on sync) the initialising variable 
in the creating thread. This restriction on communication has a threefold advantage: 

• it provides a well defined sequential schedule for any SVP program; 
• it guarantees freedom of deadlock in the abstract model, although failure to 

write to synchronising objects where visible and dealing with finite resource 
can still cause deadlock; and 

• it provides an abstract notion of locality to the high-level compiler, which 
must transform dependencies to conform to this restriction.  

So, what appears as a restriction in the model has advantages. The obvious question 
that follows is whether the model is still sufficiently general. Work on the C-to-SVP 
compiler [14] has shown that such transformations are possible in loops for all regular 
dependencies. Moreover, irregular dependencies can be made regular by a gather 
and/or scatter stage. 

2.2. SVP memory model 

We wish to support a very relaxed memory consistency model in SVP that would map 
naturally onto shared memory but, at the same time, ease any implementation on 
distributed memory. Consider a branch of the SVP concurrency tree (at any level); then 
for any memory location used anywhere in that branch and known not to be accessed 
concurrently by other (unrelated) branches while this branch is running, SVP provides 
Gao and Sakar's Location Consistency (LC) semantics, but without the synchronising 
acquire and release operations described in [22]. Instead, the synchronising operations 
that establish partial order on memory accesses are SVP's create and sync operations, 
which have different semantics to LC's acquire and release.  

Thus, SVP's concurrency model provides support for non-synchronising, 
competing shared memory accesses (using the terminology proposed by Mosberger 
[23]) from different threads in a family, but exposes memory state from one thread to 
all its subordinate threads. Location consistency is then resolved for a thread on 
termination of a subordinate concurrency tree. In the hierarchy proposed by Mosberger 
[23], this model is a hybrid of LC (between parent threads and child families) and a 
weaker model without any synchronisation (between sibling threads). 

Communication via memory is not defined in SVP between sibling threads. The 
only guaranteed synchronisation is through shared objects, which have different 
semantics, as described in Section 2.1, and which can be of arbitrary size. Whether 



these shared objects are supported by a specific SVP implementation using a shared-
memory architecture with more constrained consistency semantics, via explicit 
communication channels or via some other mechanism, is not specified in the abstract 
SVP model. 

In some circumstances it is necessary to provide consistency between global 
objects used in unrelated threads. We support this through the use of SVP's exclusive 
place. Exclusive place are shared between threads and sequence requests to create 
families of threads at that place. SVP's exclusive places in effect implement Dijkstra's 
"secretary" concept [24], where communication can occur between independent 
sequential processes by means of changing the secretary's local (private) state. 

3. The SVP core 

We have implemented SVP's concurrency controls and shared object semantics for 
basic types (integer and floats) as extensions to the ISA of an in-order Alpha core. 
Support is also provided in the form of memory barriers for arbitrary shared objects 
using pointers to objects stored in memory. This implementation is a full software 
emulation of the extended instruction set. It is supported by a set of tools to compile, 
assemble, link, load and execute µTC programs. This implementation takes account of 
all internal processor state in each of the six stages of the Alpha pipeline. It also 
restricts concurrent reads to an implementable number of ports on memory structures 
and hence provides a cycle-accurate simulation of the execution time of SVP programs. 

As an example, consider the register file. This is the largest memory structure in 
the core and if silicon layout constraints were not taken into account, the core could not 
be implemented in a reasonable area and with a reasonable clock frequency; the area of 
a memory cell grows as the square of the number of its ports. Single instruction issue 
requires two reads and one write to the register file to support the pipeline’s operation. 
However, the register file is also written with a thread’s index value by the thread 
create process (potentially once every cycle). The register file must also be accessed for 
shared-register communication between threads that are mapped to adjacent processors 
and for operations that terminate asynchronously (described below). To support all of 
this, we provide 5 ports to the register file: 3 for pipeline operation and one read and 
one write port with arbitration for all other uses. Static analysis predicted this to be 
sufficient [24] and subsequent emulation has shown that while some processes may 
stall for a few cycles, overall progress is assured. 

3.1. Synchronising registers 

In SVP (unlike pure dataflow), constraints in a program are captured using two 
mechanisms, namely program sequence and by capturing dependencies. The latter uses 
SVP's synchronising objects, as described in Section 2.1. Ideally each should be 
implemented at the same level of granularity and hence we implement synchronising 
communication in the register file of the SVP core. By synchronising at this level, 
threads mapped to the same core can synchronise in a single cycle using the pipeline's 
bypass bus and between cores in a time not much longer than the pipeline's length. 

