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Abstract System coordination is recently facing new challenges: at the
application level, the Cloud and Big Data era has pushed functional
specifications to a new level of complexity, where responsibility is spread
across multiple independent organizations. At the platform level, par-
allelism at multiple scales, heterogeneous performance and functional
units, thermal and energy budgets and more frequent faults have also
brought global-scale deployment and scheduling to a new level of com-
plexity beyond the understanding of the most seasoned system experts.
In this article, we propose to equip compositional specification, such as
traditionally advertised in functional languages, with extra-functional
semantics appropriate for coordination, as a promising approach to har-
ness the staggering complexity of large systems. This approach estab-
lishes a bridge between the functional programming and systems com-
munity: from the functional world, using the power of compositional se-
mantics for inductive reasoning and programming, and from the systems
world, resource awareness and in particular budget constraints. We ap-
ply our approach to the coordination language S-Net, yielding its next
incarnation, S+Net. Its extra-functional combinators include feedback
loops from the execution environment, composable granularity parame-
terization, composable energy, latency, throughput and storage budgets
constraints, composable isolation specifications, and composable scop-
ing of activities and state onto hardware resources. We also illustrate
their impact on relevant industrial applications.

Keywords. system coordination, parallel computing, green computing,
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Introduction

Engineering large applications to run efficiently on a variety of computing systems
presents major challenges, in particular outside the domain of trivially scalable or
regular numerical applications. Today’s small-scale homogeneous multi-core pro-
cessors already challenge conventional software engineering tools and techniques;
novel approaches are urgently necessary to make software run efficiently, utilizing
productively and simultaneously massive numbers of heterogeneous resources on
chip, and networks thereof in datacenters.



The traditional challenge of coordination is to bring together functional com-
ponents provided by different governance bodies into a single application. To
overcome this challenge, coordination requires both mechanisms to translate an
application specification into run-time “coordination glue” that actually connects
the components together, and proper software interfaces between components to
enable data exchanges. This challenge is well-understood and has been thoroughly
investigated already. The most successful coordination framework to-date is prob-
ably the variety of Unix-like platforms, where individual program-component-
processes are connected together in arbitrary ways via a common file system,
pipes and network sockets. Within this framework, multitudes of scripting and
integration languages now exist to group components into larger applications.

Since the turn of the century, coordination is facing a new challenge: the
increasing pressure of limited thermal/energy budgets and the increasing com-
plexity of parallel hardware. Until then, the main spectrum of extra-functional
behavior that was visible to coordination was the static trade-off between special-
ization (faster code, slower to compile) and generality (slower code, faster to com-
pile). Performance could be defined by plugging the speed of uniprocessors into
the algorithmic complexity equations of programs; with well-balanced systems [2]
throughput was merely a factor of how many processes were sharing the processor
simultaneously. Whether a program was compute-bound or network-bound was
a static co-property of an algorithm implementation and the platform on which
it was run. In other words, extra-functional behavior of programs was visible to
coordination (in the observable behavior of programs) but there was not much to
manage at run-time. This has now changed.

The first factor is the growing interest to manage energy consumption, by
balancing cost against extra-functional requirements like latency or throughput.
Thanks to frequency scaling, it is possible to choose to run a processor slower
and save energy, at a larger latency budget. With multiple cores, throughput can
be preserved while saving energy and increasing latency thanks to the quadratic
factor between power consumption and frequency. Newer processor integrate fine-
grained power modes whereby a portion of a chip can be turned off and back
on in a short delay for yet more dramatic energy savings, at the expense of
additional jitter. The decision of which budget parameters to adapt at run-time is
essentially extra-functional, under the realm of coordination where the high-level
requirements of entire applications are known.

The second factor is the renewed popularity of parallel hardware, which in-
troduces resource heterogeneity in platforms that must then be managed. The
presence of hardware accelerators, from integrated SIMD units in processor cores
to many-core GPUs, introduces a new trade-off between throughput and set-up
costs and contention, since sharing these resources between components is still
problematic. Multi-core chips and Multi-Processor Systems-on-Chip may both
propose few large cores optimized for sequential performance at higher energy
demands and multiple, low-power smaller cores.

Next to this hardware heterogeneity, there exists also extra-functional het-
erogeneity in the abstract resources created by the virtualization of parallel hard-
ware in operating systems. Shared data structures in memory were perceived as a
necessary source of contention, until the advent of software-transactional memory



(STM) revealed there exists a trade-off between speculation (higher throughput
overall, less jitter but potentially higher latency under contention) and locking
(lower throughput, more jitter but predictable latency under contention). The
exploitation of multi-core parallelism or memory parallelism by software is also a
factor of how much the concurrency revealed in programs is exploited at run-time,
and how well the application communication patterns maps to the hardware’s
topology.

While the large diversity of these choices may seem overwhelming, we high-
light that most of them can be expressed as a trade-off between latency, through-
put, jitter, static implementation costs and run-time costs (energy, real estate
on chip). We have chosen these aspects after observing that the large diversity
of applications deployed in data centers today are controlled by their operators
by balancing the energy and real estate budgets against their development costs,
income and latency/throughput/jitter requirements.

