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Stéphane Pelletier and Jeremy R. Cooperstock
Department of Electrical and Computer Engineering

McGill University
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Abstract

Temporal superresolution produces a video sequence of high temporal
resolution (HTR), i.e. frame rate, from a set of video sequences of low tem-
poral resolution (LTR). A method for preconditioning large systems of linear
equations arising in temporal video superresolution problems is presented.
We show that circulant block preconditioners can accelerate the convergence
of iterative techniques such as the conjugate gradient method when solving
such problems. Simulations demonstrate the effectiveness of our approach.

1 Introduction
Computational perception systems often rely on image sensors in order to obtain infor-
mation about the surrounding environment. In such applications, high-resolution images
are desired and often required. Image resolution depends on the physical characteristics
of the imaging device, such as the number of photosensitive elements and the quality of
the optics. Increasing resolution by using a better camera can be costly and sometimes
infeasible. One possible solution employs image processing techniques such as superres-
olution [10][3] in order to overcome the limitations of the imaging devices. This solution,
which may cost less than replacing the camera, also has the advantage of allowing the
reutilisation of existing low-resolution cameras.

Most superresolution problems boil down to solving a large system of linear equa-
tions whose number of unknowns is the number of pixels in the desired high-resolution
image or video sequence. Since the coefficient matrix associated with the system is gen-
erally sparse and structured, the problem can be solved using iterative techniques such as
steepest descent or conjugate gradients [11]. Such iterative methods often benefit from
performance improvements due to preconditioning, which transforms a system into an-
other having the same solution, but that can be solved either more accurately or faster
[7].

This paper presents a method for preconditioning systems of linear equations asso-
ciated with video frame rate improvement problems, which can be assimilated to super-
resolution in the time domain. First, a brief description of superresolution and relevant
preconditioning techniques is provided in Section 2. Next, our image formation model



and the particular problem we are tackling are described in Section 3. Our precondition-
ing method is then explained in Section 4, followed by a summary of experimental results
in Section 5.

2 Background

2.1 Spatial and temporal video superresolution
Superresolution techniques produce high-resolution images from a set of degraded and
aliased low-resolution images by exploiting knowledge of the relative subpixel displace-
ments of each low-resolution image with respect to a reference frame. These displace-
ments provide different views of the same scene, which in turn provide complementary
information that can be used to reconstruct images of better resolution. Subpixel displace-
ments between the observed images can be the result of uncontrolled motion in a scene
captured using a static camera, e.g., surveillance camera, or they can be due to controlled
motion of the camera, e.g., terrestrial images captured from a satellite. When the dis-
placements are unknown, they can be measured using image registration or motion flow
techniques (see survey by Brown [4] for a comprehensive review).

Recently, Shechtman et al [12] introduced the concept of spatio-temporal superreso-
lution, whose objective is to increase the resolution of video sequences in both the spatial
and temporal domains. In addition to requiring spatial subpixel displacements between
the observed images, space-time superresolution also relies on the presence of temporal
subframe displacements between frames, as shown in Figure 1. The observed dynamic
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Figure 1: Displacements in space and time between video sequences are necessary for
space-time superresolution.

scene is modeled as a space-time volume where each point has its own light intensity. An
observed pixel is the result of an integration process over a subregion of this volume. In
this figure, boxes having the same color represent the support of the space-time volumes
associated to a same physical pixel in different frames. Using frames from temporally
overlapping sources allows for the synthesis of a video sequence of higher temporal res-
olution, i.e, higher frame rate.

2.2 Preconditioning
Preconditioning can be very effective for accelerating the convergence of large linear
systems of the form Ax = b. The idea is to find a non-singular matrix M whose inverse



can be computed quickly and such that M−1Ax = M−1b is well-conditioned. Many image
reconstruction problems such as image deblurring involve matrices whose structures can
be well approximated by circulant matrices, which in turn are easily inverted using the
fast Fourier transform (FFT) [6].

