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AM3: Towards a hardware Unix accelerator for
many-cores

Raphael Poss and Koen Koening

Abstract—This article advocates the use of new architectural features commonly found in many-cores to replace the machine model
underlying Unix-like operating systems. We present a general Abstract Many-core Machine Model (AM3), a proof-of-concept
implementation and first evaluation results in the context of an emerging many-core, hardware multi-threaded architecture without
support for interrupts. Our proposed approach makes it possible to reuse off-the-shelf multithreaded/multiprocess software on
massively parallel architectures, without need to change code to use custom programming models like CUDA or OpenCL. Benefits
include higher hardware utilization, higher performance and higher energy efficiency for workloads common to general-purpose
platforms, such as in datacenters and Clouds. The benefits also include simpler software control over the hardware platform, an
enabling factor for the further evolution of parallel programming languages.
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1 INTRODUCTION

FOR better or for worse, the Unix operating system and
its variants have long crystallized an abstract machine

model that is now serving as foundation for most of the
software industry: processes have one or more thread of
execution sharing a heap and a stack in a virtual address
space, and can perform system calls to an enclosing operating
system (OS) that manages a set of processes with a shared
set of virtual resources: file system, network, etc.

Even when programming languages define a different
machine model, e.g. the STG for Haskell [1], users of ap-
plications written using these language are still exposed at
run-time to the fact that the language’s implementation sim-
ulates its own model on top of the Unix model: from the out-
side, the execution of a Haskell program is expressed on the
underlying platform as threads (“capabilities” in Haskell)
running in a process (the Haskell run-time system) [2],
interacting with the enclosing OS via system calls; likewise,
a Javascript program that uses the DOM environment as
abstract model is ultimately expressed on the underlying
platform as threads (one per browser tab in e.g. Firefox)
running in a process (one per browser tab in e.g. Chrome,
one for the entire browser in e.g. Firefox), that communicate
with the enclosing OS via system calls to actually display
elements on screen, receive user input or interact over the
Internet.

This model is even largely reused in Clouds, albeit
with different terminology (“virtual machine” vs. “process”,
“hypervisor” vs. “operating system”). The model remains
largely unchanged in heterogeneous architectures, like those
found in mobile phones: functions on the special hardware
appear as foreign calls occurring within a thread/process
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running on a “host” processor under control of a Unix
variant (e.g. Android).

A remarkable trait of the Unix abstract model is that ever
since its advent in the 1970’s, the mechanisms to implement
the process abstraction in hardware have barely changed:
memory addresses are translated in hardware automatically
using a software-programmable translation unit; the system
call interface between processes and the OS is always implemented
as a context switch within the same processor and time sharing
is always implemented by connecting an external clock source to
a hardware interrupt in each core.

However, historically, interrupt handling was first im-
plemented in hardware processors before Unix even existed
in order to support manual interruption of long-running (or
badly behaving) programs without shutting down the entire
computer. The circuits in hardware that save the state of a
task, restore the state of another task and switch control to
it, were only a necessary feature when the main computation tasks
and “operator” tasks like shells or debuggers needed to share the
same processor. Unix then fortuitously piggy-backed on this
hardware feature to implement time sharing and system
calls, and this arrangement has persisted to this day. This
begs the question: what if... What if cores were so cheap and
so numerous that time sharing of single hardware threads
wasn’t a concern? What if cores were cheap and numerous
because they were small, and the reason for that is that we
could drop hardware support for interrupts and privileged
code in all but a few of them? (1) Could we run Unix on that,
i.e. reuse existing software as-is on the simple cores modulo
recompiling the source code? (2) Then, what would be the
benefits? (3)

These are the three main questions answered in this
article. We first provide an answer to (1) by summarizing
our perspective on the current architectural landscape in
section 2 and describing precisely in section 3 why many-
core chips would benefit from improved support in Unix-
like systems. In section 4 we then describe a positive answer
to (2) by defining a general machine model, AM3, able to
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support Unix on different many-core architectures. Section 5
then describes a proof-of-concept implementation on top of
an emerging many-core architecture which was designed
without support for interrupts. To answer (3), we start in
section 5.4 by showing experimentally the benefits of our
own implementation on common system tasks. We then
compare our approach to related work in section 6. We
discuss in section 7 the other indirect benefits that we have
discovered and directions for future work, and conclude in
section 8.

2 THE C/POSIX ABSTRACT MACHINE

In the decade 1990-2000, processor architectures have ben-
efited from tremendous advances in manufacturing pro-
cesses, enabling cheap performance increases from both
increasing clock frequencies and decreasing gate size. These
advances in turn enabled an explosive expansion of the
software industry, with a large focus on uni-processors. This
architecture model, that of the Von Neumann computer, had
emerged at the end of the 1980’s as the de facto target of all
software developments.

Until the turn of the 21st century, system engineers
could assume ever-increasing performance gains, by just
substituting a processor by the next generation in new
systems. Then they ran into two obstacles. The first was the
memory wall [3]; to overcome this wall, processor architects
have scrambled to preserve the uni-processor model for
software by designing increasingly complex uni-processors
using mainly branch predictors and out-of-order execution
(OoOE) to automatically find parallelism in single threaded
programs. Unfortunately, they eventually hit the sequential
performance wall [4], [5], also known as “Pollack’s rule” [6],
i.e. the increasing divergence between single core perfor-
mance and the power-area cost of the necessary hardware
optimizations. To “cut the Gordian knot” [5], the processor
industry has “given up” on single-core improvements alone
and since shifted towards multiplying the number of pro-
cessors on chip, now called cores.

Congruent with the advent of multi-cores, another
“wall” is appearing: the increasing disparity between the
chip size and the gate size causes the latency between on-
chip components (cores, caches and external interfaces) to increase
relative to the pipeline cycle time. This divergence is the on-chip
equivalent of the memory wall: it causes mandatory waiting
times in individual threads. Moreover, these latencies are
becoming increasingly unpredictable, because of the larger
software workloads and the increasing number of transient
faults masked in hardware by automatically retrying opera-
tions.

The solution currently envisioned to overcome this wall
is hardware multi-threading (HMT). HMT is a relatively old
concept with always the same motivation: keep a processor
busy while some thread(s) are waiting. From the simplest
barrel designs [7], [8] to the fancier “hyper-threading” or
simultaneous multi-threading (SMT) of recent Intel and
Sun/Oracle products [9], [10], two features are shared by
all HMT implementations. The first is what makes HMT rel-
evant to tolerate on-chip latencies: fast switching times, made
possible by provisioning separate physical program coun-
ters (PCs) and register files per hardware thread. The second

was designed to make the adoption of HMT smoother in
legacy software stacks: full processor virtualization, where
each hardware thread also has its own identity with regard
to address translation and its own interrupt routing logic so
that it can be managed as a separate virtual processor (VP) by
OS schedulers and trap handlers.

Overall, these successive developments were made with
the assumption that the machine model observed by the OS
is sacro-sanct: there may be more than one VP connected
to the shared physical memory, but each VP must provide
its own address translation unit and interrupt routing logic
with a backward-compatible instruction set architecture
(ISA). Yet this assumption is weakening. True, it is the case
that this machine model is what all Unix-like OS kernels
were originally designed for, and the software industry is
dependent on the preservation of POSIX-like APIs that were
originally defined for this model. However, the software
industry has recently become accustomed to the idea of
source-level software compatibility instead of a more costly
cross-platform binary compatibility. This is made true by
both the general adoption of open source infrastructure
software and the diversification of ISAs forced upon an x86-
dominated market by ARM and Oracle. In other words,
we are entering an era where the preservation of abstract
models and functional interfaces in source matters more than
backward compatibility of binary code. But what do these
abstract models look like?