Yet there are only few coordination systems in use today that are able to pa-
rameterize high-level application specifications by such extra-functional require-
ments. We have found that Google’s App Engine and Amazon’s Elastic Compute
Cloud (EC2), for example, enable developers to control the trade-off between bud-
get and latency/throughput by automatically duplicating or eliminating server
instances or request caches. EC2 also enables control of the trade-off between
reliability and cost. However, neither of these services, nor most programming
languages in use in production, enable control over the trade-offs related to hard-
ware heterogeneity and the various strategies to exploit on-chip parallelism in
software. Meanwhile, the hope that there could exist general methods to automat-
ically transform a program to its best form for a given hardware model and extra-
functional objective, born in the 1960’s with the advent of functional languages,
has been largely curtailed by theoretical results that show such transformations
are essentially limited [10]. Therefore, human intervention will be required for
the foreseeable future, requiring a simple intuition of the relationship between
specification and observed behavior of programs in complex environments.

The challenge, it seems to us, is that both computer engineering and theo-
retical computing science1 still struggle to extend the relationship between extra-
functional human expectations and application specifications. Since the tradi-
tional sequential computer model, where extra-functional behavior was primarily
defined by adapting algorithmic complexity to processing rates in hardware (steps
or network packets by second), few steps have been made in specification systems
to account for both the reality of hardware diversity, resource budgets, and the
availability of multiple methods to manage platforms, at run-time.

We thus propose to advance the discussion by introducing compositional, in-
ductive extra-functional semantics for coordination systems. Our key observation
is that while compositionality and induction is mostly used to define functional
semantics in traditional programming languages, i.e. how components are linked

1To the exception of embedded system design, where the relative simplicity of applications has
enabled the development of powerful models over the last twenty years, for example synchronous
dataflow (SDF) networks or Kahn process networks (KPN), which now have well-understood
extra-functional trade-offs. However, the models developed for embedded systems do not yet
account for the diversity or generality of applications found at a larger scale.



together to compute valid output data from the systems’ input, compositionality
and induction can also be applied to extra-functional behavior such as resource
budgets and performance constraints.

To demonstrate this, we proceed as follows.
We first delineate in section 1 our assumption, namely the desirability of

component-based design and coordination. We highlight the need to distinguish
between component specifications and inductively defined run-time instances, and
we show in particular in section 2 how inductive coordination can be used for both
functional and extra-functional purposes. Our interest in component instances
and inductive coordination really stems from the general need for software that
adapts automatically and dynamically to resource availability in the environment,
which we explain in section 3. In this context, we then formulate in section 4 two
general requirements on the design of coordination languages. We also highlight
that while extra-functional specifications are often expressed “by contract” by
designers (e.g. “guaranteed maximum latency”), contract predicates on behavior
are not always automatically implementable as they depend on dynamic resources
availability.

With this understanding in mind, we are able to propose in section 5 a com-
positional coordination tool box in the form of compositing operators with orthog-
onal functional and extra-functional semantics. We present our tool box within
the context of S+Net, a coordination language for streaming networks, but we
also highlight it should be reusable in other coordination technologies as well. We
subsequently illustrate its impact on industrial applications in section 6.

We then review briefly in section 7 the design rationale of our contribution,
with comments about its (future) applicability. An overview of our argument and
contributions concludes in section 8.

1. Context: component-based design and coordination

We place our contribution in the context of applications and systems designed
using software components and assemblies thereof.

The word “component” is both versatile and usually well-understood. For the
present article, we reuse the definition from [7], itself extended from [1]: compo-
nents are defined by their interface, which specifies how they can be used in appli-
cations, and one or more implementations which define their actual behavior. The
two general principles of component-based design are then phrased as follows. The
first is interface-based integration: when a designer uses a component for an ap-
plication, he agrees to only assume what is guaranteed from the interface, so that
another implementation can be substituted if needed without changing the rest
of the application. The second is reusability : once a component is implemented, a
designer can reuse the component in multiple applications without changing the
component itself.

Component-based design is embedded in different programming paradigms
using different abstractions. For example, in object-oriented languages, classes
define components: the set of methods defines the component interface, and the set
of attributes and method implementations define the component implementation.



Abstraction How interfaces are defined How implementations are defined
Classes (OOP) Method interface Method code and attributes
Functions (FP) Function signature Function code
Unix commands Manual page (list of command-

line arguments and program de-
scription)

Executable file

Network service Protocol Service implementation
Hardware Signalling specification Logic design

Table 1. How components are defined in different paradigms

In functional languages, individual functions can be seen as components: the
function signature (list of argument and return types) define its interface, whereas
the function definition (“right-hand side”) defines its implementation. The rest
of this article assumes that componentization is available without assuming a
specific programming model.

1.1. Coordination environments and languages

Beyond the basic definitions of components, component-based design relies on
compositionality : defining new aggregate or composite components built out of
sub-components. To achieve this, an application designer works in a coordina-
tion environment which provides both facilities to specify composites, i.e. a coor-
dination language, and to run these composite specifications, i.e. a coordinating
run-time system.

