
Apple-CORE: Microgrids of SVP cores
Flexible, general-purpose, fine-grained hardware concurrency management

(Invited Paper)

Raphael Poss, Mike Lankamp, Qiang Yang, Jian Fu, Michiel W. van Tol, and Chris Jesshope

Institute for Informatics, University of Amsterdam

Amsterdam, The Netherlands

Abstract—To harness the potential of CMPs for scalable,
energy-efficient performance in general-purpose computers, the
Apple-CORE project has co-designed a general machine model
and concurrency control interface with dedicated hardware
support for concurrency management across multiple cores. Its
SVP interface combines dataflow synchronisation with imperative
programming, towards the efficient use of parallelism in general-
purpose workloads. The corresponding hardware implementation
provides logic able to coordinate single-issue, in-order multi-
threaded RISC cores into computation clusters on chip, called
Microgrids. In contrast with the traditional “accelerator” ap-
proach, Microgrids are intended to be used as components in
distributed systems on chip that consider both clusters of small
cores and optional larger cores optimized towards sequential
performance as system services shared between applications. The
key aspects of the design are asynchrony, i.e. the ability to
tolerate operations with irregular long latencies, a scale-invariant
programming model, a distributed vision of the chip’s structure,
and the transparent performance scaling of a single program
binary code across multiple cluster sizes. This paper describes
the execution model, the core micro-architecture, its realization
in a many-core, general-purpose processor chip and its software
environment. The reference chip parameters include 128 cores,
a 4 MB on-chip distributed cache network and four DDR3-1600
memory channels. This paper presents cycle-accurate simulation
results for various key algorithmic and cryptographic kernels.
The results show good efficiency in terms of the utilisation of
hardware despite the high-latency memory accesses and good
scalability across relatively large clusters of cores.

I. INTRODUCTION

Ever since the turn of the century, fundamental energy

and scalability issues have precluded further performance

improvements for single threads [1]. To “cut the gordian knot,”

the industry has since shifted towards multiplying the number

of processors on chip, creating increasing larger Chip Multi-

Processors (CMPs) by processor counts, to take advantage of

efficiency gains made possible by frequency scaling [1], [2].

This shift to multi-core chips has caused a commotion in

those software communities that had gotten used to transparent

frequency increases and implicit instruction-level parallelism

(ILP), without ever questioning the basic machine model tar-

geted by programming languages and complexity theory. “The

free lunch is over” [3], and software ecosystems now have to

acknowledge and understand explicit on-chip parallelism and

energy constraints to fully utilize current and future hardware.

We would like to propose that while general-purpose pro-

grammers have been struggling to identify, extract and/or ex-

pose concurrency in programs during the last ten years, a large

amount of untapped higher-level parallelism has appeared in

applications, ready to be exploited. This is a consequence

of the increasing number of features, or services integrated

into user-facing applications in the age of the Internet and

ever-increasing support of computers for human activities. For

example, while a user’s focus may be geared towards the

decoding of a film, another activity in the system may be ded-

icated to downloading the next stream, while yet another may

be monitoring the user’s blood nutrient levels to predict when

to order food online, while yet another may be responsible for

backing up the day’s collection of photographs on an online

social platform, etc.

Even programs that are fundamentally sequential now ex-

pose high-level parallelism at scales that were unexpected.

For example, the compilation of program source code to

machine code is inherently sequential as each pass must scan

the program linearly and is dependent on the previous pass’

output. However, meanwhile, entire applications have become

increasingly larger in terms of their number of program source

files, so even though one individual compilation cannot be

accelerated via parallelism it becomes possible to massively

parallelize an entire application build.

In other words, while Amdahl’s law stays valid for indi-

vidual programs, we should recognize that Amdahl did not

predict that single users would nowadays be routinely running

so many loosely coupled programs simultaneously. This thus

begs the question: assuming that multi-scale concurrency in

software has become the norm, what properties should we

expect to find in general-purpose processor chips? This is the

question that the Apple-CORE project attempted to answer.

II. CONTEXT AND DESIGN STRATEGY

The first aspect considered is how much logic to invest per

core, vs. larger number of cores. Once a large amount of

concurrency is available in software, one can scale back on

the number of transistors per core and frequency and multiply

the number of cores to increase the throughput/watt ratio. Yet

we acknowledge that some inherently sequential workloads

will still matter in the foreseeable future, both from legacy

software and few applications where no parallel or distributed

algorithms are yet known. To support these while still taking

advantage of available software concurrency, two options exist.

The conservative approach is to favor homogeneity and opti-

mize all cores towards increased sequential performance. This

is the approach taken e.g. with the Niagara T4 [4]. This sim-

plifies the machine model exposed to programmers, but comes

at the cost of less efficiency for more concurrent workloads.

The other approach is to introduce static heterogeneity and

allocate some areas of the chip towards throughput and others

towards single-thread performance. This is the approach taken

e.g. with the AMD Fusion architecture [5], where “accelerator”

cores are placed next to general-purpose cores on the same

die. However this latter approach has a possible pitfall: the

appearance of model assymmetry as an historical artefact.

Indeed, the shift towards more on-chip parallelism has

emerged from a background culture where a chip was a single

processor. The availability of on-chip parallelism may thus

appear as an extension of a well-known single processor.