For application processes, one needs not look further
than ISO C 2011 [11] and POSIX [12]: the abstract machine
provides one or more threads of execution that share a
virtual address space; system call interfaces (also known as
“syscall wrappers”, e.g. open) provide access to system
services, including starting, controlling and communicating
with other processes and threads; control flow within single
threads is decided by function calls, intra-function language
flow control, inter-function jumps via longjmp/ucontext
and inter-context jumps via siglongjmp, with extremely
limited access to the hardware PC and registers; memory
is abstracted via virtual mappings (e.g. mmap), used as back-
end mechanism to implement heaps, stacks and memory-
mapped I/O with little to no program control over ad-
dress space layout; signals may be delivered to individual
threads in reaction to asynchronous events, again via a
standard interface (sigaction); and I/O is abstracted via
numeric descriptors used as arguments to syscall wrappers;
finally, inter-thread synchronization may be decided using
a coherent shared memory, if available, and/or rely on
OS-provided primitives such as mutexes, semaphores and
message queues. All other programming languages in use
on commodity hardware today are expressed within this
abstract machine: as long as this model is preserved, our
software stacks can be reused as-is modulo recompilation.

For an entire OS kernel, the essence of the machine
model has been captured by virtual machine (VM) hypervi-
sors, with Xen [13] as a poster child: as long as the machine
provides VPs with a privilege separation between “user” and
“system” code, a programmatic interface to control address
translation, configurable signals for scheduling, and external I/O
via virtual packet-oriented networking interfaces or block-oriented
storage interfaces, it can run Linux or other Unix-like OS
kernels and thus support any contemporary software stack.
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Of remarkable interest in this article, the ability to deliver
periodic signals in all VPs is still a general requirement,
but its demand is decreasing already: the Linux and FreeBSD
kernels, for example, can already operate a VP tickless [14],
[15] when the VP runs only one process thread.

3 FROM MULTI- TO MANY-CORES: REVISITING
MODELS

As the number of cores on chip grows, hardware archi-
tectures have started to diverge from the machine model
currently presented to OS kernels in software. Are there
features in the machine model which we could revisit in
the light of recent architectural advances? In this section,
we present three arguments: that hardware preemption is
not needed in all cores, that increasing hardware complexity
requires hardware acceleration for process/thread manage-
ment, and that networks-on-chip (NoCs) are under-utilized
by C/POSIX.

3.1 How necessary is hardware preemption really?
Generally, from the programmers’s perspective, a thread
runs sequentially, unininterrupted. Looking closely, not al-
ways.

There are four “consumers” of thread preemption in
contemporary systems. The first is time sharing, to mul-
tiplex multiple threads or processes on a single VP. This
consumer only exists as long as there are more logical
threads/processes defined system-wide than there are VPs
in the machine. The second is the collection of device
drivers, which may need to receive asynchronous events
from a larger number of different sources than there are
VPs, however device drivers usually run on a small subset
of all VPs available. The third is task reclamation, to sus-
pend and/or remove a currently running task from a VP.
For this use, we highlight here that reclamation is usually
performed for entire processes at a time, i.e. upon all threads
of a process simultaneously. The fourth is the intra-process
abstract machine visible to application programmers, for
in-application signal delivery. The C/POSIX model allows
programs to configure signal delivery to arbitrary threads,
but is this actually used in practice?

When examining the sources of open-source contempo-
rary mobile, desktop or server software distributions (An-
droid, GNU/Linux, FreeBSD), we can further narrow down
which type of signals are actually used in applications,
and more importantly how. The first observation is that
relatively few programs actively control signal delivery. For
those that do, they only control timer events (SIGALRM),
process and channel control events (SIGHUP, SIGINT, etc.)
and debugging (SIGTRAP). Perhaps surprisingly, although
the C/POSIX standards have provisioned facilities to give
applications control over the reaction to hardware faults
(e.g. SIGSEGV, SIGBUS, SIGILL, SIGFPE), these facilities
are only used in few “systems” programs (e.g. valgrind)
and extremely rarely in application code. As to how signals
are used, we have observed that only debuggers actively
control fine-grained trap delivery to all threads in a process,
if at all; in other code signal handling is configured to deliver
all events to a “main” thread or a limited subset of the
threads, dedicated to system I/O.

We summarize the situation as a starting assumption:
relatively few program threads in a modern Unix-like system
require programmable preemption to be implemented by all VPs
onto which they are mapped; the other threads merely need support
for time sharing (and only when multiple threads are mapped to
the same VP), and process-wide reclamation.

3.2 Hardware heterogeneity and per-thread state
The concept of “memory” in a many-core chip has new
dimensions that were not prevalent when C and POSIX
were first designed. There are now “scratchpad” memo-
ries [16], [17] which are memory circuits accessible coher-
ently from the VPs physically near to them, but either
unaddressable from other cores or without cache coherency
nor atomic semantics. The difference with register memory
is that scratchpads can be indirectly addressed and may be
shared by multiple threads. Configurable cache controllers
are also becoming prevalent, where program code can spec-
ify per address range whether the memory is coherent with
other VPs or not. Performance-sensitive programmers also
increasingly demand visibility over the topology of the
memory network and how logical objects in programs map
to off-chip memory channels.

The reason why these reminders matter is that the logical
state of a process or thread that must be maintained by the
OS is becoming larger. It used to be only defined by the local
VP state (PC, registers), open descriptors and virtual map-
pings. In the new context, the content of scratchpads, the
state of local physical resources, optional custom cache pa-
rameters and whichever constraints a thread’s code places
on its physical placement in the system topology must be
considered, too.

To summarize, as the number of cores grows, the size
of the OS structures to manage individual processes or
threads grow as well, and so does the complexity of saving
or restoring the entire state of a process (e.g. to swap, to
make space for another process, etc.). To keep a certain
level of fluidity in OS schedulers, high-level process and
thread management now need special optimizations, or, say,
acceleration.

3.3 Are syscalls really “calls”?
In Unix terminology, the word “system call” is used when a
user-level program requests a service from the OS. On most
current architectures, the mechanism to trigger a syscall has
little in common with the regular branching instructions
used for regular calls; for one, the issuing program may not
itself select the program counter reached after the branch.
Instead, the word “call” refers to the historical requirement
to suspend the invoking program while the OS service is
running, when there is only one VP in the system, which in
appareance makes the syscall behave like a subroutine call.

We see two main reasons to revisit this concept in
the context of many-core processors. One is the growing
demand for “asynchronous” syscalls (e.g. aio_write from
POSIX.1) which reveals programmer acknowledgement of,
and desire to exploit, the available concurrency between
application code and OS operations. The second is the sheer
cost of context switches required for privilege separation
within one VP: registers and memory translation entries
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must be saved and reloaded for every switch from user code
to system code and back again. When two or more VPs are
available, the context of user code running on one VP needs
not be saved, and the user code can keep running, while the
system code runs on another VP. Interaction between the
two can then happen using asynchronous messaging. This
is a cornerstone of our proposal.

3.4 Efficient use of networks-on-chip

The physical reality of many-core chips is qualitatively
different from traditional multi-processors: where histori-
cally processor(s) were connected to memory via buses, on-
chip communication in modern multi- and many-core chips
is now commonly physically supported by a high-speed
packet-switched network [18], with routers between core
tiles, or network-on-chip (NoC).