The distinguishing feature of coordination languages is that a programmer
can define composites using components defined “outside” of the language. As
explained in [7], a programming language can be used for coordination if it offers a
foreign interface for components defined and provided only after the coordinating
program has been written. This is possible in C/C++ with the extern keyword
or dlopen API, in Java with native method specifications, in Unix shell scripts
by adding new commands via the file system, etc.

1.2. Specifications and instances

For this article, we need a further distinction which is less commonly found in
related work: the difference between component specification and component in-
stance.

To illustrate this distinction, we can consider the perspective of a software
engineer tasked with designing a web CRM, who decides to realize the work by
combining a proxy cache, a web server, PHP and a database server. From this
engineer’s perspective, the “advertised” structure of the application is likely to
conform to fig. 1a, which highlights the logical relationship between the 4 compo-
nents the engineer has reused. In contrast, the system administrator who observes
the application at run-time may instead see the situation described in fig. 1b.
Here, contrary to the “abstract” specification in fig. 1a, the Squid proxy process
does not communicate with the Apache server directly; instead it communicates
with two worker instances spawned by the Apache server. Each worker instance
has in turn spawned its own PHP process to process its incoming requests. On
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Figure 1. Specification and instance of a web CRM.

Conceptual domain Word for blueprint Word for real-world reification
Object-oriented programming “class” “object”
Functional programming “function” “activation record”
Operating systems “program” “process”
Software builds “source code” “object code”
Instruction execution “executable code” “instruction stream”
Computer architecture “design” “implementation”
Simulation “model” “simulator”
Parsers “grammar” “parse tree”
Component-based design “specification” “instance”

Table 2. Vocabulary for models and instances

the database side, a duplication has also occurred: each time a PHP process re-
quests an ODBC connection, Oracle creates a new server process specific to that
connection. In this run-time scenario, 9 components are involved instead of 4.

In the rest of this discussion we name component specification the result
of the design work by the programmer, and component instance the real-world
representation of a specification at run-time. As the previous example shows,
each instance is indirectly “caused by” one specification, but a single specification
may “cause” multiple instances. Again, the distinction between specification and
instance is found in many shapes across computing domains; related terms are
given in table 2.

The reason why this distinction is often not needed or used is that most
systems traditionally have a one-to-one mapping between specifications and in-
stances. In the example above, in the early age of the Internet the specification
would be reified using exactly one Squid process, one Apache process, one PHP
interpreter and one Oracle process. Both the application programmer and the sys-
tem administrator could then use the same words “the Apache server” to designate
either the specification or the instance, using context to disambiguate meaning.
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Figure 2. Example application for real-time face detection

2. Component instance multiplicity

We can identify two motivations to replicate a single specification into multiple
instances at run-time, i.e. introduce instance multiplicity in applications.

The first one is parallel replication, already illustrated by fig. 1. This form of
replication is used mostly for speedup, load balancing, fault tolerance and isola-
tion (security). The result is a set of component instances that are functionally
equivalent and work side-by-side.

The other is inductive replication, which occurs when a component’s behavior
is defined by using recursively multiple component instances, either copies of
itself or instances of different specifications, but where the number of instances is
dependent on the actual input at run-time. An example can be found in the real-
time face detection system described in [9]. In this application, face detection is
implemented by a cascade of classifiers, where each classifier receives a stream of
images as input. The first classifier instance searches for faces with an inaccurate
but fast model. For each input image, if a face is recognized the instance succeeds
and the face information is emitted on the application’s output. Otherwise, a new
classifier instance is chained in series with the first, implementing a new, more
accurate but slower model. The second instance only receives images for which
the first instance has failed, but may cause further inductive instantiation of more
refined classifiers. In this example, the number of instances and the depth of the
algorithm changes dynamically, depending on the difficulty of recognizing faces
in the stream of input images.

Independently from the motivation, the result of multiplicity can be quantified
using instance arity, that is, the actual number of instances at some point in time.
In the general case, arity may be dynamically variable.

3. Component multiplicity in adaptive software

Adaptive software is software whose realization at run-time is parameterized
by environment characteristics that are only fully known during execution. In



component-based design, adaptivity is found at two levels.
At the level of individual primitive components, a component’s interface can

specify a number of “tuning knobs” in the form of behavior parameters. The “qual-
ity factor” of the JPEG compression algorithm is an example, which both influ-
ences the quality of the result and the performance of the algorithm for a given
input image.

At the level of coordination languages, the operators that combine compo-
nents together may be parameterized as well. For example, a “split” combinator
in a process network language, which takes two processes and load balances the
data received on a common input across them, may be parameterized by priorities
for each branch of the split.

Of special interest to us is parameterization of instance multiplicity when a
single component is to be replicated at run-time.