Even though matrices associated with spatial superresolution problems do not have
the required structure, Nguyen et al [9] showed that by reordering the columns of the
coefficient matrix, i.e. the pixels of the desired high-resolution image, it is possible to
transform the original matrix into a block matrix whose blocks can be approximated effi-
ciently by such preconditioners. In the following sections, we show that it is also possible
to apply circulant preconditioners to temporal superresolution problems by properly re-
ordering the frames of the desired high temporal resolution video sequence.

3 Problem formulation

3.1 Image formation model
The problem involves synthesizing a video sequence of high temporal resolution (HTR)
from a set of r video sequences of low temporal resolution (LTR), with a desired frame-
rate improvement factor of l. We model each LTR video sequence as a noisy, tempo-
rally downsampled version of the HTR video sequence that has been blurred and shifted
in time. Figure 2 illustrates our discrete approximation of the image formation model.
Similar to the work of Shechtman et al, the space-time volume representing the dynamic
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Figure 2: Image formation model in the discrete domain. Each LTR pixel (darker box) is
a weighted average of several HTR pixels (smaller boxes).

scene is partitioned into smaller blocks, each one corresponding to a HTR pixel. Each
slice of blocks in the xy plane corresponds to a HTR frame, and its length along the time
axis gives its exposure. The value of a LTR pixel is a weighted combination of several
HTR pixels values in a region (darker box) whose coordinates are determined by the
space-time location sensed by the LTR pixel. This information, which depends on cam-
era parameters such as its point-spread function (PSF), exposure time and position, can
be obtained using video sequence alignment methods [5]. Note that the volumes corre-
sponding to different LTR pixels from the same video sequence can overlap in space, but
not in time. Whereas spatial overlapping might be due to a camera that is out of focus or
simply to blur induced by the imaging system, temporal overlapping is impossible, unless
a single image sensor can capture multiple frames simultaneously.

A LTR video sequence is the result of a spatial and temporal blurring process applied



to the HTR video sequence followed by a downsampling process along the time axis only.
Spatial blur is caused by the spatial PSF of each camera, whereas temporal blur is due to
the exposure period. In the following, we assume that

1. the PSF of each camera is invariant in space and in time,

2. the positions and orientations of the cameras do not change over time,

3. there is no 3D parallax effect (camera centers are close to one another with respect
to the distance to the scene),

4. all LTR sequences have the same frame rate, but can have different exposures.

3.2 Mathematical model
Let x1, x2, . . . , xp be p column vectors, each representing a frame of the HTR video
sequence whose pixels are stored in lexicographic order [14]. The unknown HTR video
sequence x can then be represented in vector form as

x =
[
xT

1 , xT
2 , . . . , xT

p
]T

. (1)

Similarly, if y(i, j) denotes the jth frame of the ith observed LTR video sequence yi, the
latter can be represented as

yi =
[
yT

(i, 1), yT
(i, 2), . . . , yT

(i, q)

]T
(2)

where we assume for simplicity that the number of frames q is the same for all LTR
sequences. The LTR video sequences can be combined into a single vector

y =
[
yT

1 , yT
2 , . . . , yT

r
]T

. (3)

Thus, all observed pixel values are represented in y. Using the previous equations, the
relationship between the observed LTR frames and the unknown HTR frames can be
expressed by

y = Hx+η (4)

where H is a matrix representing the relationship between all LTR frames and the HTR
frames and η is a vector representing additive noise.

Let Bi be a matrix representing the spatial PSF associated with the ith camera. The
LTR frame y(i, j) is then expressed as:

y(i, j) =
p

∑
k=1

ω(i, j, k) Bi xk (5)

where ω(i, j, k) is a scalar indicating the contribution of the HTR frame xk in y(i, j). Since
only a few HTR pixels actually contribute to any particular LTR pixel, the matrix H is
generally sparse and structured. For example, if p = 9, r = 2, q = 3 and l = 3, equation 4



might be expanded as



y(1, 1)
y(1, 2)
y(1, 3)
y(2, 1)
y(2, 2)
y(2, 3)