Yet the machine abstraction presented to OS kernels
is one where the only way for VPs to communicate is
via a shared memory (stores by one VP become eventu-
ally visible by loads from another VP) and a relatively
clumsy inter-processor interrupt (IPI) delivery service for
synchronization and periodic scheduling. This is the single
machine abstraction currently used to implement in-kernel
scheduler notifications (including thread creation and signal
delivery), OS-based mutexes and message queues, stream-
based (pipes & sockets) communication between threads,
etc. It is also heavily used, with tens of interrupts delivered
by second and per core on an idle system, up to several
thousands per core and per second under I/O load or
complex inter-thread synchronization patterns.

The effort required by chip architects to preserve this
abstraction is staggering and very costly indeed. Globally
shared memory between all cores requires increasingly com-
plex cache coherency protocols, and causes overall core-to-
core memory latencies to increase faster than their relative
physical distance. For IPIs and TLB faults (virtual memory
management), the programmatic interface of a late 20th cen-
tury interrupt controller (the APIC) is physically emulated
at each core on top of NoC messaging: an interrupt request
by one core is translated locally to a data packet, carried
over the network in packet form, then translated back by
another emulation at the other end into an interrupt signal.
Instead of emulating shared memory and interrupts, why are
we not using the hardware NoC directly in applications instead?

The idea of programming a many-core like a distributed
system on chip perhaps springs to mind here: from a bird’s
eye view perspective, cores with local scratchpads and
connected with a packet-switched NoC do not conceptually
differ from a network of workstations. There are however
two reasons why a direct mapping of Unix-like network-
ing on NoCs, as was already demonstrated in e.g. Intel’s
SCC [19] and Tilera’s TILE, is neither efficient nor desirable.
The first is that Unix-like networking requires either data
copying between userspace and the network hardware, or
physically shared buffers between the network interface and
the processor, which are usually not available in NoCs. The
second is that network operations require the overhead of
(at least) one context switch on both sides, which in turn
involves memory where process state is stored. In short,
Unix networking requires memory. However, since memory is

already shared anyways between VPs, using that directly
is necessarily more simple and efficient than adding the
overhead of a fully fledged network stack.

Meanwhile, other traditional uses of shared memory
would greatly benefit from tighter NoC integration: the
high-bandwidth, fine-granularity inter-process communica-
tion (IPC) facilities offered by most Unix kernels. Message
queues, pipes and Unix domain sockets in particular are
nowadays prevalent in any sizeable software system and
support the majority of I/O operations in networked code.
These services are furthermore fully abstracted by the OS
which makes a direct mapping to NoC messaging possible
without changes to application code.

In order to show that NoCs can be successfully leveraged
in applications without the overhead of emulating a cache
coherency protocol and interrupt delivery, three conditions
must be met. The first is that neither inter-core cache co-
herency nor interrupts must be involved in the communica-
tion. The second is that the resulting improvements must be
sufficient to justify a change in the model. The third is that
existing code must benefit from the improvement without
changes. Our proposal, which follows, meets all three.

4 AM3: AN ABSTRACT MANY-CORE MACHINE
MODEL

We keep most aspects of the traditional machine model.
VPs are connected to a shared memory. Each VP has its
own PC and local state distinct from other VPs. All memory
operations undergo address translation; a privilege separation
mechanism must exist with as minimal requirement that it
must 1) prevent “user” code from altering its own address
translation tables (isolation) and 2) guarantee that the be-
havior of “user” tasks do not prevent progress of “system”
tasks (fairness). Where AM3 differs from the traditional
model is how this separation mechanism is implemented.

In the model inherited from uni-processor multi-
programming, the configuration of privilege separation is
performed via privileged instructions; the current privilege
level stored in a status register determines whether priv-
ileged instructions are allowed or not (system mode vs.
user mode); and a context switch protocol allows calls from
user mode to system mode but with limited control by
the user code over which code gets executed in system
mode. In the ISA, context switching protocols commonly
reuse the opcode for software interrupts, although Alpha,
MIPS, ARM, x86-64 and some others also have a dedicated
syscall instruction. In all cases, the circuits for context
switches in hardware are shared with interrupt handling,
which often has ramifications throughout the core micro-
architecture: the pipeline must be flushed, outstanding in-
structions (e.g. pending memory operations) must complete,
the VP’s local state (PC, registers, status words) saved,
then replaced by those of the new context, before execu-
tion resumes. In ARM and SPARC, a context switch slides
the register window to a dedicated register file, however
in Unix-like OS kernel this is merely used as trampoline
and the handler running in the dedicated file eventually
saves/restores a target context in the regular register file
from memory. Our proposed model AM3 breaks clean of
these requirements.
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Figure 1. Proposed SN/CN system model.

4.1 Model specification

Taking the physical multiplicity of cores and VPs as a
starting point, we banish privilege levels and automatic context
switches entirely. We do this using two logical networks:
a privileged control network (CN) and an unprivileged
signalling network (SN), independent from memory, see
fig. 1. This capitalizes on the availability of multiple logical
NoCs already found in modern multi-cores.

Each VP belongs to a group, each group with an ad-
dress on the CN and SN. Groups capture the reality of
“lightweight threads” found in most many-core architec-
tures and which may not be individually addressable. Each
group further has a set of authorized VP addresses that
the group can receive CN messages from. A VP in a group
may not modify its authorized set unless it has its own CN
address in the set already. Moreover, the memory address
translation table of a VP may only be altered by CN mes-
sages. This is the basis for isolation. We then define that the
machine fairly schedules all VPs that do not receive CN/SN
messages. This abstracts the reality of all many-core archi-
tectures already, and guarantees execution independence of
system tasks.

The SN enables asynchronous signalling as follows. Each
VP may send an arbitrary SN message to a virtual VP
address. Virtual VP addresses are translated to physical
addresses like for memory, using a translation table that
can only be configured via CN messages, then routed to
the destination VP on the SN. Some VPs (at least one) may
also wait for messages on the SN network, to “listen” for
signals from other VPs, and can inspect the source address
of all SN messages. Faults and exceptions (including CN
authorization rejects) are automatically translated by the
machine to an SN message to a pre-defined VP address.
Particular implementations of AM3 may route exception-
related messages through the same translation as software-
generated messages to make the architecture virtualizable,
although this is not strictly required to support a two-level
Unix-like OS. Example packet formats are given in fig. 2.

The CN enables system VPs to manage user VPs as
follows. The model guarantees that some VPs (at least one,
a superset of those that can receive SN messages) may send
CN messages to a) start and stop the execution b) read and
write the internal state c) configure memory/SN address

Figure 2. Suggested packet format for the SN.

Figure 3. Suggested packet format for the CN.

translation and d) configure the CN authorization set, re-
motely, to an arbitrary VP group identified by a program
variable (e.g. in a register). The processing of CN messages
is never blocking. Example formats are given in fig. 3.

The queuing properties of the SN and CN networks
are left unspecified in this article, although obviously the
networks must guarantee delivery. A combination of fixed
buffers, per-hop acknowledgements and a proper program-
ming discipline reading SN messages, are sufficient for
deadlock freedom and preventing message loss. In this first
definition, in-order delivery is required, although we believe
the ordering requirement on the SN could be relaxed.

Finally, AM3 also provides its keystone property: there
are at least 2 VPs in the system. This is necessary since a single
VP running user code cannot be “interrupted”.