However, if a CMP is considered as a mostly-sequential

processor with optional “parallel accelerators,” this will en-

courage software ecosystems to keep their focus on the

overall sequential scheduling of workloads. An opportunity

loss ensues: the design of truly distributed applications on

chip, which would consider both throughput-oriented and

sequential-oriented cores as shared services in the system,

is thereby discouraged. The Apple-CORE project avoids this

pitfall by placing the focus on the protocols that coordinate

workloads between cores on chip. It captures the performance

assymmetry as mere component properties in the conceptual

model offered through its SVP programming interface.

A. Feature specialization vs. fungible cores

Function specialization by dedicated logic is well known

to increase overall application throughput at constant cost

or reduce cost at constant throughput, for given application

scenarios. In general-purpose processors without specific sce-

narios, only prevalent features benefit from specialization, for

example floating-point arithmetic and cryptographic kernels.

Yet the question remains of how much logic to invest into

these specialized units as opposed to e.g. more general-purpose

cores, larger on-chip memories or a faster interconnect.

Here we are able to recognize a limit on specialization.

In general-purpose applications, workloads enter and leave

the system at unpredictable times. The sharing of the chip’s

components between workloads thus requires on-line, dynamic

chip resource management. To satisfy the need for alloca-

tion times within the scale of operation latencies, resource

management must be supported in hardware [6]. Since the

amount of state that can be maintained locally on chip is

limited, the component models used by resource managers

must be kept simple, which in turns implies that the diversity

of component properties is kept low. An example of this can be

found in the the replacement of multiple bus hierarchies by a

common packet-switched network-on-chip (NoC, [7]). More-

over, as application requirements increase in complexity [8],

the pressure to reduce component diversity to keep on-line

resource managers fast increases further.

There are two ways forward from there. One is the full

integration of reconfigurable logic, e.g. FPGA, in general-

purpose chips, so that functions can be specialized on demand.

Unfortunately, state of the art research has not yet come up

with update protocols that can transparently substitute one

specialized feature by another via reconfiguration at a fast

rate. The other direction, followed by Apple-CORE, suggests

adaptive general-purpose cores on a NoC, to simplify on-line

resource management by making pools of resources fungible1.

For example, a group of many in-order RISC cores on a mesh

interconnect with configurable frequency and voltage may be

an advantageous replacement for a fixed-frequency specialized

SIMD unit with dedicated data paths, because it is reusable

for other purposes without overhead.

B. On-chip latencies and hardware multithreading

The increasing disparity between the chip size and the gate

size causes the latency between on-chip components (cores,

caches and scratchpads) to increase relative to the pipeline

cycle time: the wire delay increases relative to the transit time

across a gate; the latter in turn constrains frequency and puts a

lower bound on the pipeline cycle time. This divergence is the

on-chip equivalent of the “memory wall” [9]. Moreover, these

latencies will become increasingly unpredictable, both due to

overall usage unpredictability in general-purpose workloads

and due to soft errors in circuits.

These latencies cannot be easily tolerated using superscalar

issue or VLIW, for the reasons outlined in [10]: superscalar

execution mandates non-scalable complexity in coordination

structures like register files, and VLIW requires energy-

inefficient speculation to maximize throughput under unpre-

dictable latencies. The known solution is hardware multi-

threading (HMT), i.e. the interleaving of fine-grained threads

in the cores’ pipelines via a hardware scheduler.

Yet there are two issues with previous approaches to HMT.

With barrel processors ([11], [12]), throughput does not adapt

to the number of ready threads. With dynamically scheduled

threads over long pipelines (e.g. in the MTA [13], [14] and

SMT processors [15], [16]), mispredicted branches negate the

benefit of interleaving. This suggests that the benefits of HMT

will be most apparent with dynamic scheduling over shorter

pipelines.

C. Pressure for hardware-assisted concurrency management

Assuming CMPs with increasing number of cores and per-

core HMT, space scheduling must be implemented to spread

concurrent software tasks to the chip’s parallel execution

resources. Space scheduling can be done either in software or

in hardware. With a software scheduler, each hardware thread

is controlled by a space scheduler that assigns tasks using

state taken from main memory. This can occur even when

thread interleaving is performed at a fine grain in hardware. It

is also relevant even when there is no need for time sharing

of multiple tasks onto a single hardware thread, for example

when the number of tasks is smaller or equal to the number of

hardware threads, or when the software environment simply

does not require preemptive task multiplexing. However, the

choice of a software scheduler assumes that the workload per

1Fungibility is the property of a good or a commodity whose individual
units are capable of mutual substitution. Examples of highly fungible com-
modities are crude oil, wheat, precious metals, and currencies.

task is always sufficient to compensate the non-local latencies

incurred by memory accesses to task state during schedule

decision making and task assignment.

This assumption traditionally holds for coarse-grained con-

currency, for example external I/O. It can also hold for

regular, wide-breadth concurrency patterns extracted from

homogeneous sequential tight loops, via blocking aggregation

(e.g. OpenMP). However the situation is not so clear with

fine-grain heterogeneous task concurrency sourced from graph

reduction, irregular tight loops or data flow algorithms. In

these latter cases, a strain is put on compilers and run-time

systems: they must determine the suitable aggregate units of

concurrency from programs that both optimize load balancing

and compensate concurrency management costs.

This motivates the acceleration of space scheduling, con-

sidered as a system function, using dedicated hardware logic.

This idea to introduce hardware support for concurrency

management is not new [12], [17], [18], [19], [20]; however

previous research met with resistance against the introduction

of explicit concurrency in applications. Now that on-chip

software concurrency is the norm, hardware support deserves

renewed attention for two reasons.