3.1. Need for arity parameterization

Regardless of the motivation, whenever multiplicity is desired it must be specified
somehow. The “simple,” almost uninteresting specification mechanism for repli-
cation is to instantiate in extenso by naming each instance, when the language
allows it. For example, the Unix shell script:

distccd --daemon -p 3632
distccd --daemon -p 3633
distccd --daemon -p 3634
distccd --daemon -p 3635

defines an application which uses the component distccd (a distributed build
server [3]) with arity 4. A reason to do so could be that distccd is not multi-
threaded and multiple instances thus provide some form of load balancing on a
multi-core machine. In practice, however, most languages allow iterative or in-
ductive specifications, for example:

for ((i=3632; i<=3635; ++i)); do
distccd --daemon -p $i

done

Which obtains the same effect at run-time. However, here the programmer
takes responsibility for choosing the arity. Were the application migrated later
to a new machine with 8 cores, maintenance would be required to adapt the
application to instantiate 8 times instead. In most cases, this situation is not
desirable and we should be instead looking for solutions where the programmer
delegates the choice of arity to the coordination environment, at run-time.

The solution commonly found is a cooperation between the coordination en-
vironment and the programmer. On the one side, the environment defines pa-
rameters that characterize the platform, with commonly agreed names but whose
values are only known at run-time. On the other side, the programmer uses these
variables in the coordination logic. In the example above, if the programmer wants
to keep the arity equal to the number of cores in every case, the following logic
can be used:



LASTCPU=‘awk ’/processor/{n=$3}END{print n}’ /proc/cpuinfo‘
for ((i=3632; i<=3632+$LASTCPU; ++i)); do

distccd --daemon -p $i
done

This example exploits the run-time environment characteristics listed, at run-
time, in the file /proc/cpuinfo (Linux).

This specific example highlights two fundamental aspects of programming for
coordination. The first is that standard mechanisms agreed upon by convention
should be provided by the environment to document the run-time platform. Were
the information not available, it would not be possible to write adaptive software.

The second aspect is more subtle but yet of tremendous and growing impor-
tance. In the example above, the specific solution that chooses to equate the in-
stance arity to the number of cores obscures the fundamental requirement of the
application: that the distcc instances exploit the available resources to balance
load and increase throughput. If this is the only application running on the plat-
form, then “number of cores” accurately models “available resources”; however, the
situation is not so clear if multiple applications share the platform side-by-side.
It is also not so clear if thermal constraints or transient faults make some cores
occasionally unavailable.

As the example illustrates, adaptive software that reacts to variable resource
availability requires a language where the programmer can “tell” the coordination
system to add or remove instances dynamically depending on external factors and
optimization goals. For this specific example, unfortunately, the common Unix
shell does not provide such facilities. We revisit this example later in section 6.

3.2. Need for topology parameterization

Adaptivity in the context of coordination also requires to parameterize the topol-
ogy between component instances, i.e. how instances are connected together and
to the rest of the application at run-time.

To illustrate this, consider the example of real-time movie denoising: a video
input (e.g. a camera) must be connected to a filter (e.g. a Gaussian convolution)
that smoothes out each frame before the stream can be further exploited. In this
application, the main component is the denoising filter, and both the input and
output is real-time movie data, i.e. a stream of image frames.

Now, consider how implementation differs depending on the platform avail-
able. When using a multi-core computer with a shared memory, the preferred
implementation may be similar to the one depicted in fig. 3a. Here, each frame in
turn is stored in a shared memory buffer, and each core runs a separate instance
of the denoising filter on a sub-region of the shared buffer identified by address,
e.g. via coordinates. As above, the arity of parallel replication is a (possibly indi-
rect) function of the hardware parallelism available, not the input images. Mean-
while, the replication of the denoising filter is accompanied by the introduction of
helper components to read each frame in the buffer, to generate a set of regions
to work on, and to barrier synchronize the work for each frame.

In contrast, consider an implementation on FPGA instead. There, the denois-
ing filter can be made much faster per pixel, but there is typically not enough
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Figure 4. Functional specification of movie denoising.

memory on the FPGA chip to hold an entire input frame at once. This suggests
the implementation depicted in fig. 3b instead, where the image is separated into
sub-block and the block data itself, not the coordinates, is streamed through a
fixed number of instances of the denoising filter.

One could possibly argue that the two scenarios fig. 3 could be seen as two
distinct application specifications, to be selected by a human operator depending
on the resources available. However, this view is not satisfactory in larger envi-
ronments where heterogeneous resources are available and the choice could be
made automatically depending on extra-functional parameters, such as desired
throughput or transient unavailability of a specialized hardware (which could be
occupied by another application for some time).

To automate this dimension of coordination, we propose to state that the
functional specification of this application is as simple as fig. 4, and that the
choice to implement as either fig. 3a or fig. 3b could be done via a parameterized
mechanism at run-time. We call this instance topology parameterization.