This keystone, together with the introduction of the CN
and SN, are the defining characteristics of AM3. Although
VP configuration messages are rarely found in contempo-
rary software-visible ISAs, they would not require extra
hardware since architects already embed this logic for low-
level hardware testing and troubleshooting. The SN, and SN
address translation are also already implemented in multi-
core hardware for virtual interrupt routing. The reception
of SN events as explicit waits for new messages instead of
VP preemption constitutes a hardware simplification. The
CN security filter based on authorized sets is a new feature,
however, which does not yet exist in architectures and must
be added to support privilege separation in lieu of per-core
privilege levels.

4.2 Adapting Unix to run on AM3 platforms
Assuming an architecture presents AM3 to software instead
of preemption and privilege levels, a Unix-like OS kernel
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must be adapted to the new model as follows.
First a dispatcher must be introduced, running on SN-

receiving VPs, which waits for events and invokes the
legacy “interrupt handlers” explicitly. The decoupling en-
abled by an explicit dispatcher also enables dispatching
handlers onto different VPs, possibly running in parallel.
The memory paging mechanisms are left largely unmodi-
fied, and the SN translation tables can be implemented by
simply extending the virtual interrupt tables already used
in contemporary architectures.

Then the process/thread scheduler must be adapted, so
that threads are dispatched to different VPs using CN mes-
sages. Since the control flow can only be changed remotely
for an entire VP group, the system scheduler must take
care that a thread that may receive in-thread asynchronous
signals (“signal” here refers to the C/POSIX notion) must
be the only thread running in its VP group. Or conversely,
only use multiple lightweight VPs in a group if all threads
allocated to the group are guaranteed to not receive signals.

Then the syscall wrappers in the C library (and equiv-
alent support software for other languages), as well as
the stub code to return from a signal handler (including
siglongjmp), must be adapted to send a SN message and
halt the thread; and the syscall entry points in the OS kernel
must be adapted to interact with userspace tasks using
CN messages, including restarting the remote VP upon
completion of a syscall or returning from a signal handler.

The changes are further invisible from application code
which may continue to assume the C/POSIX model un-
changed. Relinking is necessary however to use the new
syscall wrappers, and recompilation may be necessary if the
many-core ISA differs from already supported platforms.

4.3 System lifecycle
4.3.1 Initialization
We assume that a platform implementing AM3 starts in
a state where all but one VPs are idle. The VP which is
automatically activated to run the boot code must be part of
the sender set for the CN. If this VP is also a SN receiver,
the boot code can start running the OS kernel directly.
Otherwise, the boot code must issue a CN “start” message
to a SN-receiving VP to run the kernel there.

The OS kernel then initializes, as usual, I/O devices
and management data structures for paging, buffered I/O,
networking etc. When the OS kernel is ready to serve
applications, another VP is selected to run the “init” process
(common parent in Unix) and the CN is then used to set up
its initial execution context (registers, memory translation,
SN translation) and start process 1. Finally the OS kernel
starts its SN dispatcher. To increase throughput during
normal system operation, the dispatcher can be replicated
on other SN-receiving VPs to share the load of incoming
syscalls and other events from the running programs.

4.3.2 Process lifecycle
The lifecycle of all processes (and software threads) starts
with an existing process using the fork syscall (typically
clone for threads). When the program issues fork(),
the syscall wrapper in the C library translates this call
to a message on the SN network to the designated OS

Figure 4. Process creation with AM3 (and invoking syscalls).

Figure 5. Time sharing in AM3.

dispatcher, and then halts the current VP. Upon receiving
this message, the OS then uses the CN to retrieve the state of
the forking process/thread, prepares a new process/thread
context with a copy (page tables, file descriptors, etc.), then
uses the CN to initializes another VP with this copy. Then a
“start” message is sent to both the original and the new VP
to resume execution (fig. 4).

The general case of invoking regular syscalls, already
embedded in the use of fork above, consists in sending
a SN message then halting the current VP (cf. fig. 7 for
another example). This naturally extends to sending SN
messages without halting the VP, which directly enables ad-
ditional concurrency between the program and syscall with-
out switching overhead. This can be used advantageously to
accelerate the queuing of asynchronous I/O operations.

Time sharing of VPs is required when there are more
processes defined than there are VPs in the system. Al-
though we expect this situation to become less common as
the number of cores & VPs on chip grows, AM3 provides a
transparent mechanism for this (fig. 5). On each scheduling
event, the preemptive scheduler in the OS kernel sends a
CN “stop” message to the VP(s) to time share, then uses
the CN to retrieve their state, restore the state of another
process, and subsequently resume execution. In this case no
SN interaction is required.

When a VP triggers a hardware exception or encounters
a TLB miss, the AM3-compatible hardware will halt the VP
and send a SN message to the pre-defined handler. The OS
dispatcher on that end receives the exception information
and determines the appropriate handling. For TLB misses,
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the paging operation is performed in-kernel and the CN
is used to establish a new valid mapping. If a signal is to
be delivered, the OS uses the CN to configure the signal
handling context. See fig. 9 for a combined example.

When a process terminates as reaction to a VP event
(either an explicit signal or exit syscall, or unhandled
hardware exception), the OS uses the CN to stop other VPs
used by the same process. The VPs can then stay idle until
they are reused for another process.

A new situation specific to AM3 occurs when a process
halts all its VPs explicitly. In a traditional architecture where
the OS scheduler shares VPs with application threads, an
explicit “halt” instruction is merely a long-latency no-op,
because the VP is woken up at the next preemption clock
interrupt. With AM3, stopped VPs stay stopped until ex-
plicitly restarted, so the question arises of what to do. One
approach is to consider that halting all VPs is equivalent to
a request for termination. In this approach, a monitor thread
in the OS must regularly check the state of all VPs and
garbage collect terminated processes. Another approach is
to consider that halting all VPs is an implicit wait until a
wakeup by another process in the system. In this case no
particular action is required from the OS.

4.4 Memory models

As many-core processors grow, a new struggle has emerged
between software programmers and architects. From the
software perspective, a logically shared memory is desir-
able; for example it has become a standard requirement of
the Unix threading model. From the hardware perspective,
multi-core cache coherency is expensive in hardware and
energy, and savings are attempted by partially dropping
support for strong (sequential) global consistency. In prac-
tice, various hybrids have been implemented, with strong
consistency at the lower cache levels and relaxed consis-
tency (or no consistency) between distant groups of cores.

The exploitation of AM3 is mostly orthogonal to the
memory model(s) supported by a particular multi-core, to
the extent that the OS must be aware of the memory topol-
ogy of the system and map processes to VPs accordingly.

To start, processes that require the appearance of strong
consistency between their threads must be mapped to VPs
that share a common memory coherency island. Likewise,
groups of processes that share memory for inter-process
communication must be mapped together. Conversely, if
different VPs are connected to distinct memories or non-
shared scratchpads, the OS must acknowledge this: read-
only shareable memory (eg. code segments) must be dupli-
cated on each memory partition, and migrating a process
across memory partitions requires explicit migration of its
memory data.

As long as these general guidelines are applied, the
memory topology of a particular AM3 implementation can
be made essentially invisible to application software.

5 PROOF-OF-CONCEPT

We have built an example implementation of our model on
top of an emerging many-core architecture, the “Microgrid”.
The Microgrid project, currently led by researchers at the

University of Amsterdam, has different goals, namely to
demonstrate how a combination of dataflow scheduling
and smart thread management in hardware can acceler-
ate data-parallel compute workloads [20], [21]. However,
a by-product of this research is an open source, cycle-
accurate simulator of Microgrids of configurable sizes called
MGSim [22].

