An Infrastructure for Multi-Level Optimisation through
Property Annotation and Aggregation

Frank Penczek

Raimund Kirner

University of Hertfordshire, UK University of Hertfordshire, UK

f.penczek@herts.ac.uk

Raphael Poss
University of Amsterdam,
Netherlands
r.c.poss@uva.nl

ABSTRACT

Optimising software for efficiency on a parallel hardware
platform by analysing the performance of the application
is often a complex and time-consuming task. In this pa-
per we present a constraint annotation and aggregation sys-
tem that allows programmers to annotate code by using
a dedicated language for describing functional and extra-
functional properties, such as for example algorithmic com-
plexity, scaling factors or the number of required cores. The
goal is to derive properties of the entire application that are
parametrised over characteristics of the execution platform
to assist programmers in better understanding the behaviour
of an application and to assist the execution platform in
making informed mapping and scheduling decisions.

1. INTRODUCTION

Optimising an implementation for efficiency by analysing
the performance of an application is often a complex and
time-consuming task. Measuring the total execution time of
one program execution typically comes for free, for example,
by using the time command that is available on many sys-
tems, but it is the understanding of which factors influence
this number that requires thought and effort. Only if we
understand how individual parts of a program impact the
runtime do we stand a chance to tune the right parameters
of the program and its execution platform to improve the
overall system performance. When we are dealing with con-
current software the problem becomes even more complex
as it is not just algorithmic and computational aspects of
the application but factors such as scheduling and mapping
may have considerable influence on performance.

Our intention is to provide a means for increasing the effi-
ciency of computation systems, which in our model consists
of both programs and the execution platform. We are pri-
marily motivated by the observation that in many software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NFSP-DSML ’12, October 01 2012, Innsbruck, Austria

Copyright 2012 ACM 978-1-4503-1807-5/12/10 ...$15.00.

Clemens Grelck
University of Amsterdam,
Netherlands
c.grelck@uva.nl

r.kirner@herts.ac.uk

Alex Shafarenko
University of Hertfordshire, UK
a.shafarenko@herts.ac.uk

projects the development cycle follows a program-execute-
analyse-optimise pattern. This is not necessarily a one way
process that takes place at design time only, but can be used
equally well as a continuous process that repeatedly assesses
the performance of an application at runtime to re-evaluate
previous judgements.

This paper is an account of a work-in-progress project for
which we present the concept of the overall system design
with a focus on the constraint annotation language that acts
as the mediator between compilers, runtime systems and
observation systems that need to communicate with each
other in order to ultimately form a continuous optimisation
loop that spans across the entire runtime of an application
and potentially across multiple runs as well.

We start with an overall system that follows a coordi-
nation approach in which software components are imple-
mented in a “traditional” programming language and a sec-
ondary, dedicated coordination language (S-Net) is used to
arrange the individual components into an application [1].
The coordination language S-Net treats the computational
software components as encapsulated boxes without access
to their internal behaviour. All that is exposed to the coordi-
nation language is the input requirement of a box, i.e. what
input the box requires to carry out its computation, and a
specification of the results that the box is producing once
the computation invoked on some input has finished. Tak-
ing these input/output characteristics into account, the co-
ordination program defines a data-flow graph, which in turn
defines the dependencies for each box. The application is ex-
ecuted as a collection of asynchronous components, i.e. the
boxes, that start computing as soon as their input require-
ments are met. The communication between boxes is taken
care of by the coordination layer that connects boxes to each
other using FIFO channels. Figure 1 illustrates the system
design in the absence of our proposed constraint aggrega-
tion facilities. In addition to box language compilers and
the compiler for the S-Net program, the runtime system is
responsible for providing the communication infrastructure
at runtime and for mapping the box tasks onto resources of
the execution platform. The execution platform is not physi-
cal hardware but an intermediate layer, the virtual hardware
platform. The virtual hardware platform implements task
scheduling and placement algorithms and is responsible for
executing tasks on physical computing resources.