Each register can be used either as an i-structure or as a conventional register. A 
state transition diagram for the i-structure is given in Figure 2. It will block any thread 
attempting to read in the empty state (i.e. before it the location has been written), 



continue to suspend thread continuations while it is waiting and reschedule those 
threads for execution upon being made full (i.e. when the location has been written). In 
the waiting state therefore, a register-file location contains a link to all threads that have 
attempted to read that location before its value was defined.  

 

 
Figure 2. I-structure state-transitions 

SVP instructions 
 Family/thread management   Family parameter setting 
allocate Takes a place at which a family will execute, 

allocates a family table entry and returns a 
family table index - FTid (asynchronous). 

setstart Sets a start index value for the 
given family – threads start from 
this index 

create Takes an FTid and creates threads described 
by the parameters stored there and returns a 
termination code, the sync (asynchronous). 

setlimit Sets a limit index value for the 
given family.  

setstep Sets a step index value for the 
given family  

break Terminates a thread’s family and all 
subordinate families and returns a break 
value. Only one thread in a family may 
succeed in breaking its family 
(asynchronous). 

setblock Sets the maximum number of 
threads created on a given core. 

kill Terminates a family identified by a family 
table index and all subordinate families. 

setbreak Nominates the register that will be 
used to return the break value 

Table 1. SVP instructions. 

3.2. Family and thread management 

In the SVP core, only a finite number of families and threads may be defined and these 
are stored in dedicated tables. This information is managed by instructions added to the 
Alpha ISA, which are listed in Table 1. Family state is stored in the family table and 
thread state is stored in the thread table. Both families and threads are identified by 
their index into these respective tables. Instructions in Table 1: allocate a family table 
entry, which comes with a default set of parameters; overwrite the default parameters 
where required; and initiate thread creation. The latter takes a single pipeline cycle to 
create an unlimited number of threads at a rate of one per cycle until resources are 
exhausted or the block size has been reached. Kill terminates a family based on its 
index in the family table and is fully recursive, i.e. all subordinate families are also 
killed. From a program’s perspective only the family table index is visible, however, all 
instructions executed in an SVP core are tagged with their family and thread indices. 
This allows us to suspend and resume threads using the i-structures, which maintain 
linked lists of suspended thread indices. 

 



 
 

Figure 3. SVP pipeline phases 

3.3. Instruction execution 

The SVP pipeline is illustrated in Figure 3. It comprises three phases, each of which 
may comprise multiple pipeline stages. Instructions are issued from the head of the 
queue of active threads, where threads that can make progress are stored. These threads 
are not suspended and have their next instruction in the I-cache. Context switching 
(selecting the next thread from the active list) occurs on branches, when the current 
program counter increments over a cache-line boundary and, for efficiency, on 
instructions tagged by the compiler that are dependent on asynchronous instructions. In 
the latter case, this avoids flushing the pipeline if that instruction finds one of its 
operands empty at the register-file read. Thus, the core only executes sequences of 
statically schedulable instructions without context switching and then only when it can 
be guaranteed that instruction fetch will hit the I-cache. This makes for a very efficient 
instruction execution. In the limit, threads can context switch on each cycle and thread 
creation or wakeup can meet this rate. 

In the next phase, instructions read their operands from the synchronising register 
file. Only when both operands are available can the instruction be dispatched for 
execution. The thread is suspended if either of the instruction’s source registers is 
empty. A suspended thread will be rescheduled and re-execute the same instruction 
when the register it is suspended on is written to. This differs from dataflow execution 
where an instruction is only issued when all of its operations are available. The benefit 
is that statically scheduled instructions from multiple threads can be executed with 
RISC-like efficiency.  

At execution, all instructions write back to the register file in their allocated 
pipeline slot, however, at this stage, asynchronous instructions simply set the target 
register’s i-structure state to empty. Data is written when the operation completes. This 
may be the completion of a family, i.e. create writing a return code, or other long-
latency operation (including memory fetches, floating point operations and any 
instructions labeled asynchronous in Table 1). In this way, no dependent instruction 
can execute until the asynchronous operation completes. 