MGSim offers us an ideal environment to test our pro-
posal. For one, Microgrid cores do not support thread pre-
emption; moreover, only a limited form of memory sharing
is possible between cores: the cache network only supports
strong consistency within a L2 cache (between all VPs
connected to the same L2 cache) but only a weak form of
causal consistency for operations between L2 caches. As
such, Microgrids cannot (yet) run Unix. However, MGSim
and Microgrids support relatively large core counts (hun-
dreds), large-scale hardware multithreading for in-core la-
tency tolerance (tenths of hardware threads per core), local
scratchpads, a packet-oriented NoC, backward-compatible
userspace ISAs (Alpha/SPARC/MIPS), and virtual address
translation using a model already similar to our proposal
in the previous section: paging requests (TLB faults/refills)
caused by compute cores are signalled to a separate core
to be handled asynchronously. The core micro-architecture
modeled in MGSim is openly documented [23], [24], [25]
and its C compiler is GCC-based and open source, which
makes the exploration of architectural changes to many-
cores more tractable.

5.1 Existing Microgrid thread management

Microgrids have a relatively fancy threading model with
numerous features to optimize raw performance and per-
formance/watt, which are beyond the scope of this article;
we focus here on the only two aspects salient to AM3.

The first is that each physical core supports two kinds of
hardware threads. The first is “lightweight” threads (LTs),
of which there can be many running at a time (tens),
with only few registers each and sharing their identity
as a group (“family” in Microgrid parlance, similar to
“warps” in CUDA): they must share the same virtual ad-
dress space, logical process ID and overall execution state
(started/stopped). LTs are optimized for fine-grained data
parallelism. The second is “general-purpose” threads (GTs),
with a full register set and own identity, but there can be
only 1-4 GTs running at a time on a core. For the purpose of
this article, both LT groups and GTs are candidate substrates
to implement VPs.

The second aspect is that VPs can be controlled and con-
figured from other threads or cores. This is done by issuing
a ctl.* instruction which takes as arguments the target en-
tity (physical core, GT identifier or LT group identifier) and
an optional value. Of interest to us, the run state of a VP can
be queried (ctl.q) and changed (ctl.start/ctl.stop).
Changing the state remotely from “running” to “stopped”
merely prevents the VP from (re-)entering the hardware
schedule queue, so other VPs on the same core can continue
to run unaffected. The PC, process ID for address translation
and register values of a VP can be queried and updated
remotely as well (ctl.get/ctl.set). At the level of the
entire core, the hardware scheduler can be in the state
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“halted”, “active” or “paused”, which can be queried or set
remotely (ctl.core.*): when transitioning from “active”
to “paused”, started threads remain started but the pipeline
is drained. When the state is changed to “halted”, running
threads are also stopped and need to be explicitly re-started
later with ctl.start. Control messages already use a
dedicated logical NoC.

A security model was already specified for Micro-
grids [26] however unfortunately it was not yet imple-
mented prior to our work. Instead, we used a simplified
model: each physical core is extended with a hidden register
containing a “client” identity key and a physical table of
2 “service” keys. When a request (ctl.*) is issued from
a core, the hardware NoC interface sends that core’s client
key alongside the request and the remote NoC interface only
accepts a control message if the key is present in the remote
service table. We choose 2 entries for the service table to
support one OS kernel and one debugger. Changing a core’s
key and service table is also done via control messages. We
have extended the MGSim implementation with this secu-
rity model, as it was sufficient to provide the CN privilege
separation described in section 4 at minimal hardware cost,
however we consider a discussion about which hardware
design provides the best flexibility/cost/performance trade-
offs to fall outside of the scope of this article.

5.2 Architectural extensions

Our proof-of-concept is based on two main additions to
the Microgrid micro-architecture that extend it with a SN
matching the requirements set forth in section 4: signaling
logic on every core, and listener logic on fewer cores, where
signal-receiving threads are to be run. We have striven to
keep the signaling logic lightweight in chip area and energy
usage, whereas the listener logic can be more expensive.

The signaling logic is itself split into exception routing
circuits for local faults (division by zero, illegal instruction,
but also security exceptions when a NoC message could
not be delivered), routing logic to translate signals to NoC
requests, and the pipeline logic for one new instructions:
sysreq. This instruction triggers a signal routed using the
same rules as local faults as described below, and also stops
the VP that executes it without affecting the other VPs on
the same core.

Signals have a number, fixed for hardware faults and
given in a register for sysreq. The signal number is con-
catenated with the VP’s physical thread ID to form an
originator key. The originator key is then used as index in
a routing table in memory to obtain a destination address on
the NoC, a pair (core ID, channel ID) in our Microgrid im-
plementation. The base pointer for the routing table is stored
in a per-core register. A packet containing the originator key,
the VP’s logical process ID and an optional argument value
(e.g. exception details for hardware faults, explicit argument
for sysreq) is then sent to the destination address via the
NoC. This mechanism is not unlike interrupt vectors, except
that each signal is mapped to a network address instead
of a local PC entry point and no extra circuit is needed to
forcefully flush the pipeline and automatically switch the
issuing VP’s execution context to another task. The logical
process ID is packaged with each request as an optimization:

although it is possible for the receiving thread to perform a
network round-trip to query it remotely, in our envisioned
application (Unix system calls) this would be done in nearly
all cases so the optimization is warranted to reduce network
traffic. To minimize the time overhead of look-ups, we also
implemented a dedicated look-aside buffer, although this
component could be omitted if the routing table is always
local, e.g. in a scratchpad.

On the receiving side, we leverage the Microgrid’s ex-
isting general-purpose I/O interface [27]. This interface
offers memory-mapped access to a configurable (fixed at
design-time) number of virtual channels (VCs) on the NoC,
with a hardware cost proportional to the number of VCs
and the per-VC hardware buffer size. This logic is an op-
tional feature of hardware Microgrid cores: product design-
ers/manufacturers can choose to omit it from some cores,
to makes the cores smaller and thus increase core counts or
decrease per-core energy usage at a fixed silicon budget. For
use as signal delivery mechanism, we propose to implement
this circuit in a subset of all cores, for example only one
core per memory coherency island on the chip (e.g. one
per L2 cache in the Microgrid), with a minimum of 2 VCs
per supporting core: one for page faults / TLB refills and
one for other signal types. (A separate VC is necessary
for translation events to prevent deadlocks when signal
handlers use virtual addresses.)

Finally, we also extended the Microgrid MMU to route
TLB misses, invalidation and refill events through the same
mechanism, but with the originator key and process ID fixed
to a value invalid for regular signals (0).

To summarize, our architectural extensions are com-
posed of extra routing logic on each core, one ISA instruc-
tions and the memory-mapped I/O logic on “receiving”
cores only. Using CACTI simulations [28], we estimate the
area increase to not exceed 3% per core on “signaling-
only” cores and 11% on “receiving” cores using the same
technology parameters as previous Microgrid literature [29],
[21].