4. Engineering work flow and requirements of extra-functional coordination

As the examples from the last section suggest, component coordination is not
merely a matter of ensuring that composites are functionally correct, i.e. that
components are connected in the “right way” and the overall data input-output
relationship satisfies the computational definition of the application. Next to func-
tional composition, the role of coordination is to ensure an application satisfies
extra-functional requirements on the overall behavior of the application in its
run-time environment.
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In the same way that computations can be defined either in a rather “func-
tional” or “imperative” way, extra-functional coordination can be defined either by
contract or by mechanism. An example extra-functional contract for the denoising
application from fig. 4 may “run the denoise function so that its overall frame
throughput must be at least 30 per second.” An example mechanism that achieves
the same may be “run the denoise function on a 8-core, 2.4GHz processor with
2GB of RAM and a 100MB/s bidirectional I/O link to the video equipment, using
128x128 frame blocking.”

From the perspective of the final user of an application, extra-functional con-
tracts are more desirable because they typically directly correspond to business
requirements. However, from an implementation perspective they require coor-
dination intelligence that translates them to the actual mechanisms. Unfortu-
nately, in contrast to functional programs for computations which can always be
translated to machine code (Church-Turing thesis), extra-functional by-contract
specifications may be unsolvable for a given coordination technology. Whenever
a particular contract is unsolvable (or not yet supported), the software engineer
must then resort to a mechanical specification instead.

The corresponding work flow from the designer’s perspective is illustrated in
fig. 5. In an initial phase, the functional behavior of the application is specified
and validated, using some library of external components. Concurrently or soon
afterwards, the extra-functional requirements are first expressed by contract, and
the coordination technology attempts to translate the contracts to actual coor-
dination mechanisms. This process is dependent on the contracts, the functional
specification, but also information about the execution platform such as which
resources are available. All contracts that can be successfully converted to mech-
anisms yield tuning parameters or optimizations that can be directly deployed.
Otherwise, the designer is informed and can choose instead to specify additional
coordination mechanisms, or change the functional design and start anew.



This work flow is independent from which particular coordination technology
is used, and reveal two fundamental constraints on the usability of the coordina-
tion language.

The first is relatively straightforward. Suppose the application fig. 4 was first
specified functionally, and then (afterwards) extra-functionally constrained to a
minimum frame rate of 30fps. Suppose that later in time a new extra-functional
requirement comes in for 60fps instead. It is important that the coordination
technology allows the designer to update the extra-functional constraint without
altering the functional semantics, otherwise functional validation must be carried
out again. This pushes for orthogonal functional and extra-functional semantics
in coordination languages.

The other is more subtle yet no less important. Suppose for example that
the designer of the application in fig. 4, unsatisfied by the translation of the per-
formance contract on frame throughput, has manually entered an additional by-
mechanism specification to use the instance topology from fig. 3a. If the coordi-
nation technology provides two different specification environments or languages
for the functional and extra-functional semantics, the designer would then have
first produced a specification like fig. 4, then separately one like fig. 3a. Now, sup-
pose that a new functional requirement then comes in, that denoising should be
followed by color balance correction. Because the environments are separate, now
two specifications instead of one must be modified. If the application is already
deployed, chances are the designer will modify only the latter, and forfeit the op-
portunity to further specify extra-functional requirements by contract on top of
the “pure” functional specification, which has thenf diverged. This scenario reveals
that the coordination technology should not be separated in different languages
and that both functional and extra-functional specifications should be integrated
to ensure they stay consistent over time.

This conjunction motivates our proposal for compositional extra-functional
coordination, where extra-functional specifications are interleaved with functional
aspects in application definitions. In our vision, a designer should be able to
update either the functional part or the extra-functional part of a specification
and see the other part adapt automatically to the change. Moreover, the language
should allow an automated process to automatically elide all extra-functional
operators of a combined specification and reveal the functional core so it can be
validated separately.

5. Compositional extra-functional coordination

In the previous sections we have introduced separately:
• the purpose and form of component instance multiplicity, and the need for
both arity and topology parameterization (section 3), and

• the engineering work flow for adaptive software using coordination and the
need for orthogonal, yet integrated, functional and extra-functional seman-
tics for coordination languages (section 4).

When a coordination technology answers both these requirements together,
a new problem arises: how to express extra-functional requirements meaningfully
over components with instance multiplicity?



This is where we position the main contribution of this article. Given the
aim to support both specifications with multiplicity and the separation of func-
tional and extra-functional semantics, we investigated which operators to place
in the extra-functional tool box which preserves compositionality and expresses
meaningful constraints over components with multiplicity.

We have carried out this study in the context of S+Net [6], a coordination
language for streaming networks. In the following sections, we show examples
of our proposed extra-functional toolbox, by applying some of the key features
of S+Net to the examples already described earlier and a couple of industrial
applications. Note however that we aim our proposal to be more general; we
expect it to be applicable to other coordination technologies as well, as long
as they exhibit functional compositionality in specifications and map composite
specifications to composite mechanisms in their run-time systems.

5.1. Functional coordination with S+Net: an overview

The primitive component in S+Net is a stream processor : an entity which pro-
cesses a stream of input events over time and produces a stream of output events.
This encompasses both computational functions, which are called anew on each
successive input, and more complex stateful processes. S+Net is principally a
coordination language: it is designed mainly to integrate external components
developed in other languages via its box construct. However it is not purely a
coordination language: simple coordination-related computation or synchroniza-
tion functions can also be implemented directly in S+Net via its “transducers”
construct.