3.4. Thread-to-thread communication 

Most of the bandwidth for thread-to-thread communication in a Microgrid of SVP 
cores is provided by the implementation of shared memory on-chip. We adopt an on-
chip COMA memory that has already been reported elsewhere [26]. This uses a 



hierarchy of cache-line-wide ring networks to implement an attraction memory with a 
large aggregate bandwidth. In this memory, cache lines have no home. They can be 
copied and invalidated anywhere on chip so that data always migrates to the point of 
last update. A token-based cache-coherence protocol implements the memory 
consistency model described in Section 2.2.  

An inter-place network provides low-latency communication between clusters of 
cores on a chip (the implementation of SVP’s place). The place at which a family is 
created is defined on allocating its family table entry and if this is neither the core nor 
the cluster on which the parent thread is executing, then the inter-place network is used 
to implement the instructions listed in Table 1. The remote execution of a subordinate 
family on another place is called a delegation and requires a proxy family table entry 
on the creating core, which identifies the remote place. It also requires a family table 
entry at the remote place that controls thread creation in the normal manner. Parameters 
that define the family of threads are communicated across this network using these 
instructions. The Proxy must also manage communication of global and shared 
parameters between parent and child, which need not have been defined prior to create. 

 

 
Figure 4. Mapping of the overlapping register windows on creating a family of two threads with three local, 
two global and one shared/dependent defined in its register context. Shared register communication is 
illustrated with dashed arrows. The base addresses for the mapping of globals (BG) and shareds (BS) to the 
parent’s locals is shown. N.b. this picture is repeated for ints and floats in the Alpha architecture. 

An intra-place network manages communication between cores in a cluster. This 
includes the distributed implementation of create and sync actions that result in the 
distribution of the threads in a family to a multi-core place. It also implements a 
distributed-shared register file between the cores. This network is a word-wide ring 
network between adjacent cores in a cluster. To understand how this communication is 
specified it is necessary to understand the mapping of SVP’s four classes of variables 
onto the distributed-shared register file. Register variables are divided into a number of 
overlapping windows, these are: 

• local - visible only to one thread; 
• global - written in a parent thread and read only in all threads in a family; 
• shared - written once and visible to the next thread in index sequence;  
• dependent - read-only access to the previous thread’s shareds. 



When a thread function is compiled, a partition is made of the architectural register 
context between these classes and this is defined in a header to its binary code, e.g. NL, 
NG, NS, where: 

€ 

NG + NL + 2∗NS ≤ 31, n.b. not all registers need be mapped. To 
create n threads on a single core, n*(NL+ NS) registers are dynamically allocated from 
its register file, where n is determined by the number of threads in a family, a limit on 
the number of contexts available for a given core or by the block size defined in 
setblock (see Table 1). In Figure 4, eight registers are allocated on the creation of a 
family of two threads, with NL=3 and NS=1. 
 

In order to pass parameters between parent and child threads the creating thread 
identifies offsets into its local variables to map to the globals (BG) and shareds (BS) of 
the created threads. These registers are written in the parent thread and are visible to all 
threads for globals and to the first thread only for shareds. Between siblings, a write to 
a shared in one thread can be read as a dependent in the subsequent thread. In the last 
thread, the shared write is visible to the parent thread in its locals via BS, i.e. on sync, 
the location used as the parent’s shared is updated.  

The intra-place network implements a distributed-shared register file over the 
windowing scheme described above, so that the register files of all cores in a place 
provide a uniform mechanism for reading and writing registers regardless of their 
location. For efficient communication between cores, the global registers are replicated 
with a copy in each core’s register file. These are allocated in the distributed create 
operation over the intra-place network. When threads on a core read an empty global, 
they will be suspended on that core and at most one read request is sent to the parent 
thread, which eventually responds with a broadcast around the ring, rescheduling any 
waiting threads. Similarly, when a shared communication is mapped between two cores 
the shared/dependent registers are also replicated. In this case, a read request is made to 
the adjacent core, which is eventually satisfied. The latter requires an additional NS 
registers to be allocated per family, per core when a family is distributed. Again the 
dependent thread can be suspended and rescheduled at the core it executes on.  