We propose to extend this system by a central property
and constraint aggregation infrastructure. The extended de-

S-Net™

code
Box compiler S-Net

(C/C++...) compiler

- i Structural
‘ ObleCt‘Sj ‘ Ob]ed‘sj descriptiom

|(~ S-Net + Box Virtual !
i {run-time system) {_hardware !

Figure 1: System infrastructure for coordinated pro-
gram execution

sign is shown in Figure 2. Using a generic constraint and
property annotation language all components of the system
may expose domain-specific properties that are described in
a separate passport. The properties described in the pass-
port are centrally collected by an aggregator that uses the
information to infer properties of the entire system at multi-
ple levels. This process may infer properties statically, i.e. at
compile time, as well as dynamically at runtime. Static in-
ference may be used to implement deeper checks for com-
ponent interoperability within a coordination program. It
may be used to initially provide computing resources and
memory requirements. It may also enable cross-component
optimisation for cases in which the aggregator has been able
to infer properties of data objects that are supplied to boxes.
This occurs, for example, when sizes of data objects such as
vectors and arrays can be statically inferred. At runtime,
the system forms a continuous loop with the CAL aggrega-
tor being the central information hub. The runtime system
and the execution platform monitor the runtime behaviour
of computational boxes to check and refine previous annota-
tions regarding time complexity and memory requirements.
Similarly, it is also possible to observe certain data object
properties that were not available before runtime. This in-
formation is relayed by the aggregator to compilers that can
take these newly available properties into account for a new
round of optimisations when recompiling code and produc-
ing new or updated CAL passports. After recompilation,
updated versions of boxes may be deployed at runtime, af-
ter which the described process repeats itself.

[BR

e =
S-Net
Code ag'gre'gat'or code
b
H

¥
Full CAL
description

¥

Structural
descriptions

[Platform
CAL passports

Figure 2: System infrastructure with the CAL ag-
gregator as central information hub

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the basic concepts of the annotation lan-
guage that underlies all information propagation in the sys-

tem. To make the concepts more concrete, section 3 presents
a complete example that illustrates how we suggest our pro-
posed technology to be used. Section 4 very briefly surveys
related work and section 5 draws conclusions.

2. CONSTRAINT AGGREGATION LANGUAGE

The Constraint Aggregation Language (CAL) [4, 7] pro-
vides an interface between different stages of program analy-
sis for the description of functional and extra-functional pro-
gram behaviour. CAL by itself is a rather generic description
language; it introduces programming-language specific sym-
bols and annotation on various levels of the software stack.
We focus in this paper on the use of CAL to describe the
behaviour at the granularity level of functions or methods.
In order to be able to infer properties of the overall sys-
tem behaviour, we need to set the individual passports into
context. This is done by establishing data-flow dependen-
cies between functions using the required input and provided
output of a function as described by the structural proper-
ties of the coordination program. The data-flow graph pro-
vides the infrastructure for property propagation between
and across the functions that are contained within a sys-
tem. We assume that any state maintained by a function
between multiple invocations is fully identified and visible
to the annotation system. This allows us to describe, this
carried state as an extra input and output argument to the
function and capture it in CAL passports.

To make the CAL concept more tangible, Figure 3 shows
the syntax definition for CAL passports. As the syntax
definition shows, CAL allows us to write a set of assertions
for each function, each of which is guarded by some context
condition. For example, the context condition describes the
functions input, i.e., the properties of input data objects and
system configurations for which the assertions are valid. A
property is always represented by a tuple of the form

(PropName, valg, ..., val,—1).

The symbolic name of the property is the first element of
the tuple. All following elements are values to be associated
with the property. Declarations in a CAL passport serve
two purposes. On the left side we may “query” the properties
associated with a data object and bind its values to variables
for later use. On the right side, we may attach properties
to data objects, either using static values or by referencing
variables that we have bound earlier.

For example, consider the C++ function in Listing 1 which
computes a value histogram of an input vector based on
some quantization factor qf. As this function allocates a
new vector for its output; it is thus desirable to inform the
environment about the shape of the result. We can do this
using Listing 2. Here, the predicate states that if the en-
vironment can inspect the value of the input “qf,” then the
predicate holds and the variable $nh become bound to the
value. When the predicate holds, the shape of the output is
known (it is a 1D vector) and its size is given by $nh. Note
that the declarations between use and end are conjunctive.