The basic abstraction on top of stream processors is the streaming network :
the connection of one or more stream processors with I/O endpoints to the “real
world.” To group stream processors into networks, S+Net provides a functionally
complete set of compositional network combinators, sufficient to group stream
processors in arbitrary computational patterns.

From the functional perspective, all primitive networks and composites
thereof are abstracted as if they had a single input stream and a single output
stream (SISO). However, all streams are typed, and may carry multiple types.
In an implementation, each logical stream may thus be instantiated as multi-
ple communication channels that connect type-wise matching process endpoints.
This means the SISO abstraction does not imply full serialization of I/O between
stream processors and concurrency of communication can be exploited on parallel
hardware, for fully MIMO run-time behavior. At the outer level, stream endpoints
are connected to the environment’s I/O endpoints, typically network sockets.

The functional combinators of S+Net are:
• sequential composition of two or more sub-networks, i.e. pipelines;
• selection between two or more sub-networks depending on the actual type
of input messages (routing);

• replicated composition which inductively replicates the inner sub-network
at run-time depending on a guard condition.

Because the branches of a selection and the exit paths from a replicated
composition are concurrent, their respective outputs may be emitted out of order



Network Notation
External primitive component A box A

Transducer with function S [|S|]
Ordered replication composition of N with guard G N*G
Unordered replication composition of N with guard G N!*G
Sequential composition of N and M N..M
Selection between N and M N|M
Restoration of input order around N ?N#

Table 3. Functional specification constructs in S+Net.

(Constructs listed in order of operator precedence: box binds more tightly than |.)

relative to their common input. An additional unary stream reordering combinator
can be used to force the output order of a sub-network to match the input order
when so desired. There are further two forms of replicated composition:

• in ordered replicated composition, the instances form an ordered list: the
order in which the replicas are traversed by input events is fixed and new
replicas are introduced at the end of the list;

• in unordered replicated composition, the instances form an unordered set:
each input event may traverse the set of replicas in a different order, al-
though they are guaranteed to go through all replicas.

Ordered replicated composition is appropriate for inductive chaining of sub-
computations, for example as required by the face recognition algorithm men-
tioned in section 2. It can be used also to support cycles in the process graph, by
translating the cycle to an ever-expanding replication: automatic garbage collec-
tion ensures finite resource usage. Unordered replicated composition is useful to
implement “worker pool” concurrent patterns, where an input is split into sub-
events and all sub-events must be processed, although order preservation is not
required. The reader is referred to [6, Sect. 2.4.4 & 5.4] for details about this
operator.

The syntax for functional specifications is given in table 3. Parentheses can be
used for grouping. Types are inferred automatically from inner networks outwards.
Messages/events in S+Net are called records and can carry arbitrary sets of
key-value pairs.

5.2. Example functional specification of a web application

Consider the example of the web CRM mentioned in section 1.2. The specifi-
cation from fig. 1 was architectural, describing the components from a system
administrator’s perspective. From a functional perspective, the application can
also be described as a pipeline of the following components: a cache, taking as in-
put requests from the network and producing either responses (cache hits) or the
requests themselves (misses); a handler that parses the request and determines
what to do; a database lookup; and a formatting step that gathers data and places
them in web page templates. The output of the pipeline is the response data back
to the network interface. A possible functional specification of this application in
S+Net goes as follows:

net {



 req → req | response  req → qry | data  qry → data  data → response

cache front lookup format

(a) Functional specification of a web application pipeline.

response (cache hit)

data (no lookup necessary)

dataqry
reqreq responsecache front lookup format

(b) Component instances and flow bypasses at run-time.

Figure 6. Example specification of a web application with S+Net.

box cache : req -> req | response;
box front : req -> qry | data;
box lookup : qry -> data;
box format : data -> response;

} connect cache..front..lookup..format

This declares four externally defined box components, declares their type signa-
ture, and connects them in a pipeline using the .. operator. The equivalent visual
representation is given in fig. 6b. Because the output of the cache component has
two possible types req and response and the next component front only takes
req as input, flow inheritance is used to automatically create communication
bypasses at run-time, as revealed in fig. 6b.