3.5. SVP security 

To make multi-core mainstream, we described in the introduction a requirement to 
execute binary programs on an arbitrary number of cores (i.e. on one or more places of 
various sizes) by automating whether families of threads execute concurrently or 
sequentially. However, we also need to guarantee freedom from deadlock when finite 
resources are applied to an abstract SVP program and to guarantee this in the presence 
of potentially many different jobs competing for those resources in a multi-user 
environment. Note that we have to consider the situation where some of those 
programs may be hostile. It is not only deadlock that is an issue; programs can execute 
very powerful instructions in an open environment (for example to kill a family of 
threads and its descendants, see Table 1). We do have solutions to most of these 
problems although some are not yet implemented in our emulation environment. We 
deal with each of these issues in turn starting with the latter. 

To protect a family from being the subject of an accidental or even malicious kill 
instruction, we protect families with capabilities. When a family is created, a key of 
arbitrary entropy is generated, which is stored in the family table and combined with 
the family table index to comprise a family identifier. This can be made arbitrarily 
secure. In order to issue an asynchronous kill on a family, the thread issuing the kill 



instruction must provide a family identifier that matches the security key stored in the 
family table, otherwise the instruction is ignored. In practical terms, this means that it 
must have been passed the capability by the creator of that family. 

To protect a program from resource deadlock we have two strategies. The first is to 
analyse the resource requirements of a µTC program and to ensure that those resources 
are exclusively allocated to that program. The issue at hand is not the breadth of the 
concurrency tree, since a single context on one core is sufficient to execute any family 
regardless of its breadth. The problem is recursion of creates in the presence of finite 
concurrency resources. If that can be bounded, then deadlock freedom can be 
guaranteed by restricting the number of contexts allocated to families using setblock 
and to allocate places at appropriate points in the concurrency tree. At what point in the 
execution of a family those resources are guaranteed is an issue requiring further 
research. However, at present we can assume that they are allocated prior to the 
execution of the program, in which case we have a static solution, although not 
necessarily the most efficient one. To provide a more dynamic mapping, some 
guarantee of obtaining minimal resources in a finite time is required. 

We must also consider how to ensure that if a program is allocated a place, then no 
other thread is allowed to create a family at the same place. This could consume those 
resources required to guarantee freedom from deadlock. This is achieved by including a 
capability in the place identifier, in the same way as described above for securing 
against kill. If the place identifier used in a create does not match the one-time key 
stored at that place when it was allocated, then the create will be ignored. Note that the 
only guarantee we can give on sharing the concurrency resources on a processor is 
when legacy code is executed. Here a single processor place can be shared between a 
number of legacy programs, where each is guaranteed to run in a single SVP thread. 

Where it is not possible to statically analyse resource usage, we provide a software 
solution with an instruction that allows the code to determine whether any contexts 
remain. The procedure is to request a family table entry and then to check whether a 
context is still available. If so it continues its recursion concurrently. If it has the last 
context, it is obliged to use it to execute its recursion sequentially using the thread's 
memory stack. In this way we can guarantee progress, even if every other thread may 
have suspended in attempting to obtain a new context, as eventually that context will be 
released and the same procedure will be followed by the other suspended threads. Of 
course there must be a guarantee that the recursion terminates. 

4. Results and analysis 

We have configured our Microgrid emulator to implement the following chip design, 
which will be used in obtaining the results on scalability presented in this paper. 

• A 64-bit Alpha core with 1Kbyte, 4-way set associative L1 I- and D-caches, 
1024 integer registers, 512 floating-point registers, supporting a maximum of 
256 threads. The clock rate is assumed to be 1.6 GHz. 

• A pipelined floating point unit shared between two cores with 3, 8 and 10 
cycles latency for add/mult, division and sqrt respectively. 

• An on-chip COMA memory with two-levels of ring network and two DDR3 
2400 channels off chip. At the top level are four COMA directories each 
supporting rings of eight 32 Kbyte, 4-way, set-associative L2 caches (i.e. 128 
sets of 64-Byte cache lines). This gives a modest 1 MByte of L2 cache on chip. 



• 128 cores configured with an inter-place cross-bar network as nine places 
comprising the following number of cores: {64, 32, 16, 8, 4, 2, 1, 1}.  

Figure 5 is a schematic illustration of this chip. Prior work indicates that such a 
chip is feasible in current technology [20]. 

 

 
Figure 5. The Microgrid of 128 SVP cores and 32 by 32 KByte L2 caches. 

 
The results presented here use code compiled from µTC versions of the Livermore 

loop kernels. We have verified this tool chain by comparing the execution of the same 
µTC code on both the emulator platform and on conventional processors, by applying 
SVP's sequential schedule. The specific kernels are not chosen to highlight the best 
results but rather to stress various aspects of the architecture and to illustrate the three 
different programming patterns found in loop-based code. 