5.3 Exploitation in software
Since we are defining a Unix hardware accelerator, it should
come to no surprise that extremely little work is left to
an OS kernel to exploit this hardware and simulate the
C/POSIX machine model for application code, as described
in section 4.2:

• Unix process threads are mapped to platform VPs
as-is: when a thread is known in advance to never
receive C signals, it can be ran in a hardware LT
(cf. section 5.1), otherwise a hardware GT is used
instead. Specific to this architecture, all threads of
any given process must be mapped to VPs that share
the same L2 cache, as otherwise in-process memory
consistency is not ensured;

• syscall wrappers are re-written to use sysreq;
• the syscall entry point in the OS kernel is adapted to

read from I/O VCs instead;
• the virtual memory interrupt handling routine is also

adapted to read paging events from its I/O VC;
• upon start-up, the OS kernel runs its syscall entry

point in a dedicated VP on all cores equipped with
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the I/O hardware, with routing tables on all other
cores configured so as to route signals to the closest
management core on the NoC;

• accessing the user context, or communication be-
tween userspace and system-space is done via
ctl.get/ctl.put;

• “logical preemption” to support e.g. coarse-grained
time sharing and in-process asynchronous signal de-
livery (C’s signals) is also performed over the NoC
using ctl.stop,get,set,start;

• “return from signal handler” or siglongjmp must
also use sysreq to transfer control, since there is no
stack frame to “return” to.

We posit also that the implementation described in this
article is fully virtualizable at zero extra hardware cost, since
signal routing is memory-based, the VC I/O operations are
memory-mapped in their respective’s VP’s virtual address
space, and the privilege domains are virtualizable because
security faults are routed as exceptions in a higher-privilege
domain. However this was not tested yet and should thus
be explored further in future work.

5.4 Evaluation
Our first micro-benchmark is to determine how many cycles
it takes for a full round-trip from the point a syscall is issued
in a userspace thread to the point the thread resumes nor-
mal execution. On conventional hardware (fig. 6) we time
batches of 20 invocations to getpid. We choose getpid as
it is one of the syscall with the least amount of work for
the operating system (a simple memory lookup). We invoke
using syscall(SYS_getpid) to avoid the overhead of the
standard C library wrapper. N batches are executed, where
N is chosen on each platform so that the variability of mea-
surements for the minimum and average time per syscall
becomes smaller than 5% (N > 100.000 on all platforms).
On the Microgrid (fig. 7) we use a program equivalent to
the following:
user_main:

for i = 0 to N:
ts := TSC() # time stamp counter
sysreq getpid
t += TSC() - ts

print t / N

systemcode:
repeat:

vtid := read from VC 0
pid := pid_table[vtid]
ctl.put vtid, 0, pid
ctl.start vtid

Our results are reported in table 1. The rightmost
columns report times in processor clock cycles. The “Prec.”
column is the estimated precision of the timestamping facil-
ity for the platform. On the x86 ISA, and the Alpha ISA
used in MGSim, the timestamping is rather precise: the
time stamp counter in hardware can be sampled with a
single instruction. On ARM however, the hardware counters
cannot be read by user code and we have to rely on a
syscall instead. Now, of course, using a syscall would also
introduce a sampling error. To account for this, we calibrate
our benchmark by first running 100.000 time sampling op-
erations in pairs, and measure the minimum time interval

Figure 6. Invoking getpid on conventional hardware.

Figure 7. Invoking getpid with AM3.

between all pairs. We name this “precision”, the minimum
amount of real time that can be reliably detected by the
platform’s measurement facility. The results in the 3 other
columns should thus be interpreted +/- this precision.

As can be seen from the results, with the traditional plat-
forms Unix syscall handling has to traverse software logic
before control is handed to the handler and back. Assuming
most of that time is spent doing context switches, the cost
of these can be estimated from the results (2 switches per
syscall). On the simulated Microgrid, the round-trip syscall
latency on the same core is 18 cycles, and on adjacent cores
50 cycles due to an extra round-trip network latency of
32 cycles. There is no variability because the simulator is
deterministic and no other activity is simulated.

The large values for the maximum column are caused
by scheduling artifacts, when the benchmark is interrupted
by other tasks and/or the benchmark thread is migrated
to another core by the OS. Since the average stays close to
the minimum, we can conclude these events are relatively
infrequent.

The second micro-benchmark determines how many
cycles it takes to deliver a software exception, by means
of accessing an invalid pointer. This reflects the cost of con-
text switches in virtualized environments, when privileged
operations in a guest OS cause a hardware fault that is
redirected back to the guest OS by the hypervisor. In our
benchmark we measure the time taken from the point the
pointer is accessed to the point control is transferred to the
signal handler. On conventional hardware (fig. 8) we use
the standard signal machinery. On the Microgrid (fig. 9)
we use a program equivalent to the following:

var end
user_main:

for i = 0 to N:
ts := TSC()
load [0]
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Table 1
Syscall round-trip time.

Operating system Processor Freq (MHz) Avg (ns) Min (ns) Max (ns) Prec. (ns) Avg (cc) Min (cc) Max (cc) Prec. (cc)
OS X 10.6 64-bit Intel Core2 Duo P8600 2400 357.7 343.5 84614.3 0.75 858.4 824.4 203074.2 1.8
Linux 3.4.104 32-bit Exynos5420 ARMv7l 1900 625.7 541.7 232733.3 68.75 1188.8 1029.1 442193.3 130.6
Linux 3.6.11 32-bit BCM2708 ARMv6l 700 554.1 299.9 745450.0 49.92 387.8 209.9 521815.0 34.9
Linux 3.2.64 32-bit Intel P4 2386 188.4 187.2 7489.4 2.01 449.6 446.6 17871.0 4.8F
reeBSD 10.1 64-bit Intel Atom N2800 1860 347.6 344.7 2417.3 0.75 646.5 641.2 4496.1 1.4
Linux 3.8.12 64bit AMD Opteron 6172 2100 86.6 86.1 3091.9 1.64 181.8 180.8 6492.9 3.5
Linux 3.13.0 64-bit Intel Core2 Duo E8335 2667 95.7 92.8 13411.9 0.75 255.3 247.5 35769.5 2.0
Microgrid OS on different core 1000 50.0 50.0 50.0 1.00 50.0 50.0 50.0 1.0
Microgrid OS on same core 1000 18.0 18.0 18.0 1.00 18.0 18.0 18.0 1.0

Figure 8. User handling of page faults on conventional hardware.

Figure 9. User handling of page faults using AM3.

t += end - ts
print t / N

user_handler:
end := TSC()
sysreq # (return from empty handler)

systemcode:
repeat:

vtid := read from VC 0
oldpc := ctl.get.pc vtid
ctl.set.pc vtid, &user_handler
ctl.put vtid, 0, SIGSEGV
ctl.start vtid # (resume at handler)
vtid := read from VC 0
ctl.set.pc vtid, oldpc
ctl.start vtid # (resume normal)

The results of our measurements are reported in table 2.

Table 3
Signal routing overhead.

Lightweight
compute
threads

IPC w/ no-op IPC w/ sysreq Slowdown

1 0.298 0.291 -1.64%
2 0.371 0.350 -5.59%
5 0.470 0.463 1.14%
10 0.727 0.730 3.84%
20 0.905 0.904 4.32%
50 0.982 0.983 4.46%
100 0.993 0.998 4.46%

The measurements show that page fault handling and signal
delivery is significantly more expensive on all platforms
than simple syscalls. We attribute this to the additional work
required to check the page tables in memory for the missing
entries and prepare the signal handler in software. In OS
X (Darwin), it is expected that the overheads are relatively
higher since Unix signaling is emulated on top of Mach.