CAL is in its early development stage, brought forward by
recent research. More experience is needed in order to make
statements about the annotation overhead, which actually
depends on the required level of detail, e.g., performance
evaluations. Further, it is also an open question of how
much information can be produced automatically by other
compilers.

[TempSpec / Interface [5 [Decl /*/ H

Passport =
*
TempSpec = v Id /1 TempSpec/
Interface = Class Id : Signature
Class = box | resource | actor | synthesis
Signature = SetBind +— SetBind
SetBind = 1d . ([1a[, 1a [*] [, setBina[*
Decl = /Guards = Statements
Guards = Guard /PredOp Guard /*
Statements = Statement /A Statement /*
Guard = Relation | UseTerm € SetExzpr
Statement = Relation | UseTerm € Var | SetEzpr C Var
| provided /Clauses/ use [Decl /* end
Clauses = Clause /1 Clause /*
Clause = let Var := UseTerm | let Var := SetExpr
| BindTerm € SetExzpr
BindTerm = Var | BindTuple | *
UseTerm = ArithExpr | UseTuple
BindTuple = £ Id/l BindTerm /* 2
UseTuple = £ Id/l UseTerm]* 2
PredOp = A | Vv
Relation = ArithExpr RelOp ArithExpr
RelOp = = | > | < | 2 | £ | #
ArithExpr = Atomic /ArithOp ArithExpr /*
Atomic = Num | Var
ArithOp = + | =1 x | /
*
SetExpr = SetDef /S’etOp SetEa;pr/
SetDef = Var | { BindTuple € Var/ 1 Guards/ }
SetOp = U | n
Var = $1d | $81Id
Id = [azaz [+ [asaz | 09 | _ [*
Num = [://M]+ \NumlNum

Figure 3: The CAL grammar

Aggregating and finding solutions to a set of constraints is
currently approached via unification but we are considering
the integration of constraint solving as well. The advan-
tage of using a constraint solver over other possible meth-
ods is that in case of insufficiently precise constraints, the
constraint solver still guarantees a solution. The solution
might be too imprecise, i.e., requiring further concretisation
to be useful for compilers and platform configurers, but it
can never be incorrect. Consequently, it may well be pos-
sible to involve the programmer in the process of iterative
refinement, whereby insufficiently tight constraints are iden-
tified interactively and further properties solicited in order
to narrow them down.

vector<float> hist (vector<float>& v,
vector<int> nv(qf);
float f = qf / max_element(v.begin(),
for(int i = 0; i < v.size (); ++i)
nv[v[i] * f] 4= 1;
return nv;

int qf) {

v.end ()

}

Listing 1: Example histogram function.

box hblur input.(v,qf) — output.(h) =
provided

(Value, $nh) € $qf
use

(Dim, 1) € $h A (Size, 0, $nh) € $h

end;

Listing 2: Simple CAL passport for the histogram
function.

quantization
factor
N N
frames enhanced histograms

frames

Figure 4: Example image processing pipeline

3. EXAMPLE FROM TOP TO BOTTOM

To illustrate the concepts presented so far, we extend
the example from Listings 1 and 2 to an image processing
pipeline that produces value histograms from a stream of
input frames (Figure 4). The pipeline contains two stages:
NR for “noise reduction,” which applies a blur convolution,
and Hist which computes a value histogram.

3.1 Programmer-specified passports

The component programmer may specify box passports
which provide statements about either the input-output re-
lationship or the expected behavior, or both. For the im-
age processing pipeline above, a first passport for NR may
look like Listing 3. In this passport, the input and output
are labeled “fi” and “fo,” respectively. Within the passport,
the statement is predicated on the existence of two terms
of the form (Size, 0, _) and (Size, 1, _) in the input.
Assuming the predicate holds, the predicate also binds the
variables $n and $m to the corresponding values in the bound
terms. When the predicate holds, the statement applies and
defines that the tuples (Size, 0, $n) and (Size, 0, $m)
are included in the output.