Each benchmark creates one or more families of threads on places of size 1 to 64 
cores and measures the time to create, execute and synchronise the threads. For each 
kernel, we execute and time the code twice, the first execution with cold-caches, i.e. all 
code and data loaded from off-chip memory. The second execution (labeled warm) is 
run with whatever data remains in the caches and hence we would expect temporal 
locality when the problem fits into on-chip cache. As the COMA memory injects 
evicted cache lines into other caches on the same ring, when possible, the maximum 
cache is 256KBytes for places up to 32 cores and 512KBytes for 64 cores. We evaluate 
three different problem sizes: n=1K stressing concurrency overheads and limiting 
virtual concurrency in large places (1K threads is just 16 threads per core at 64-cores); 
n=8K where at least four arrays of this size map to the on-chip cache; and n=64K 
where the cache would accommodate at most one array of this size (only on 64 cores).  

4.1. Data-parallel loops 

The results for the data parallel benchmarks are shown in Figure 6. The hydro fragment 
executes the following simple expression n times, once per thread created. 

x[k] = q + y[k]*(r*z[k+10] + t*z[k+11]); 



  

  
Figure 6. Data-parallel kernels: hydro fragment (top left), ICCG (top right), Matrix Multiplication (bottom 
left) and equation of state (bottom right), showing performance in GFLOPS and upper and lower bounds on 
pipeline efficiencies averaged over all cores. Execution is on places of size 1 to 64 cores.  

The best execution times for the different problem sizes are 0.55µs, 2.4µs and 150µsec 
on 64 cores. For n=8K warm we get the best speedup, with a factor of 33 over the 
single core result and an average pipeline efficiency of 42-85%. For n=1K warm, the 
speedup drops to 17 on 64 cores. Here the total execution time is 893 processor cycles 
of which 208 are required to execute the 16 threads on one core. The remainder arise 
from distributing and synchronising the family of threads over a given number of cores 
and from pipeline stalls due to fewer threads to hide memory access latency. Even so, 
1024 threads are created, executed and synchronised across 64 cores in less than one 
cycle per thread. This demonstrates the efficiency of our heavily overlapped process of 
thread creation and distribution. 



The results for cold caches and for the 64K problem, where the caches are also 
effectively cold (they will hold the high index array values), we see saturation due to 
memory-bandwidth limitation between 8 and 32 cores. The peak memory bandwidth is 
38.4 GBytes/sec and the peak bandwidth required by the code is 4 GBytes/sec per core 
at full pipeline efficiency, so these results are not unexpected. 

ICCG shows a similar overall pattern but the performance is lower and for n=8K 
warm the maximum speedup is only 19 on 64 cores. However, ICCG has more steps 
and less concurrency. A total of log2n families are created, where at each step the 
number of threads varies from 2 to n/2. Thus, like the smaller problem size above, we 
have fewer threads and more concurrency-management overhead. Best execution times 
for ICCG are 2, 3.5 and 57 µsecs for 1K, 8K and 64K respectively.  

Matrix multiplication is shown for sizes of n=20 (S), 32 (M), 90 (L). This gives 
array sizes of 400, 1K and 8K, i.e. n2 elements, however the algorithm performs O(n3) 
operations for n2 results. The simplest algorithm was implemented, where n2 threads 
each compute one element of the result by performing an inner product. It can be seen 
that the results scale well for both warm and cold caches, due to the amount of 
computation required in obtaining the result for a single element. This problem stresses 
the on-chip cache organisation, as although it has temporal on-chip locality, accesses to 
columns have no spatial locality. This can be seen in the results for the large problem, 
where both cold and warm performance is reduced due to capacity misses. Maximum 
speedup is a factor is 53 (warm) and 34 (cold) for n=32 on 64 cores. The best execution 
times were 1.6, 5 and 90 µsecs, respectively for three problem sizes. 

Equation of state is also a single family of n threads, although the thread in this 
instance are more complex than hydro and give a better overall performance. We have 
near perfect speedup for n=8K warm, 54 fold speedup on 64 cores. Even allowing for 
concurrency overheads, the pipelines are still operating at over 78% on 64 cores, i.e. 
less than 1 bubble in 4 cycles. The best execution times are 1.6, 4.8 and 113 µsecs for 
the three problem sizes. 