To evaluate how much overhead signal routing imparts
on normal pipeline processing for compute code, we ran
another micro-benchmark that interleaves compute code
and signal-generating code on the same core. The compute
algorithm used is a Mandelbrot set approximation. This
algorithm is computation-heavy (few memory operations),
and thus keeps the pipeline busy most of the time. We
parallelize it with one lightweight thread per row or block
in the complex plane. The micro-benchmark then interleaves
the compute threads with a “pertuber” thread on the same
core. This thread either runs only no-op instructions, or only
sysreq instructions, in a loop. When running sysreq, a
handler on a different core simply resumes execution of the
perturber thread. We measure instructions per cycle (IPC),
which we take as representative of hardware utilization,
and the relative slowdown on total execution time of the
computation with a sysreq perturber relative to execution
time without any perturber. The results are reported in
table 3. Since our substrate architecture is single-issue, the
maximum possible IPC is 1. This is approximated when
more threads interleave in the pipeline while some are
waiting on the FPU. Also, since there is no branch predictor,
only one instruction from the perturber is present in the
pipeline at any time and the maximum IPC imputable to the
pertubator thread is 0.125 (for every 8 instructions at IPC
= 1, only 1 can come from the pertuber). What the results
show is that when there are only 1 or 2 compute threads
running, the addition of a perturber thread actually slightly
improves performance (up to 5.59%). This is because the extra
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Table 2
In-process page fault delivery time.

Operating system Processor Freq (MHz) Avg (ns) Min (ns) Max (ns) Prec. (ns) Avg (cc) Min (cc) Max (cc) Prec. (cc)
OS X 10.6 64-bit Intel Core2 Duo P8600 2400 12850.0 11801.3 2856101.3 15.00 30840.0 28323.0 6854643.0 36.0
Linux 3.4.104 32-bit Exynos5420 ARMv7l 1900 7945.5 6625.0 608583.0 1375.00 15096.5 12587.5 1156307.7 2612.5
Linux 3.6.11 32-bit BCM2708 ARMv6l 700 7450.3 5997.7 3254003.8 998.40 5215.2 4198.4 2277802.7 698.9
Linux 3.2.64 32-bit Intel P4 2386 4194.7 4140.5 138534.1 40.23 10009.3 9880.0 330564.0 96.0
FreeBSD 10.1 64-bit Intel Atom N2800 1860 3418.8 3300.5 49861.8 15.05 6359.0 6139.0 92743.0 28.0
Linux 3.8.12 64bit AMD Opteron 6172 2100 1162.2 1144.8 75511.4 32.38 2440.6 2404.0 158574.0 68.0
Linux 3.13.0 64-bit Intel Core2 Duo E8335 2667 1086.6 1053.6 23202.1 15.00 2897.9 2810.0 61880.0 40.0
Microgrid OS on different core 1000 96.0 96.0 96.0 1.00 96.0 96.0 96.0 1.0
Microgrid OS on same core 1000 65.0 65.0 65.0 1.00 65.0 65.0 65.0 1.0

instructions from the perturber delay compute instructions
enough that their operand is ready by the time they are
issued, whereas more dataflow misses are incurred without
the perturber. When there are more compute threads, the
addition of the perturber indeed reduces performance, but
only by 4.46% max. Also, the IPC is higher with a sysreq
perturber than with no-ops because sysreq removes the
perturber from the schedule queue until it is resumed re-
motely, so it executes fewer instructions overall.

We also ran an equivalent benchmark using memory-
intensive compute threads, running an FFT. The results
are equivalent to the previous case and are thus omitted
here. However, we also ran a variant that executes the
handler thread for sysreq on the same core. Here, the perfor-
mance was reduced by approximately 8% for the compute-
intensive workload, and 14% for the memory-intensive
workload at maximum number of lightweight threads (32).
The reason why the memory-intensive workload is more
impacted is that the extra memory activity caused by the
handler thread in both I-cache and D-cache reduces locality
in the computation.

To summarize, the routing of software-defined signals
has negligible overhead on performance, and out-of-core
signal handling marries very well with hardware multi-
threading to preserve cache locality and reduce performance
jitter on unrelated threads.

6 RELATED AND PREVIOUS WORK

The idea to leverage an inter-processor network in a Unix-
like operating system is not new. Perhaps the closest relative
to our proposal, also a direct inspiration for our work, is the
CM-5 Connection Machine [30], [31]: this supercomputer
consisted of 32 to thousands of SPARC processors, each
equipped with some local memory and connected via three
separate, high-speed packet-switched networks for data,
control and diagnostics [32]. Like our proposed CN, the CM-
5 control network could also only be used by the operating
system. The control network was organized as a binary fat
tree that could be split in sub-trees to partition the system. In
each partition one control processor would run the full Unix
kernel (CMOST) and serve as partition manager, while other
processors in the partition only ran a simple microkernel.
The overlap between the CM-5 and our proposal is that
the CM-5 can be said to implement AM3, although it also
implements traditional interrupt-driven syscalls and time
sharing on each processor (since each node was a fully
fledged SPARC). The insight here is that the interrupt han-
dling circuits on the CM-5 processors could be dropped and

the whole supercomputer could still run Unix as described
in the present article. Also, the CM-5 could only provide
isolation using a binary partition of the tree, whereas our
model supports arbitrary partitions.

In more recent work, two OS research projects have
embraced the many-core revolution from a different angle:
MIT’s fos [33] and ETH/Microsoft’s Barrelfish [34]. Both fos
and Barrelfish exist in the same research domain: explor-
ing new OS design directions to leverage many-core chip
resources more safely, robustly and efficiently. The focus of
Barrelfish lies on managing on-chip resource heterogeneity,
whereas fos focuses on scalability (with Clouds of many-
cores as envisioned target platform). Like in our model, both
embraces platform parallelism and are designed from the
ground up to try and run application and OS code on dif-
ferent cores. Interactions between application components
and with OS code is also done via message passing. Shared
memory can be exploited if available in the architecture but
is not required by the OS to function. However, the known
implementations of fos and Barrelfish still target current
commodity processors and thus emulate message passing
using shared memory, instead of exploiting on-chip NoCs
directly. Moreover, both projects are the output of research
in OS design, and C/POSIX compatibility does not appear
to be a strong requirement—it is envisioned as a userspace
compatibility layer in Barrelfish, and not discussed at all in
fos literature.

A more direct competitor to our proposal has emerged
in recent GPGPU accelerator offerings from NVidia. From
what is visible in the CUDA specifications [35], NVidia’s
devices do not yet support sufficient functionality regard-
ing privilege separation and remote scheduling control to
enable running arbitrary Unix threads on the GPGPU de-
vice. However, NVidia’s recent products and latest CUDA
releases allow “kernel” code running on the many-core ac-
celerator to perform calls to C library functions like printf,
and the effects thereof are written to a local memory which
can be retrieved asynchronously by the host processor to
present the kernel’s output. The CUDA documentation still
explicits that only a limited subset of the C library is
available to kernel code in this way, and to our knowledge
CUDA platforms do not yet offer a generalized mechanism
to invoke system services from the GPU cores.

7 DISCUSSION AND FUTURE WORK

Two questions were raised by our community while work-
ing on this article. The first is is whether our focus on
C/POSIX is perhaps too dismissive of recent results in OS
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research. The second is how we intend to sell our work to
the main industry players like Intel, ARM or NVidia. We
answer these in sections 7.1 and 7.2. We then outline in
section 7.3 a few additional findings that resulted from our
proof-of-concept, providing directions for future work.