One is the potential gain in resource fungibility obtained by

the replacement of specialized SPMD/SIMD units by arrays of

general-purpose cores, outlined above. For this to be tractable,

the overhead to dispatch an SPMD task as a group of tasks over

all participating pipelines must be comparable or smaller than

the latency of the operation, e.g. a couple dozen pipeline cycles

for most SPMD workloads. To make general-purpose cores

an attractive substitute to SPMD/SIMD units, extra hardware

support must exist with low-latency bulk work distribution and

synchronization.

The second argument is cost predictability: when a software

scheduler is involved, it competes with algorithm code for

access to the memory components. The overhead of com-

munication and synchronisation between software schedulers

increases with the number of hardware threads, and interferes

with communication for computations, introducing jitter [21].

This can be avoided by a dedicated task control network

physically separated from the memory network.

III. ARCHITECTURE COMPONENTS

The Apple-CORE architecture proposes to combine RISC

cores optimized for latency tolerance with dynamically sched-

uled HMT, hardware units next to cores to organize software

concurrency within and across clusters of neighboring cores,

called Microgrids, and a common NoC protocol to assign

workloads to different regions of a Microgrid, different Mi-

crogrids on chip, or to other core types in an heterogeneous

design. The design combines with various memory systems,

although Apple-CORE also proposes a custom distributed

cache network for scalable throughput.

A. Core micro-architecture

The core design, illustrated in fig. 1, is derived from a 6-

stage, single-issue, in-order RISC pipeline:

MEMORY

MEMORY I/O

ACTIVE

MESSAGES

DECODE & REGADDR

IRF

ALU

LSU

FETCH & SWITCH

L1D & MCU

FRF

ALU
(async)

GPIO

L1I

WB

TMU &

SCHEDULER

READ & ISSUE

FPU
(async)

TT & FT NCU

Fig. 1. Core micro-architecture.

• the register file is extended as synchronizing storage,

where each register has a dataflow state which indicate

whether it contains data or not (full/empty) or is waiting

for an asynchronous operation to complete;

• upon issuing an instruction that requires more than one

cycle to complete, or whose input operands are not full,

the waiting state is written back to the output operand and

the value is overwritten with the identity of the issuing

thread, so that the thread can be put back on the schedule

queue when its dependency becomes available. Mean-

while, further instructions in the pipeline can continue;

• the L1-D cache is modified so that loads are issued to

memory asynchronously, constructing in the line’s storage

a list of registers to notify when the load completes;

• the fetch stage is connected to an active thread queue.

It reads instructions and switch hints from the program

counter at the head of the queue. Switch hints force a

switch at every instruction that may suspend the current

thread, and are ignored if only one thread is active;

• each thread is associated with a configurable logical win-

dow in the register file, including a configurable number

of registers per thread; the decode stage computes the

absolute register address for the read stage.

As the register files only require five ports, more registers

can be provisioned, and thus more hardware thread contexts,

for the same area budget as a smaller number of registers in a

wide-issue core. The reference configuration uses 256 thread

contexts and 1024 registers, for a minimum of 32 threads with

a full logical register window and a maximum of 256 threads

using 4 registers each.

B. Core clusters and hardware concurrency management

Each core is equipped with a Thread Management Unit

(TMU, table I). The TMU is responsible for the local schedul-

ing of threads, and the TMUs of adjacent cores coordinate to

offer automated multi-core concurrency management. TMUs

accept control events either locally from ISA extensions, or

from the NoC. The main events are listed in table II:

• context allocation, which reserves execution resources

(PC, registers, bulk synchronizers) across one or multiple

cores with a single request;

10 9 6 5

11 8 7 4

12 13 2 3

15 14 1 0

26 25 22 21

27 24 23 20

28 29 18 19

31 30 17 16

L2 L2

L2L2

DIRECTORY

L2 L2

L2L2

R R R R

R R R R R

R

RRRRR

DIFFUSE MEMORY NETWORK: CACHE LINES KEPT AT L2 WHERE LAST USED

NARROW PACKET-SWITCHED NOC MESH

FOR CROSS-CHIP WORK DELEGATION

POINT-TO-POINT LINEAR DISTRIBUTION

NETWORK FOR CLUSTER BULK

CREATION AND SYNCHRONIZATION

S
N

O
O

P
Y

 B
U

S
 B

E
T

W
E

E
N

 C
O

R
E

S

S
H

A
R

IN
G

 A
 L

2
 C

A
C

H
E

Fig. 2. Microgrid of 32 cores.

TABLE I
LOGICAL SUB-UNITS IN THE TMU.

Unit Description

Scheduler Wakes up threads upon writes to waiting reg-
isters or L1-I load completions

Thread Control Unit
(TCU)

Performs bulk thread creation and logical index
distribution

Register Allocation

Unit (RAU)

Allocates and deallocates register ranges dy-
namically

Network Control Unit

(NCU)

Receives and sends active messages and re-
sponses on the NoC

TABLE II
CONTROL EVENTS HANDLED BY THE TMU.

Event category Parameters

context allocation minimum/maximum number of cores
bulk creation allocated context identifier, common PC, com-

mon register window layout, overlap factor,
logical thread index range

request for bulk syn-

chronization

context identifier, network address of remote
register to write to upon termination

remote register access context identifier, relative address of register

TABLE III
PRIVATE STATE MAINTAINED BY THE TMU.

State Update events

Program counters Bulk creation, branches
Mappings from logical register

windows to the register file

Bulk creation

Logical index ranges Bulk creation
Bulk synchronizers Bulk creation, bulk synchronization

This state is maintained in dedicated hardware structures close to the TMU.