We made the tuples explicit in this first example to clar-
ify the matching process; however, it is actually simpler to
express shape-generic passports using set operators. For ex-
ample, Listing 4 expresses that any tuples with labels Size
and Dim in the input are also found in the output.

The intent of passports, beyond defining functional and
representational relationships between output and input, is
to also make statements about the expected behavior of com-
ponents. A common term to express is the time complexity
of the component, as a factor of the input characteristics.

An example is given in Listing 5. In this passport, the sig-

box NR : input.(fi) — output.(fo) =
provided

(Size, 0, $n) € $fi, (Size, 1, $m) € $fi
use

(Size, 0, $n) € $fo A (Size, 1, $m) € $fo
end;

Listing 3: Shape passport for box NR, 2D.

box NR : input.(fi) — output.(fo) =
{ (Size, *, %) € $fi } U { (Dim,) € $fi }
C $fo ;

Listing 4: Shape passport for box NR, generic.

box NR : input.(fi)
— output.(fo), expectedbehavior.(b) =
provided
let $shape := { (Size, =, %) € $fi }
U { (Dim, %) € $fi },
(CALReduce, x, (Size), 1, $size) € $shape
use

$shape C $fo A (TimeComplexity, $size) € $b
end;

Listing 5: Passport for box NR, with behavior.

nature is extended with a new output set “b” for the proper-
ties of expected behavior. The first clause of the statement
then defines the alias $shape for the set of all Dim and Size
terms in “fi.” The second clause uses a special CAL predi-
cate: it binds the variable $size to the arithmetic product
of the value of the 2nd tuple position of all Size tuples in
$shape, i.e. to the product of array dimensions in the input.
Note that tuple positions after the label are numbered from
0. Assuming the predicate holds and binds $size success-
fully, the statement specifies that the output has the same
shape and that the time complexity is linear in $size, i.e. the
input size.

The passport for Hist is specified in the same fashion in
Listing 6, which extends Listing 2.

It is also possible to parameterize the expected behav-
ior by run-time parameters. In particular, when the com-
ponent may exploit available parallelism, the passport can
unify with the number of processing units in the execution
properties. An example is given in Listing 7. Here, the sig-
nature is extended with a new input set “e” for the execution
environment properties. The passport then states that ei-
ther the complexity scales with the available parallelism for
input sizes larger than 50, or is linear in the input size if the
execution is sequential or for smaller inputs.

3.2 Virtual hardware and operational passports

Virtual hardware is a combination of actor passports with
special operational semantics, together with a database of
resource passports which describe hardware properties.

All actor passports have the same signature, defined in
Listing 8. In addition to this generic form, actor passports
are the only passports in CAL with operational semantics.

box Hist input.(fi, qf)

— output.(h), expectedbehavior.(b) =
provided

let $shape := { (Size, =, *) € $fi },

(CALReduce, x, (Size), 1, 8$size) € $shape,
(Value, $nh) € $qf
use
(Dim, 1) € $h
(Size, 0, $nh) € $h
(TimeComplexity , $size) € $b
end;

Listing 6: Passport for box Hist.

box NR : input.(fi), execenv.(e)
— output.(fo), expectedbehavior.(b) =
provided
let $shape := { (Size, =, *) € $fi }
U { (Dim, %) € $fi },
(CALReduce, x, (Size), 1, $s) € $shape
use

$shape C $fo

(Sequential) € 3¢ = (TimeComplexity, $s) € $b
provided

(DataParallelism , $p) € $e

use

$s < 50 = (TimeComplexity, $s) € $b

$s > 50 = (TimeComplexity, $s / $p) € $b
end
end;

Listing 7: Passport for box NR, with parallel behav-
ior.

vV A actor A : location.(p), state.(

s),
component.(c), input.(r)
— state.(s’), observation.(m),
output.(r’);

Listing 8: Common actor passport signature.