7.1 Is AM3 specific to Unix?
The original motivation for this work was to evaluate em-
pirically the claims to generality that had been made in
previous Microgrid-related literature. With our background
in architecture and systems programming from the POSIX
perspective, “generality” could only mean “runs Unix”,
but the Microgrid was disappointingly lacking in this re-
gard. The work described in this article initially resulted
from “scratching the hacker’s itch”, i.e. seeking the highly-
regarded, often sought-after thrill of first booting a Unix
shell on a new platform. Our work is, in a way, a reminder
of the symbiotic relationship between Unix OS developers
and processor architects, with the regularly renewed interest
of one side to support the work of the other side acting as
long-term stabilizing factor for research in both architecture
and OS design. However, many processor architects’ heads
are now being scratched to reconcile the need for more on-
chip parallelism with legacy software compatibility. This is
a new challenge, and AM3 provides a way to smoothly drop
some requirements from architectures without losing Unix,
and thus preserve the beneficial symbiosis, while gaining
NoC awareness as a new feature.

Yet we could consider AM3 without considering Unix
compatibility at all. After all, AM3 is merely a hard-
ware/software interface that optimizes the practical imple-
mentation of any software stack built around the Actor [36],
[37], CSP [38] or π-calculus [39], [40] abstractions. An AM3-
compatible platform could, for example, be used as a direct
hardware implementation of the Actor-based Erlang [41]
virtual machine. This would not need Unix abstractions
since an Erlang applications usually is, in practice, the sole
occupant of its underlying hardware platform. Similarly,
AM3 could be directly used as a lightweight back-end for
SAC [42], Chapel [43] or X10 [44] without changes to the
existing language semantics, providing access to many-core
accelerators to existing HPC code. Although our own work
was limited so far to porting FreeBSD [45] to the Microgrid,
we are in contact with multiple researchers in parallel pro-
gramming language design who have expressed interest in
our approach and helped generalize the AM3 abstractions.

7.2 Incentives in the current architectural landscape
AM3 could mean different things to, say, Intel and NVidia.
We summarize this in fig. 10. For people with a background
where many-cores result from putting multiple single cores
together, with compatibility with legacy code as a chief
concern, AM3 provides a route to reduce the complexity
per core, and thus increase core counts on chip and energy
efficiency, without losing the software compatibility, and
adding better support for on-chip networks. For those hop-
ing many-cores will be the key to continued performance
increases, AM3 greatly extends the programming model
and provides immediate compatibility with most legacy
software, at limited costs in per-core chip area and overall
performance.

Figure 10. Incentives for current many-core providers.

7.3 Ancillary discoveries and future work

While contemplating the conclusions of section 5.4, namely
that running system functions on the same core as compute
code can reduce cache locality, we started searching for
other applications of this result. Our own background in
programming language design and implementation led us
to three direct beneficiaries: asynchronous I/O, memory
managers (MMs: allocators and garbage collectors), and
functional reactive programming (FRP).

Asynchronous I/O is perhaps the most trivial applica-
tion, since a VP can emit a request to another VP via the SN
and continue to run asynchronously. Although not yet avail-
able in our proof-of-concept implementation, a “sysreq.a”
instruction could send a syscall request but leave the VP
running. This could then be used in C compilers to optimize
multiple successive calls to memcpy to run them in parallel.

Userspace MMs are interesting because they have his-
torically been already extremely well encapsulated as a
request-response API: application code places a request for
memory, and the manager responds with a pointer or a fail-
ure signal; there is no state shared between application code
and MMs other than the managed memory areas. Thanks to
this, we were able to segregate MM code in our ported C
library to run on a dedicated core, receiving requests via
sysreq from all VPs in the local L2 cache cluster. This
enabled measurable reductions of cache misses on the MM
data structures in our benchmarks. As an unexpected bene-
fit, running the MM on a separate core enabled us to trace
the MM code without any overhead to the client compute
code running on other cores, because the MM can deliver
its results asynchronously to a client MM before emitting
its tracing event. Although we could not yet demonstrate
this, our preliminary work on GC code strongly suggests
that the overhead of stopping threads during the mark
phase becomes orders of magnitude lower when using CM
“stop” and “start ” events, leaving the state of VPs in their
respective hardware cores untouched during the GC run.

“Functional reactive programming” [46], [47] is a soft-
ware pattern to structure applications as functional equa-
tions of behavior over time and event variables. The attrac-
tiveness of this pattern comes from the rich compositionality
and brevity of FRP programs. A salient feature of FRP is
that the programs are expressed as a finitely sized dataflow
graphs. By mapping each FRP behavioral equation to an
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AM3 VP that can listen on the SN, and assigning each FRP
signal to an SN channel, we could run an entire FRP task
network in parallel, using the SN as synchronization and
scheduling substrate, with no model simulation overhead.
Future work could thus consider extending functional lan-
guages to use AM3 as FRP accelerators with limited effort.
This opportunity extends, in principle, to any dataflow-like
programming model, although the stateless nature of FRP
equations and relative rigidity of the typical FRP task graph
makes the mapping particularly seamless.

8 CONCLUSIONS

Providers of new computer architectures regularly try
to introduce new programming models, e.g. recently
CUDA/OpenCL for GPGPUs, and displace C/POSIX as the
control interface to platform parallelism. However this is
unlikely to succeed. For one, the I/O hardware market has
created a reinforcement loop: OS and language support are
written around C/POSIX, so new drivers needs to be com-
patible with C/POSIX, but drivers are expensive to change
so they are long-lived, so new OS and language versions
remain compatible with C/POSIX, etc. Second, because the
stacking of multiple programming models to manage paral-
lelism (C/POSIX for “host” code, custom for “accelerator”
code) creates extra system complexity, e.g. to control sharing
of an accelerator between multiple processes, which in turn
drives down system performance and/or energy efficiency.
If a single interface is desirable, and if we are stuck with
C/POSIX by external factors, we may as well try and adapt
C/POSIX instead to effectively embrace many-cores.

This article presents the results of a step in this direction,
performed while exploring how to leverage architectural
features found in contemporary many-core architectures
to accelerate the process-system interface in the C/POSIX
machine and programming models.

Our first contribution is a general analysis of how the
machine model underlying C/POSIX operating systems can
be revisited to take advantage of networks-on-chip and
platform parallelism. The result is a new abstract many-
core machine model, AM3, which features two inter-core
networks but no interrupts, and which is rich enough to
support C/POSIX.

Our second contribution is a a proof-of-concept imple-
mentation of our proposal. Our proof-of-concept is based on
an existing research-grade many-core architecture originally
designed to maximize performance and energy efficiency
but without direct support for C/POSIX; we were able to
add support for C/POSIX in that platform using our model
with only minimal architectural changes; the overhead of
calls to OS functions from application code then becomes
multiple orders of magnitude smaller than in contemporary
architectures.

The third contribution of this article is a discussion of
the indirect benefits of this approach. Beyond the reduction
in hardware complexity made possibly by dropping the
traditional circuits in charge of privilege separation and
context switching, which would in turn drive down per-
chip manufacturing costs and energy efficiency, the execu-
tion of system tasks in different hardware threads or even
cores enables higher utilization of the core pipeline and

thus higher overall performance. When system tasks are
split in different cores, memory locality is improved and
cache hit rates increase, also contributing to performance
and efficiency improvements. As an indirect benefit, using
native hardware support for system messaging enables sim-
pler run-time systems for parallel programming languages,
which may in turn enable new programming languages or
programming models for emerging many-cores.
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