• bulk creation, which starts the autonomous, asynchronous

creation of multiple logical threads over a previously

allocated context;

• bulk synchronization, which instructs the TMU to notify

the thread issuing the bulk synchronization upon comple-

tion of all threads bound to a previously allocated context;

• remote register access, for non-blocking point-to-point

communication and broadcasts. Remote writes may wake

up thread(s) waiting on the written register(s).

Core clusters for context allocation are identified by a

simple, generic addressing scheme: each cluster address is

a value 2P + S, where P = cS is the address of the first

core in the cluster and S = 2M is the cluster size. Requests

for context allocation, bulk creation and synchronization and

register broadcasts are sent to the first core in the cluster using

the NoC, then negotiated asynchronously across TMUs from

the first core based on the size field. Inter-TMU coordination

occurs using a linear, point-to-point distribution network (DN).

The DN follows a space filling curve to maximize locality at

any cluster start position and size (fig. 2). Although Apple-

CORE uses a dedicated separate physical network, the DN

can be implemented as a virtual network over a single com-

mon NoC using QoS to guarantee latency independence of

concurrency management between regions of the chip.

C. Memory architecture

The proposed design is distinct from most other CMP

architectures in that work distribution and synchronization is

coordinated by mechanisms distinct from memory. This allows

the chip integrator to use Microgrids with various memory

systems. However, the design is optimized to tolerate memory

latencies using multiple, asynchronous in-flight operations,

and is thus best used with memory systems that support split-

phase transactions and/or request pipelining. To demonstrate

this, Apple-CORE has also developed an on-chip memory

network implementing a custom distributed cache protocol

(also illustrated in fig. 2): memory stores are effected at the

local L2 cache without invalidating other copies, and are only

propagated and merged with other copies upon explicit barriers

or bulk creation or synchronization of threads. This protocol is

derived from [22], [23]: from the perspective of programs, it

appears as a single shared memory with consistency resolved

at concurrency management events.

D. Programming methodology

The TMU control events are exposed via ISA extensions

and can be used from any thread, ensuring that concurrency

control can be truly distributed across application components

co-located on the chip. Concurrency semantics can then in

turn be captured in various programming models, e.g. the

bulk-synchronous parallelism (BSP [24]) and task parallelism

constructs of OpenMP [25] and OpenCL [26]. To facilitate the

implementation of multiple programming interfaces, Apple-

CORE provides a single set of extension primitives to the C

language, called SVP, intended for use by higher-level code

generators or language libraries. SVP features:

• defining thread programs, analogous to OpenCL’s “ker-

nels” but allowed to invoke any valid, separately compiled

C function for truly general-purpose computations;

• declaring and using dataflow channels, which are trans-

lated to physical register sharing between threads to

implement the producer-consumer pattern (reads to empty

block, writes to waiting by another thread wakes up);

• performing bulk creation and synchronization of families

of tasks running thread programs, each identified by a

logical index in a configurable range. This can be used

to implement both the BSP pattern and nested fork-join

parallelism found in Cilk [27] and functional languages.

For reductions, within one core multiple threads can share a

single register and all reducing instructions using that register

as both input and output operand will serialize automatically

using the dataflow scheduler. Across cores, parallel prefix

sums [28] or standard distributed reductions can be used for

scalable throughput.

Furthermore, by encouraging an overall program structure

with forward-only chains of dataflow channels, SVP favors

program styles that are serializable and can be run deter-

ministically using any cluster size, down to only one thread

on one core. For system and library code, non-deterministic

constructs are also possible. In particular, priviledged code

can construct any point-to-point communication pattern using

remote register access. For mutual exclusion and atomic state

updates, programs can either send state updates as a remote

thread creation to a single, previously-allocated execution

context where all bulk creations are automatically serialized

by the TMU (Dijkstra’s “secretary” pattern [29, p. 135]), or

they can send state updates to a previously agreed core cluster

sharing common coherent caches (e.g. a single L2 cache in the

proposed memory architecture) and then negotiate atomicity

locally using standard memory transactions.

To summarize, SVP was designed as a set of acceler-

ation primitives for operating systems and general-purpose

concurrency management frameworks. Its “killer feature” is

perhaps that the time overhead of thread creation and point-

to-point communication is driven down to a few pipeline

cycles, cheaper than most C procedure calls. Moreover, this

overhead can be made nearly invisible to computations as it

can overlap in the TMU with instructions from other threads

in the pipeline.

IV. REALIZATION AND EVALUATION

For evaluation, Apple-CORE has defined an overall chip

design based on a single 128-core Microgrid cluster. Each

core runs a 64-bit Alpha-derived ISA, has a 2KiB L1-I cache,

4KiB L1-D cache, 1024 registers, 32 bulk synchronizers and

256 thread contexts. Asynchronous FPUs are shared between

adjacent cores. The corresponding distributed cache network

has 32 L2 caches of 128KiB each, connected in 4 rings

themselves connected to a single top-level ring with 4 DDR3-

1600 memory channels. The cluster shares the NoC with a

small companion core able to run OS services that cannot be

implemented directly on the Microgrid cores, as discussed in

[30]. Virtual memory is implemented using a MMU shared

by all cores, so that all threads appear to run in the same

logical address space. Some Microgrid cores have a direct

asynchronous interface to off-chip I/O which supports multiple

in-flight split-phase transactions [31], to maximize bandwidth

in streaming applications.