5.3. Example extra-functional coordination in S+Net: load balancing

The specification so far only yields one instance of each component at run-time.
S+Net’s coordination logic cannot force the introduction of parallelism because
the streams connecting the components are ordered and concurrency would break
this order. A working but inelegant way to achieve the scenario illustrated in
fig. 1b is to modify the functional specification as follows:

net {
box cache : req -> req | response;
box balance : req -> req1 | req2;
box front1 : req1 -> qry | data;
box front2 : req2 -> qry | data;
box lookup : qry -> data;
box format : data -> response;

} connect cache..balance..
(front1..lookup..format | front2..lookup..format)

With this specification, the component front is explicitly aliased two times and
its input type is given two different names, to create two branches implementing
the same function but with different types. A “load balancing” component which
simply annotates requests with a different type name is then placed in front, with
a parallel selection. This solution works but would require manual editing of the
aliasing to change the number of pipeline branches. A more elegant separation of
concern is obtained using the following specification instead:
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Figure 7. Run-time situation with replication selection and two inner instances.

net {
box cache : req -> req | response;
box front : req -> qry | data;
box lookup : qry -> data;
box format : data -> response;

} connect cache..[|->{<p=1>},{<p=2>}|]..(front..lookup..format)!<p>e

Here the component specification and the functional part of the pipeline are left
unchanged. Two constructs are added:

• the phrase “[|-><p=1>,<p=2>|]” specifies an initialization transducer
which emits two records at application start-up, with a single key p and
successive values 1 and 2.

• the phrase “(...)!<p>e” uses S+Net’s replication selection. This unary
combinator automatically instantiate the sub-network to which it applies
when it receives records containing the key specified, here <p>. It dis-
tributes further incoming records among the existing instances according to
a selection policy, here “e” which means even distribution across available
branches.

When instantiated at run-time, the initialization transducer is run once, then
the coordination logic recognizes it has become inactive and automatically elides
it from the run-time environment. The resulting component instance network is
illustrated in fig. 7.

This specification as it now stands is appropriate when running on platforms
with at least two physical processors. However, if the number of processors is
lower than the number of pipeline branches, an undesirable behavior can arise: the
S+Net run-time system is allowed to schedule the components using cooperative
scheduling, and a blocking request on one branch would then also block the other
branch.

To avoid this issue requires clearly stating what is the intent of replica-
tion: that the processing of each branch progresses independently from the other.
S+Net provides a general primitive combinator for this: extra-functional isola-
tion. Given a behavior trait, for example progress independence noted “f” (fair-
ness), the network described by “N//f” ensures that all instances of N at run-time
will be scheduled fairly with respect to each other. Other isolation traits are also
available, including bandwidth and storage independence.

Here however the instances are created by the ! operator; the specification
“N//f !<p>e” would not serve our purpose, because then the entire network N//f
would be replicated and not the inner operand of //f. To solve this, we must
use another S+Net combinator: labeling, noted “N’label”. This associates an



Operator name Description Notation
Internal isolation Isolate those sub-network instances of N labeled X

from each other respective to extra-functional trait t
N/X/t

External isolation Isolate those sub-network instances of N labeled X
from each other and from the enclosing network in-
stance respective to extra-functional trait t

N/X/+t

Budget contract Cap the extra-functional budget r available to those
sub-network instances of N labeled X to either an
absolute value or a proportion of the budget available
to the enclosing network instance

N/X:r

Table 4. S+Net operators that specify extra-functional coordination by contract.

arbitrary text label with a sub-network and allows another operator to refer to
this label, for example:

... connect cache..[|->{<p=1>},{<p=2>}|]..
(front..lookup..format)’serve !<p>e /serve/f

This specification associates the entire sub-network “front..lookup..format”
with label “serve”, then places it within a replication selection. The operator
“/serve/f” is then applied to the entire construct, and specifies that “all inner
instances named serve are scheduled independently from each other,” achieving
the desired purpose.fr

Finally, the example can be both generalized and simplified greatly by us-
ing one extra feature of S+Net: automatic parallel replication of sub-networks
where stream ordering between input and output is known to not matter. This
is specified by replication selection without tag, e.g. “N!e”, or even “N!” because
e happens to be the default policy for !. Using this feature, the specification can
be reduced to:

... connect cache..(front..lookup..format)’s ! /s/f

With this, the number of instances of the inner network labeled s scales to the
number of available parallel resources at run-time, automatically, and each branch
is guaranteed fair scheduling.

5.4. Extra-functional coordination by mechanism or by contract

The example so far has illustrated two families of extra-functional combinators
in S+Net: replication selection belongs to the group of mechanism operators,
whereas isolation belong to contract operators.

We propose three by-contract specification operators, listed in table 4. During
instantiation and at run-time, contract operators are automatically mapped to
mechanisms to the maximum extent possible. Unsolvable mappings are reported
as errors during initialization.

Extra-functional isolation, already introduced in the previous section, pro-
vides behavior and resource usage independence between component instances,
across any of the traits listed in table 5. At run-time, the contracts are mapped
to different resource scheduling mechanisms. There are two variants of isolation:



Trait Description Mechanism
f Relative progress independence (fairness): the progress of each

instance not starved on input or blocked on output is guaran-
teed independently from other instances.

Preemptive scheduling

b Relative bandwidth independence: the internal bandwidth of
processors and channels onto which each instance is mapped
is reserved and free of contention from other instances.

Real-time scheduling
priorities and QoS over
virtual channels

s Relative storage independence: the storage allocated by the
component instances and network management is sourced from
separate storage pools.

Storage partitioning

p Relative power supply independence: the power demands of
each replica are satisfied independently from the power usage
of other instances.

Physical partitioning

Table 5. Valid traits for the internal and external isolation combinators.