 =


B1 B1 0 0 0 0 0 0 0
0 0 0 B1 B1 0 0 0 0
0 0 0 0 0 0 B1 B1 0
0 B2 B2 B2 0 0 0 0 0
0 0 0 0 B2 B2 B2 0 0
0 0 0 0 0 0 0 0 0





x1
x2
x3
x4
x5
x6
x7
x8
x9


+η (6)

When there is an insufficient number of observations, the system of equations 4 will be
ill-conditioned [1]. Therefore, we reformulate the problem as that of finding the minimum
norm solution to the least squares problem

min
x

α(y−Hx)T (y−Hx)+xT x. (7)

The solution to this under-constrained problem is

x = HT (HHT +λ I)−1y, λ =
1
α

(8)

where λ is the regularization parameter. Increasing λ makes the system better condi-
tioned, but also more different from the original one.

4 Preconditioning approach
We solve the temporal superresolution problem using the conjugate gradients (CG) al-
gorithm, which is an iterative technique for solving systems whose coefficient matrix is
Hermitian and positive-definite [8]. One advantage of iterative methods such as the CG
algorithm is that one does not need to form the matrix H explicitly. That is, it is only nec-
essary to be able to compute the effect of applying H to a vector. The convergence of CG
depends on the distribution of the eigenvalues of the coefficient matrix [2]; the method
converges rapidly when the system is well-conditioned or when its spectrum is clustered
around one. Consequently, a good preconditioner should attempt to achieve these criteria
in order to improve the performance of CG.

The structure of H can be used to develop a preconditioner. To make it more obvious,
the frames of x and the columns of H are reordered. Let D(k)

(i, j) be a linear operator that
downsamples an image sequence x of length k by taking every ith frame, starting with the
jth frame. For example,

D(9)
(3, 2)

[
xT

1 , xT
2 , xT

3 , xT
4 , xT

5 , xT
6 , xT

7 , xT
8 , xT

9
]T =

[
xT

2 , xT
5 , xT

8
]T

. (9)

Then, the desired reordering for our problem is

xR =
[

(D(p)
(l, 1)x)T (D(p)

(l, 2)x)T . . . (D(p)
(l, p/l)x)T

]T
. (10)



In order not to modify the solution to the system of equations, the columns of matrix H
must also be reordered in the same way as the elements of x. For example, when applying
the previous reordering to equation 6, one gets



y(1, 1)
y(1, 2)
y(1, 3)
y(2, 1)
y(2, 2)
y(2, 3)

 =


B1 0 0 B1 0 0 0 0 0
0 B1 0 0 B1 0 0 0 0
0 0 B1 0 0 B1 0 0 0
0 B2 0 B2 0 0 B2 0 0
0 0 B2 0 B2 0 0 B2 0
0 0 0 0 0 0 0 0 0





x1
x4
x7
x2
x5
x8
x3
x6
x9


+η (11)

We note the similarity between our method and that of Nguyen et al. In their case, they
reorder the pixels of the high-resolution image, whereas we reorder the frames of the LTR
sequences. The reordered matrix HR has the following form:

HR =


H11 H12 . . . H1l
H21 H22 . . . H2l

...
...

. . .
...

Hr1 Hr2 . . . Hrl

 (12)

where Hi j is a block Toeplitz matrix whose blocks are either Bi or the zero matrix. For
instance, in the case of equation 11, we have

H21 =

 0 B2 0
0 0 B2
0 0 0

 and H12 =

 B1 0 0
0 B1 0
0 0 B1

 . (13)

Since the PSFs of all cameras are assumed to be spatially invariant, every block Bi is
almost Toeplitz; that is, all elements along a diagonal of Bi have the same value, except
for a few elements, whose values are equal to zero due to the fact that the discrete PSFs
have finite dimensions. Moreover, by our assumption that the PSF functions do not change
over time, corresponding diagonals from different blocks along a block diagonal within
Hi j are aligned. For example, the repetition of matrix B1 in H12 represents such a block
diagonal. We approximate each matrix Hi j by Ti j, where Ti j is the Toeplitz matrix obtained
by properly filling the holes, i.e. elements whose values are zero, along the diagonals of
Hi j. This results in the following approximation for HR:

HR ≈


T11 T12 . . . T1l
T21 T22 . . . T2l

...
...