This chip was implemented in a discrete event, cycle-

accurate, full-system simulator where all component behaviors

down to individual pipeline stages, register file ports, arbitra-

tors, functional units, FIFOs, DDR controller, etc. have their

own detailed model. This enables a slightly higher level, and

thus faster simulation than a circuit-level simulation, while

!"#$%&'()*

+,-%&')*

./'!012$%&'34*

56#$17"#6$%&'3*

8""7'56#$17"#6$%&'9*

!"#$%&'()*+,

-./0)1'234/'5)637'()89,

67/0)1'234/'5)637'()89,

-"#$%&'()8*,

:;7<)=$.$2'='./)%>./'?/4()@,

ABC()+,

D&5'$E)%>./'?/4()+,
F;7/3G73'5()H,

Fig. 3. Chip area breakdown: entire grid (left), per core (right).

preserving the timing accuracy of thread scheduling and TMU

operations relative to the pipeline cycle time.

A. Area and timing estimates

The area and access time requirements of the reference

configuration have been evaluated using CACTI [32]. Us-

ing conservative technology parameters at 45nm CMOS, the

Microgrid occupies an estimated 120mm2, not counting the

physical links and routers on the NoC and memory system

(fig. 3). This can be compared e.g. to the Intel P8600 chip

(Core 2 Duo) which provisions 3MB L2 cache and 2 cores on

107mm2 using the same gate size. The register files have the

longest access time at .4ns, and with two subsequent accesses

at the read and writeback stages this constrains the maximum

core frequency at 1.25GHz. Experiments subsequently used

1GHz clocks for pipelines.

B. Software environment

Apple-CORE has produced a C language implementation

based on the GNU C compiler (GCC), and a run-time envi-

ronment derived from FreeBSD [33]. GCC’s Alpha back-end

was extended to support the SVP primitives. The run-time

environment provides access to the entire C library from any

core on a Microgrid cluster, performing memory management

locally on each core and delegating services (e.g. I/O) that

operate on system structures to a reserved sub-cluster or the

integrated companion core. Instead of using memory-based

protection, isolation between processes is achieved using ca-

pabilities [34], similarly to [35]. This platform has fostered the

separate development of a parallelizing C compiler targeting

SVP [36], [37] and a SVP back-end to the array-oriented,

functional productivity language SAC [38], [39].

C. Performance and scalability

Figure 4 illustrates the computational density and latency

tolerance for FPU operations. This heterogeneous compute-

bound workload of 40k imbalanced threads (left in figure) has

been run over Microgrid sub-clusters of different sizes, using

two distribution strategies. Sequential code on the Intel P8600

at 2.4GHz was used as baseline. Using an even distribution and

one thread/core, the performance exceeds the baseline at 32

cores. Using a round-robin distribution to spread the load over

the cluster, at 1 thread/core the baseline is exceeded at 8 cores.

At 16 threads per core and a round-robin distribution, the

baseline is exceeded at 2 cores. As per section IV-A above, this

implies the baseline is exceeded at 20× smaller area budget

and less than half the frequency. The round-robin distribution

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000 40000

n
u
m

b
e
r

o
f

in
s
tr

u
c
ti
o
n
s
 p

e
r

th
re

a
d

logical thread index

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 10 20 30 40 50 60 70

ti
m

e
 t

o
 r

e
s
u
lt
 (

s
e
c
o
n
d
s
)

number of cores used

baseline: sequential code on legacy platform
1 th/core, even
2 th/core, even
4 th/core, even
8 th/core, even

16 th/core, even
max th/core, even

1 th/core, round-robin
2 th/core, round-robin
4 th/core, round-robin
8 th/core, round-robin

16 th/core, round-robin
max th/core, round-robin

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

in
s
tr

u
c
ti
o
n
s
 p

e
r

c
y
c
le

number of cores used

1 th/core, even
2 th/core, even
4 th/core, even
8 th/core, even

16 th/core, even
max th/core, even

1 th/core, round-robin
2 th/core, round-robin
4 th/core, round-robin
8 th/core, round-robin

16 th/core, round-robin
max th/core, round-robin

Fig. 4. Example heterogeneous workload: Mandelbrot set approximation.

! " # $!% &" %#
'

'("

'(#

'(%

'($

!

!("

!(#

)*+,-./012345

678.935.

)0:;.<,4=,14<.8

>
3:
.
,2
4
,<
.
8
0
92
,?
:
399
38
.
1
4
5
/
8
@

Fig. 5. Scalability of a N/P reduction of 64k floating-point values.

! "!!! #!!! $!!! %&!!! %'!!! %(!!! &%!!!

!

%!

&!

"!

)!

'!

#!

*+,-,./.001022 2

*+3,-,./.0010222

,/145627892

!"#$%&'()*

Fig. 6. Speedup of various parallel reduction strategies on 64 cores.

with 16 threads per core further scales nearly linearly with full

pipeline utilization up to 64 cores (right in figure).

Figures 5 and 6 illustrate the scalability for parallel re-

ductions. In fig. 5, sub-vectors are first summed locally on

each core, then the partial sums are summed on one core.

The baseline performance (same chip as above) is matched

from 32 Microgrid cores onwards. In fig. 6, multiple reduction

strategies are used on a single sub-cluster of 64 cores, and

compared (speedup) against the performance of the sequential

version on 1 core. The parallel prefix sum [28] scales regularly

with the input size but is disadvantaged as it executes more

instructions. The best strategy (N/CP) is to run multiple local

reductions on each core in different threads and then combine

the partial sums on one core.