Every time an passport is evaluated during aggregation, the
underlying platform will perform the computation(s) de-
scribed by the left side of the actor signature.

The left side of the signature specifies the location, i.e. where
in the system the computation takes place; the carried state
from a previous computation, the functional component that
defines the input-output relationship, and the concrete input
data on which to compute. The right side specifies the re-
sulting carried state, a set of actual observations about the
computation, and the concrete output data that is produced.

An example basic actor passport is given in Listing 9.
This passport specifies that the actor SimpleDo carries out
a computation and reports an observation event Done anno-
tated with the component reference and the concrete time
to result.

This passport is sufficient to perform computations, but
likely insufficient to analyze components whose behavior is
dependent on the input data or the physical resource where
the computation takes place. For this, a more suitable pass-
port is given in Listing 10. This passport combines three
features. It reports different observation events depending
on whether the computation has terminated successfully or
has encountered an error. It also binds both the component
reference, the input reference, the placement reference and,
if successful, the output reference, to the observation, so that
the behavior is fully contextualized. Finally, it also reports
the specific timestamps where the computation started and
finished, instead of the time to result, so as to enable simul-
taneous comparisons across computations.

Next to actor passports, the virtual hardware also pro-

actor SimpleDo location.(p), state.(s),
component.(c), input.(r)
— state.(s’), observation.(m), output.(r’) =

(Done, $c, $3TTR) € $m;

Listing 9: Example actor passport.

actor MaybeFail location.(p), state.(s),
component.(c), input.(r)

— state.(s’), observation.(m), output.(r’) =
(Good) € $3Result

—> (Done, $c, $r, $p, $r’, $3T0, $$T1) € $m
(Bad) € $$Result

— (Failed, $c, $r, $p, $$T0, $$T1) € 9$m;

Listing 10: Example actor passport with support for
failures.

synthesis L :
provided
(Done, 8$e, $r, $p, $r’, $t0, $t1) € $m
use
(LatencyPBPIPL, $e, $r, $p, $t0, $t1—-$t0) € $m
end;

observation.(m) =

Listing 12: Example synthesis for per-box, per-
location, per-input latency.

vides resource passports to describe the underlying platform.
All resource passports are unary and have the following com-
mon signature:

vV R resource R : hwprops.(p) ;

Each resource passport further expresses properties that
hold in the set provided as input. For illustration, an ex-
ample resource database is listed in Listing 11. This defines
4 processing units W1_0, W1_1, W2, W3 over three fully con-
nected network nodes N1, N2, N3. Each processing unit is
defined from hardware resources on that node, here shared
memories and hardware cores, which are also fully enumer-
ated with their properties.

3.3 Synthesis passports and term derivation

In addition to box, actor and resource passports which
assume concrete semantics (agreed by convention) for their
vocabularies of terms, a CAL-equipped system can also be
extended with synthesis passports which define new terms
purely symbolically.

For example, we may desire to define a component’s la-
tency and throughput over a set of observation events. We
provide an example passport L to synthesise latencies in List-
ing 12. This maps every observation event from MaybeFail
to a LatencyPBPIPL event, which substitutes the end time
by the time to result, and drops the reference to the output
data. This passport can then be complemented by Listing 13
to synthesise throughput. Here, the throughput is defined
as the number of latency events unified from the observation
sets and a request set. A separate, explicit handle to requests
is necessary because throughput can only be defined over a
given interval of time. Here we assume that requests also
filter for specific components and placement. The resulting
throughput unit is the number of activations of the box per
unit of time. The unit of time is context-dependent: when
T is combined with the MaybeFail and L passports, the unit
of time is milliseconds.

To illustrate L and T, we consider the example set of mon-
itoring events given in Listing 14, generated by applying the
MaybeFail actor to the image pipeline defined earlier and
two input frames.