 

  
Figure 7. Inner product and first min reductions for 1k, 8K and 64K points. 



4.2. Reductions 

We implemented two reductions from the Livermore loops, inner product and first min. 
The code for both is quite general although they require the system to provide the 
number of cores, in order to implement four partial reductions on each core before 
completing the reductions across the cores. As can be seen in Figure 7, we get a similar 
pattern of performance to the data-parallel loops. Efficiencies overall are lower due to 
the higher concurrency overheads and the sequential reduction between the cores. For 
the warm caches we get speedups of 7, 12 and 34 for the different problem sizes. 

4.3. Parallel prefix sum 

The prefix sum operation is one of the simplest and most useful building blocks for 
designing parallel algorithms. It appears to be inherently sequential but has an efficient 
parallel implementation that requires log2n steps. For example, linear recurrences, 
including many of the sequential Livermore loops can be expressed in parallel using it. 
Blelloch in [28] lists a range of applications, including parsing, sorting, variable 
precision arithmetic, regular expression searching, etc. The same algorithm is also used 
in hardware in most ALUs to perform binary addition (carry look-ahead adders). 
Parallel prefix sum can be generalised to any binary associative operation and is also 
known as the scan operation. 

Scan takes a binary associative operator ⊕, and an ordered set of n elements: 
 [a0 , a1 , ..., an−1 ],  

and returns the ordered set: 

 [a0 , (a0 ⊕ a1 ), ..., (a0 ⊕ a1 ⊕ ... ⊕ an−1 )].  

 
Figure 8. Parallel prefix sum (PPS) and sequential prefix sum (SPS) for  1K, 8K and 64K points respectively. 
The same results are plotted at two different scales.  

Because of its importance, we have investigated the implementation of this algorithm 
using floating-point addition. We have implemented both parallel (PPS) and sequential 
(SPS) versions in µTC and compared the results. The sequential version also generates 
threads but implements the algorithm with a thread-to-thread dependency. The parallel 
algorithm requires log2n/2 more operations than the sequential one, i.e. a factor of 5, 
6.5 and 8 for the 1K, 8K and 64K problem sizes. Figure 8 compares the relative 



performance of both algorithms, i.e. effective GFLOPS are computed using the 
sequential operation count in both sets of performance curves. The sequential algorithm 
shows a speedup of 1.1 at 64 cores. The parallel version has a speedup of 18, 38 and 46 
on 64 cores (warm caches) compared to its single core performance and 7.2, 8.2. and 
8.5 when compared to the performance of the single-core sequential code. Note also, 
that the cold- and warm-cache performance is very similar due to the locality over the 
algorithm’s log2n stages. The exception is the small problem size, where only 8 threads 
are created per core, on the 64-core place, which is insufficient to tolerate the latency of 
off-chip memory accesses. 

5. Conclusions 

This paper presents a significant amount of work, which spans more than a decade of 
research and engineering effort. It is exciting to see the fruition of this work, made 
possible with the support of the EU funded Apple-CORE project, which we gratefully 
acknowledge. We have demonstrated here results obtained from our core compiler and 
a realistic emulation of a processor chip that could be implemented in today’s 
technology.  We have only just begun to investigate the characteristics of this 
disruptive approach to many-core computing but these initial results are very 
encouraging. We have evaluated the performance of a range of common, loop-based 
programming paradigms and have shown speedup on every one. Although performance 
saturates due to memory bandwidth constraints in these simple benchmarks, 
distributing them as concurrent components of a larger application, executing at 
different places on chip, will minimise this problem. What we have shown is arguably 
the worst case scenario, where very simple kernels are executed from start to finish 
where all data and code is sourced off chip. 

We still have a significant amount of work to complete in order to demonstrate that 
this approach is viable in the context of commodity computing. We have started 
evaluating more complex algorithms and have begun the process of automating the 
management of resources on chip. Moreover we have shown that solutions exist to the 
issues of security when using such a chip in an open, many-user environment. Thus the 
results presented here, we believe, demonstrate a significant first step towards this goal. 

Furthermore, the Apple-CORE project has enabled this work to be extended into 
other research groups working in complimentary areas. Partners in this project are 
developing high-level compilers from both standard and novel languages targeting this 
core tool chain. In addition work is almost complete in developing an FPGA prototype 
based of an SVP core based on the LEON 3 soft core. 
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