Figure 7 illustrates the scalability for a scientific kernel

using different programming interfaces. Using hand-coded

C or assembly code the baseline is matched from 4 cores

onwards. With code automatically parallelized from C and

a software-based dynamic loop scheduler, the baseline is

matched from 8 cores. The higher-level SAC code has a

! " # $!% &" %#

'

!''''

"''''

&''''

#''''

(''''

%''''

)''''
*++,-./0

12345674,489:

9*;

<2=2//,/>?,48;

@2+,/>3,

AB-.,=87C867=,+8B+,4

A
2
3
7
+
,
6
7
3
4
+

' !' "' &' #' (' %')'

'

(

!'

!(

"'

"(
*++,-./0

12345674,489:

9*;

<2=2//,/>?,48;

@2+,/>3,

AB-.,=87C867=,+8B+,4

D<
;

Fig. 7. Performance of the equation of state fragment.

!"# $"# %&' %&()*+,-./0 1$"! %&2 #"!3 4$' #5!67

7

78

788

7888

19:7;88 19:;288 19:;<88 4.=>+?>.@6#AB 4.=>+?>.@64C

C
0
>+
D
?
0
E
D
FG
H4
I
.F
/
J/
K

Fig. 8. Throughput for one stream on one core.

large run-time overhead, but still benefits from multi-core

scalability. As can be seen on the right side, from 32 cores the

memory throughput approaches the external bandwidth of the

chip and the workload becomes memory-bound, preventing

extra speedup past 32 cores.

D. Example throughput application: cryptography

In [40], [41], the authors introduce NPCryptBench, a bench-

mark suite to evaluate network processors. We have run

unoptimized code for these ciphers and hash algorithms on

the Apple-CORE chip. First the throughput of the unoptimized

code for one flow on one core is compared against the unop-

timized throughput on the Intel IXP chips ([40, fig. 4], [41,

fig. 3]). Two Microgrid codes are used, one purely sequential

and one where the inner loop is parallelized. As the results

in fig. 8 show, the Microgrid hardware provides a throughput

advantage for the more complex AES, SEAL and Blowfish

ciphers, whereas the dedicated hardware hash units of the

IXP accelerate MD5 and SHA-1. For the other kernels, the

Microgrid hardware is slower: with RC5, RC6 and IDEA, a

carried dependency serializes execution and minimizes latency

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
,

!,,,

',,,

-,,,

),,,

.,,,

+,,,
!"#

$%
&'

(
)%

*
(+

,-!
.
*/

0

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
,

.,,

!,,,

!.,,

',,,
123

$%
&'

(
)%

*
(+

,-!
.
*/

0

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
,

',,

),,

+,,

*,,

!,,,

!',,

!),,
4"56

$%
&'

(
)%

*(
+,-

!
.*

/0

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
,

',,

),,

+,,

*,,

!,,,

!',,

!),,

!+,,
657

$%
&'

(
)%

*(
+,-

!
.*

/0

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
,

',,

),,

+,,

*,,

!,,,

!',,

!),,

!+,,
12#

$%
&'

()
%*

(+
,-!

.*
/0

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
,

!,,,

',,,

-,,,

),,,

.,,,

+,,,
7869:

$%
&'

(
)%

*
(+

,-!
.
*/

0

Fig. 9. Combined throughput for 1-8,16 streams per core on 1-16 cores (1-256 streams total). IXP2800 performance in leftmost 3 bars at each core group.

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
!,

!-,

!--,
!"#

$
%
&
'
()
*
+,
-,
.
/
+,
0
%

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
-,

!,

!-,

!--,
123

$
%
&
'
()
*
+,
-,
.
/
+,
0
%

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
!,

!-,

!--,
45"!

$
%
&
'
()
*
+,
-,
.
/
+,
0
%

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
!,

!-,

!--,
126

$
%
&
'
()
*
+,
-,
.
/
+,
0
%

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
-,

!,

!-,

!--,
753

$
%
&
'
()
*
+,
-,
.
/
+,
0
%

!"#$%& '"#$%&()"#$%&(*"#$%&(!+"#$%&(
!,

!-,

!--,
#8!)9

$
%
&
'
()
*
+,
-,
.
/
+,
0
%

Fig. 10. Pipeline under-utilization for fig. 9.

tolerance. With RC4, the modified state at each cipher block

must be made consistent in memory before the next thread can

proceed, which also partly sequentializes execution. Further

throughput deviation from the IXP should be considered in the

light of the frequency difference (1.4GHz for the IXP vs. 1GHz

for the Microgrid) and the fact the Microgrid hardware was

not designed specifically towards cryptography.

Figure 9 shows the scalability of the most popular crypto-

graphic kernels, using the purely sequential, unoptimized code

for each stream on the Microgrid and the Level-2 optimized

code for the IXP2800 ([40, fig. 6], [41, fig. 8]). For each sub-

cluster size, increasing the number of flows per core increases

utilization (fig. 10) and thus overall throughput. Throughput is

furthermore reliably scalable up to 16 cores. With RC4 and 64

flows on 16 cores the workload reaches the memory bandwidth

of the chip; with additional flows, contention on the internal

memory network appears, the utilization is reduced slightly

and so is the throughput. The througput then stabilizes at 96

flows around 1.6Gbps.