In this data, every computation event lists the start and
end times, here assumed to be expressed in milliseconds af-

synthesis T :
provided
(Request , $e, $p, $tb,
let $s :=

{ (LatencyPBPIPL, $ex, *, $px, $t0, $1) € $m
|| $ex = 8e A $px = $p A $t0 > $tb A $t0 < $te },
(CALCount, (LatencyPBPIPL), $n) € $s
use
(ThroughputPBPL, $e, $p, $tb, $te,

$n / ($te — $tb)) € $m

observation.(m), request.(rq) =

$te) € $rq,

end;

Listing 13: Example synthesis for per-box, per-
location throughput.

{ (Dome, (NR), (f0), (W10), (t0), 12, 24),
(Dome, (NR), (f1), (W10). (1), 25, 39),
(Done, (Hist), (t0), (W2), (h0), 26, 42),
(Done, (Hist), (tl), (W2), (hly, 43, 51), } Cm

Listing 14: Example monitoring data

ter the start time of the entire application. This data also
shows that the NR box has executed on the processing unit
W1_0, whereas Hist has executed on W2. We mask the frame
and histogram data references behind simple identifiers for
clarity; in an actual implementation the events would either
specify direct memory pointers or database identifiers to the
concrete images.

When unifying this data via L, we derive the extension in
Listing 15; with T and a single request to investigate com-
ponent NR over WR_0 and a window of 100ms, we derive
the extension in Listing 16. Note how numeric precision is
preserved by the use of rational numbers in expressions.

4. RELATED WORK

Auto-tuning of performance of parallel programs is quite
different to auto-tuning sequentially running code. Research
has been done to translate sequential programs automati-
cally into parallel programs at the level of language con-
structs such as loops. For example, Williams et al. have
developed a framework to parallelise sequential Fortran 95
code for a few numerical application domains [2].

The most related work is a program specialisation frame-
work developed by Kessler et al. [3]. Their approach is based
on the resource-aware gray-box composition of components
that encapsulate sequential or explicitly parallel code. The
approach extends program code with code annotations rep-
resenting meta-data used to predict the execution time. Dif-
ferent implementation variants come with different perfor-
mance meta-data. A composition tool is used to transform
a set of independent calls into a construct with dynamic dis-
patch to select at runtime the best performing computation
strategy. The choice of the computation strategy is based
on statically computed lookup tables for the schedule.

{ (LatencyPBPIPL, (NR),

(f0), (W1.0), 12, 12),
(LatencyPBPIPL, (NR), (f1)

, (¢

, (¢

(W1.0), 25, 14),
), (W2), 26, 16),

(LatencyPBPIPL, (Hist) s
), (W2), 43, 8), } Cm

0
(LatencyPBPIPL, (Hist) 1

Listing 15: Example concrete latency synthesis.

// example network descriptions with 3 fully connected nodes

resource N1 :
resource N2 :
resource N3 :

hwprops.(h)
hwprops.(h)

// example memory descriptions; units are in KiB

resource M1l : hwprops.(h) = (Capacity, 1024) € $h
resource M2 : hwprops.(h) = (Capacity, 4096) € $h
resource M3 : hwprops.(h) = (Capacity, 256) € $h ;

// example hardware core descriptions; frequencies
resource C1_0 hwprops.(h) = (Freq,
resource Cl1_1 hwprops.(h) = (Freq,
resource C2 : hwprops.(h) = (Freq, 2000)
resource C3 : hwprops.(h) = (Freq, 800)

// example descriptions for processing units
resource W10 : hwpropos.(h) =
resource WI1_1 hwpropos.(h) =
resource W2 : hwpropos.(h) (ShMem, M2)
resource W3 : hwpropos.(h) (ShMem, M3)

)

3

(ShMem, M1) € $h A (Core,
(ShMem, M1) € $h A (Core,
€ $h A (Core, C2)
€ $h A (Core, C3)

hwprops.(h) = (Neighbour, N2) € $h A (Neighbour, N3) € $h ;
(Neighbour, N1) € $h A (Neighbour, N3) € $h ;
(Neighbour, N1) € $h A (Neighbour, N2) € $h ;

// 1MiB
// 4MiB
// 256KiB
in MHz,
1000) € $h A (Cache,
1000) € $h A (Cache,
€ $h A (Cache,
€ $h A (Cache,

cache capacities in KiB
512) € $h ;

512) € $h ;

128) € $h ;

256) € $h ;

C1.0) € $h A (Node, N1) € $h ;
Cl.1) € $h A (Node, N1) € $h ;
€ $h A (Node, N2) € $h ;
€ $h A (Node, N3) € $h ;

Listing 11: Example hardware property database.