. . .
...

Tr1 Tr2 . . . Trl

 . (14)

Toeplitz matrices can be preconditioned by Strang’s circulant preconditioner [13]. This is
formed by copying the central diagonals of a Toeplitz matrix and wrapping them around



to complete the circulant requirement, as illustrated in the following example:
a b c 0 0 0
0 a b c 0 0
0 0 a b c 0
0 0 0 a b c
0 0 0 0 a b
0 0 0 0 0 a

⇒


a b c 0 0 0
0 a b c 0 0
0 0 a b c 0
0 0 0 a b c
c 0 0 0 a b
b c 0 0 0 a

 . (15)

The advantage of a circulant preconditioner C is that it is unitary similar to a diagonal
matrix through the Fourier transform, namely

C = FHDF (16)

where F is the Fourier transform, D is a diagonal matrix containing the eigenvalues of
C and H is the conjugate transpose operator. The eigenvalues of C are computed easily
by taking the Fourier transform of its first column, and thus, circulant matrices can be
inverted efficiently using two FFT operations. Based on equations 14 and 16, we define
our preconditioner M as

M =


FH 0 . . . 0
0 FH . . . 0
...

...
. . .

...
0 0 . . . FH




D11 D12 . . . D1l
D21 D22 . . . D2l

...
...

. . .
...

Dr1 Dr2 . . . Drl




F 0 . . . 0
0 F . . . 0
...

...
. . .

...
0 0 . . . F

 . (17)

where Di j is the diagonal matrix corresponding to Ti j through its circulant approximation.
Since M can be expressed as a block matrix whose blocks are diagonal matrices, it can be
inverted easily using FFTs.

5 Experiments
To verify the validity of our preconditioning approach, we begin with an idealized HTR
video sequence of forty 64x64 pixel frames, hereafter called the reference sequence. This
is blurred with a kernel whose support along the time axis corresponds to four HTR
frames. Next, we downsample the blurred result using different time offsets to produce
four LTR video sequences, simulating the capture of a dynamic scene using four unsyn-
chronized cameras, as illustrated in Figure 3. For comparison purposes, a frame from the
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Figure 3: The exposure periods of the four LTR cameras overlap in time.

reference sequence and its corresponding frame in one of the LTR sequences are shown



Reference frame Observed LTR frame

Figure 4: A reference frame and an observed LTR frame.

in Figure 4. The longer exposure period of the (simulated) LTR cameras produces frames
that are more sensitive to motion blur. We then synthesized a video sequence of higher
frame rate using the method of conjugate gradients applied to the four LTR video se-
quences. The regularization parameter λ was chosen manually and set to 0.001. The
reconstructed video sequence was then compared against the reference sequence. Figure
5 shows the results obtained after five iterations both with and without preconditioning.
For space reasons, only three frames are shown for each sequence. As can be seen, the
preconditioned algorithm produces frames of higher quality for the same number of itera-
tions. Figure 6 illustrates the convergence, as indicated by the sum of squared error (SSE)
between the reconstructed and original sequences for these two cases. In this example,
five iterations were sufficient for the preconditioned algorithm to converge to the solu-
tion, whereas the unpreconditioned algorithm required approximately twenty iterations.
Thus, circulant preconditioners are clearly useful for improving performance of iterative
methods when solving temporal video superresolution problems.

6 Conclusion
In this paper, we presented a method for preconditioning large systems of linear equa-
tions associated with temporal video superresolution problems. Nguyen et al previously
showed that circulant preconditioners can be adapted to the spatial superresolution prob-
lem by reordering the pixels of the desired high-resolution image. We extend their result
to demonstrate that such preconditioners can also be used in temporal superresolution
problems by properly reordering the frames of the desired high temporal resolution video
sequence.
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Figure 5: Qualitative comparison between the results obtained with and without precon-
ditioning after 5 iterations, using λ = 0.001.
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