V. DISCUSSION AND FUTURE WORK

The results in this paper show the potential of general-

purpose, fine-grained concurrency in various simple scenar-

ios. Unfortunately the Apple-CORE project has struggled to

carry out more extensive evaluations. Indeed, most current

benchmark suites towards architecture design focus on the

performance of single programs (e.g. SPEC) and thus fall out

of the scope of the proposed design. Larger benchmark suites

that test multi-application scenarios (e.g. CloudSuite [42])

in turn assume the existence of physical hardware able to

run datacenter-grade workloads, and are thus inadequate for

architecture research where experiments are performed in

detailed simulations running at a few hundred MIPS.

To sustain further activity in this field, in particular the

analysis of chip behavior under multiple scales of concur-

rency, both lighter multi-application benchmarks and faster

simulations must be developed. The Apple-CORE consortium

is committed to continue further research in this direction.

VI. CONCLUSION

This paper has sought to motivate a renewed effort in mi-

croprocessor architecture design towards many-core chips with

smaller, more efficient cores using hardware multi-threading

and hardware acceleration for concurrency management. It

further described the architecture developed in the Apple-

CORE project as a step in this direction, and illustrated its

performance using several benchmarks.

As the results show, traditionally sequential workloads can

be parallelized in presence of fine-grained multithreading and

hardware-supported concurrency management on chip. The

proposed hardware achieves higher throughput per unit of

area and per clock cycle than contemporary state-of-the-art

components. Then its hardware management protocol in turn

offers reliable multi-core throughput scalability up to the

bandwidth capacity of the memory system.

ACKNOWLEDGEMENTS

This research was supported by the European Union under

grant numbers FP7-215216 (Apple-CORE) and FP7-248828

(ADVANCE).

REFERENCES

[1] R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. Pollack, and J. Shen,
“Coming challenges in microarchitecture and architecture,” Proceedings

of the IEEE, vol. 89, no. 3, pp. 325–340, mar 2001.

[2] L. Spracklen and S. G. Abraham, “Chip multithreading: opportuni-
ties and challenges,” in Proc 11th International Symposium on High-

Performance Computer Architecture, ser. HPCA’05. IEEE, February
2005, pp. 248–252.

[3] H. Sutter, “The free lunch is over: A fundamental turn toward concur-
rency in software,” Dr. Dobb’s Journal, vol. 30, no. 3, 2005.

[4] M. Shah, R. Golla, P. Jordan, G. Grohoski, J. Barreh, J. Brooks,
M. Greenberg, G. Levinsky, M. Luttrell, C. Olson, Z. Samoail, M. Smit-
tle, and T. Ziaja, “SPARC T4: A dynamically threaded server-on-a-chip,”
IEEE Micro, vol. PP, no. 99, p. 1, 2012.

[5] Advanced Micro Devices, Inc., “AMD Fusion APU era begins.”
[Online]. Available: http://www.amd.com/us/press-releases/Pages/amd-
fusion-apu-era-2011jan04.aspx

[6] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in Proc. IEEE Computer Society Annual Symposium on

VLSI, 2002, pp. 105–112.

[7] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: a scalable,
communication-centric embedded system design paradigm,” in Proc.

17th International Conference on VLSI Design, 2004, pp. 845–851.

[8] O. Moreira, J. J.-D. Mol, and M. Bekooij, “Online resource management
in a multiprocessor with a network-on-chip,” in Proc. 2007 ACM
symposium on Applied computing, ser. SAC ’07. ACM, 2007, pp.
1557–1564.

[9] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” SIGARCH Comput. Archit. News, vol. 23, pp. 20–24,
March 1995.

[10] I. Bell, N. Hasasneh, and C. Jesshope, “Supporting microthread schedul-
ing and synchronisation in CMPs,” International Journal of Parallel

Programming, vol. 34, pp. 343–381, 2006.

[11] J. E. Thornton, “Parallel operation in the Control Data 6600,” in
Proceedings of the October 27-29, 1964, fall joint computer conference,

part II: very high speed computer systems, ser. AFIPS ’64 (Fall, part
II). New York, NY, USA: ACM, 1965, pp. 33–40.

[12] B. Smith, “Architecture and applications of the HEP multiprocessor
computer system,” Proc. SPIE Int. Soc. Opt. Eng.; (United States), vol.
298, pp. 241–248, 1981.

[13] J. Boisseau, L. Carter, A. Snavely, D. Callahan, J. Feo, S. Kahan,
and Z. Wu, “CRAY T90 vs. Tera MTA: The old champ faces a new
challenger,” in Proc. Cray User’s Group Conference. 411 First Avenue
South, Seattle, WA 9810, USA: Cray Inc., June 1998.

[14] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S. Gatlin,
N. Mitchell, J. Feo, and B. Koblenz, “Multi-processor performance
on the Tera MTA,” in Supercomputing ’98: Proceedings of the 1998

ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 1998, pp. 1–8.

[15] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: maximizing on-chip parallelism,” SIGARCH Comput. Archit. News,
vol. 23, pp. 392–403, May 1995.

[16] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller,
and M. Upton, “Hyper-Threading technology architecture and microar-
chitecture,” Intel Technology Journal, vol. 6, no. 1, pp. 1–12, 2002.
[Online]. Available: http://www.mendeley.com/research/hyperthreading-
technology-architecture-and-microarchitecture/

[17] R. H. Halstead, Jr. and T. Fujita, “MASA: a multithreaded processor
architecture for parallel symbolic computing,” SIGARCH Comput.
Archit. News, vol. 16, pp. 443–451, May 1988. [Online]. Available:
10.1145/633625.52449

[18] R. S. Nikhil and Arvind, “Can dataflow subsume von Neumann com-
puting?” SIGARCH Comput. Archit. News, vol. 17, no. 3, pp. 262–272,
1989.