{ (ThroughputPBPL,
} Cm

(NR), (W1.0), 0, 100, 2/100)

Listing 16: Example concrete throughput synthesis.

The work presented in this paper based on CAL allows
for a more generic component characterisation. Further, the
hardware characterisation described by Kessler et al. only
considers the number of processors, while our approach pro-
vides a richer vocabulary to characterise resources. While
Kessler et al. work at the call interface between components,
the approach described in this paper works at the coordina-
tion level of components with a clear separation between
concurrency specification and component implementation.
Because of this we deem it to be an interesting experiment
to apply our overall approach to other coordination and com-
ponents models [5, 6].

5. CONCLUSIONS

We have presented a system design that allows us to spec-
ify, monitor and relate a wide range of properties from com-
putational components, the coordination glue that allows for
concurrent execution of components down to the executing
hardware platform. We believe that the presented approach
targets one of the main difficulties in assessing the behaviour
of a parallel system by allowing users to systematically spec-
ify which properties they are interested in and by equipping
the system-side components with observation and reporting
facilities to collect and provide access to the desired mea-
surements. This is only the first step towards automatic
system refinement as an autonomous process without user
interaction, however, with analysis, heuristics and proba-
bilistic prediction algorithms in place we believe this to be
a reachable goal.

As was mentioned before, this paper describes the current
state of an ongoing research project. We are still exploring
the set of potentially useful properties on all levels and ways
to relate them to each other to provide the most benefits to a
user. One important realisation is that it is infeasible to an-
ticipate what users find most useful in a particular (i.e. their
own) hardware/software configuration. Hence, we opted to
make the observation and synthesis user-definable through
CAL so as to empower users to define their own metrics and

ways to obtain the most supportive measurements.

The current implementation state of the tools varies. While
the S-Net tool chain has been under development for over 5
years and has reached some stability, the observation system
and the CAL aggregator are in a prototype stage. Nonethe-
less, all tools are available for download (open-source) at
http://www.project-advance.eu/.

6. ACKNOWLEDGEMENTS

This research is supported by the European Union under
grant 1ST-248828 (FP7 ADVANCE).

7. REFERENCES

[1] C. Grelck, S. Scholz, and A. Shafarenko. Asynchronous
Stream Processing with S-Net. International Journal of
Parallel Programming, 38(1):38-67, 2010.

S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams.

An auto-tuning framework for parallel multicore stencil

computations. In Proc. Int’l Parallel and Distributed

Processing Symposium, pages 1-12, Los Alamitos, CA,

USA, 2010. IEEE Computer Society.

[3] C. W. Kessler and W. Lowe. Optimized composition of
performance-aware parallel components. Concurrency
and Computation: Practice and Experience,
24(5):481-498, 2012.

[4] R. Kirner, F. Penczek, and A. Shafarenko. Compilers
must speak properties, not just code - CAL: constraint
aggregation language for declarative
component-coordination. In Proc. ACM Workshop on
Declarative Aspects and Applications of Multicore
Programming, Philadelphia, PA; USA, Jan. 2012.

[5] K.-K. Lau and Z. Wang. Software component models.
IEEE Trans. Softw. Eng., 33:709-724, October 2007.

[6] A. Omicini and M. Viroli. Review: coordination models
and languages: From parallel computing to
self-organisation. Knowl. Eng. Rev., 26:53-59, 2011.

[7] A. Shafarenko and R. Kirner. CAL: A language for
aggregating functional and extrafunctional constraints
in streaming networks. Technical report, University of
Hertfordshire, Hatfield, UK, Jan. 2011. available at
http://arxiv.org/abs/1101.3356.

2