[19] D. May and R. Shepherd, “Occam and the transputer,” in Advances in

Petri Nets 1989, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 1990, vol. 424, pp. 329–353.

[20] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek,
“Fine-grain parallelism with minimal hardware support: a compiler-
controlled threaded abstract machine,” in ASPLOS-IV: Proc. 4th interna-
tional conference on Architectural support for programming languages

and operating systems. New York, NY, USA: ACM, 1991, pp. 164–175.

[21] T. Anderson, E. Lazowska, and H. Levy, “The performance implications
of thread management alternatives for shared-memory multiprocessors,”
IEEE Trans. Comput., vol. 38, no. 12, pp. 1631–1644, dec 1989.

[22] L. Zhang and C. R. Jesshope, “On-Chip COMA Cache-Coherence Pro-
tocol for Microgrids of Microthreaded Cores,” in Euro-Par Workshops,
ser. LNCS, Bouge and et al., Eds., vol. 4854. Springer, 2007, pp.
38–48.

[23] T. D.Vu, L. Zhang, and C. R. Jesshope, “The verification of the on-
chip COMA cache coherence protocol,” in International Conference on

Algebraic Methodology and Software Technology, 2008, pp. 413–429.
[24] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, vol. 33, pp. 103–111, aug. 1990.
[25] OpenMP Architecture Review Board. (2008) OpenMP ap-

plication program interface, version 3.0. [Online]. Available:
http://www.openmp.org/mp-documents/spec30.pdf

[26] Khronos OpenCL Working Group. (2009) The OpenCL specification,
version 1.0.43.

[27] C. E. Leiserson, “The Cilk++ concurrency platform,” in DAC ’09:

Proceedings of the 46th Annual Design Automation Conference. New
York, NY, USA: ACM, 2009, pp. 522–527.

[28] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27, no. 4, pp. 831–838, October 1980.

[29] E. W. Dijkstra, “Hierarchical ordering of sequential processes,” Acta

Informatica, vol. 1, no. 2, pp. 115–138, June 1971.
[30] R. Poss, M. Lankamp, M. I. Uddin, J. Sýkora, and L. Kafka, “Hetero-

geneous integration to simplify many-core architecture simulations,” in
Proc. 2012 Workshop on Rapid Simulation and Performance Evaluation:

Methods and Tools, ser. RAPIDO ’12. ACM, 2012, pp. 17–24.
[31] M. A. Hicks, M. W. van Tol, and C. R. Jesshope, “Towards Scalable I/O

on a Many-core Architecture,” in International Conference on Embedded
Computer Systems: Architectures, MOdeling and Simulation (SAMOS).
IEEE, July 2010, pp. 341–348.

[32] S. Wilton and N. Jouppi, “Cacti: an enhanced cache access and cycle
time model,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 5, pp.
677–688, may 1996.

[33] M. K. McKusick and G. V. Neville-Neil, Design And Implementation

Of The FreeBSD Operating System. Addison Wesley, 2004.
[34] M. W. van Tol and C. R. Jesshope, “An operating system strategy

for general-purpose parallel computing on many-core architectures,”
Advances in Parallel Computing, vol. High Performance Computing:
From Grids and Clouds to Exascale, no. 20, pp. 157–181, 2011.

[35] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, “Sharing
and protection in a single-address-space operating system,” ACM Trans.

Comput. Syst., vol. 12, pp. 271–307, November 1994.
[36] D. Saougkos, D. Evgenidou, and G. Manis, “Specifying loop transforma-

tions for C2µTC source-ro-source compiler,” in Proc. of 14th Workshop

on Compilers for Parallel Computing (CPC’09), Zürich, Switzerland.
IBM Research Center, January 2009.

[37] D. Saougkos and G. Manis, “Run-time scheduling with the C2uTC
parallelizing compiler,” in 2nd Workshop on Parallel Programming and

Run-Time Management Techniques for Many–Core Architectures, in
Workshop Proceedings of the 24th Conference on Computing Systems

(ARCS 2011), ser. Lecture Notes in Computer Science. Springer, 2011,
pp. 151–157.

[38] C. Grelck and S.-B. Scholz, “SAC: a functional array language for
efficient multi-threaded execution,” International Journal of Parallel

Programming, vol. 34, no. 4, pp. 383–427, Aug 2006.
[39] C. Grelck, S. Herhut, C. Jesshope, C. Joslin, M. Lankamp, S.-B.

Scholz, and A. Shafarenko, “Compiling the Functional Data-Parallel
Language SaC for Microgrids of Self-Adaptive Virtual Processors,” in
14th Workshop on Compilers for Parallel Computing (CPC’09), IBM

Research Center, Zurich, Switzerland, 2009.
[40] Z. Tan, C. Lin, H. Yin, and B. Li, “Optimization and benchmark of

cryptographic algorithms on network processors,” IEEE Micro, vol. 24,
no. 5, pp. 55–69, September/October 2004.

[41] Y. Yue, C. Lin, and Z. Tan, “NPCryptBench: a cryptographic benchmark
suite for network processors,” SIGARCH Comput. Archit. News, vol. 34,
no. 1, pp. 49–56, September 2005.

[42] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
in Proc. 17th international conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’12.
ACM, 2012, pp. 37–48.