Budget Description Always solvable? (mechanism)
Mc(x) Maximum memory storage no (exceptions)
Ma(x)/ma(x) Maximum (resp. minimum) component arity yes (dynamic management)
Mti(x)/Mto(x) Maximum input (resp. output) throughput yes (throttling)
mti(x)/mto(x) Minimum input (resp. output) throughput no (exceptions)
Mfl(x)/Mll(x) Maximum first (resp. last) latency no (exceptions)
mfl(x)/mll(x) Minimum first (resp. last) latency yes (forced delays)

Table 6. Valid specifications for the budget contract operator.

internal isolation isolates named instances only from each other, and external
isolation isolates named instances from each other and also from the enclosing
composite network.

The last by-contract operator is the budget contract, which establishes a run-
time limitation on a behavior metric, including at least those metrics listed in
table 6. At run-time, some budget contracts map to enforcing mechanisms and
are thus always solvable (e.g. throttling for maximum throughput), while others
depend on the availability of physical resources (e.g. minimum throughput) and
may thus fail with an exception.

When the by-contract operators are inappropriate or more fine-grained con-
trol is required, we propose the five by-mechanism operators listed in table 7.

Replication selection was already described in the previous section.
Exception handling provide a way to adapt dynamically to run-time budget

contract violations, such as specifying an alternate behavior. An example use of
exception handling is given in the next section.

The environment awareness construct enables a specification to use run-time
parameters for further coordination. It is not really an operator but rather spec-
ifies a new primitive component with no computational effect.

The projection operator is used to control the way records flow through the
network, and thus allows to trade latency for space usage. For example, when
instantiating a sequential composition A..B over two parallel processors, it al-
lows to choose between either a dynamic pipeline with one instance of A on one
processor and one instance of B on the other (more latency, less space), or two



Operator name Description Notation
Replication selection Explicit replication of N using instantiation key t

and distribution policy p
N!<t>p

Replication selection Automatic replication of N to available parallel re-
sources using distribution policy p

N!p

Exception handling Report using key a any exception of type E caused
in those sub-network instances of N labeled X

N$X(a=E)

Environment awareness Read environment variable E using key v into any
input records of type x

[<x>.v=E]

Process projection Force execution strategy s for those sub-network in-
stances of N labeled X

N/X!s

Hardware mapping Assign those sub-network instances of N labeled X
to a subset of physical resources used by the enclos-
ing network instance labeled Y using the placement
strategy s

N/X@Y :s

Table 7. S+Net operators that specify extra-functional coordination by mechanism.

instances of the function B ◦A, one on each processor (less latency, more space).
The reader is referred to [4, Part 2] and [6, Sect. 4.8] for more details.

Finally, the hardware mapping operator provides fine-grained control over
the mapping of components over hardware resources. It is provided for complete-
ness but its use is complex and is thus expected to be used only as a back-end
mechanism when defining libraries of higher-level abstractions.

This extra-functional tool box was carefully designed so that all operators are
orthogonal from each other and can be combined freely. The reader is referred
to [6] for a detailed specification and discussion of all extra-functional constructs.

6. Additional use cases and applications

Consider how the example from section 3.1, which requires scaling the number of
distcc instances to the number of cores, can be re-expressed in S+Net simply
using:

([.port=3632+InstanceIndex]..distcc)!

The replication selection ! dynamically scales the number of instances of
the sub-network to which it is applied, to the number of cores available on the
platform. Each instance then inspects its own dynamic run-time index and uses
it to compute a port number parameter to distcc. The number of instances
can also vary dynamically depending on resource availability. This specification is
both simpler and largely more powerful than what can be obtained in most glue
languages for systems programming.

As we have seen so far, all the relatively simple examples from section 1
are trivially addressed using our proposed extra-functional tool box. To fur-
ther demonstrate its applicability, we also consider in the following sub-sections
two production-grade industrial applications explored during the EU ADVANCE
project.



init

solve select

“init .. (solve! .. select)*”

Figure 8. Example ant colony optimization.

init

solve select

θS/+f

α:S

“init .. ((solve’S)! /S/+f .. select)*”

Figure 9. Optimized ACO using the isolation combinator.

6.1. Process starvation in ant colony optimizations

In [5], the authors observe a shortcoming of S-Net when running an applica-
tion that uses ant colony optimization (ACO) to solve the single machine total
weighted tardiness problem (SMTWTP) found in industrial logistics. The over-
all application uses bulk-synchronous parallelism, where each iteration computes
sub-parts of the problem and a reduction step selects the best intermediate solu-
tion. The corresponding (simplified) S+Net specification is given in fig. 8.

The issue was found around the inner network using replication selection
enclosing solve. This network processes n concurrent data sub-streams, where n
is the number of simultaneous ants in the ACO parameters. The expectation was
that since the input sub-streams are concurrent, speedup should be observed using
parallel resources. However, S-Net does not specify how replication selection is
mapped onto parallel hardware, and thus does not guarantee speedups. Indeed,
the authors investigated and determined that in some cases, the management task
that distributes work to the solve replicas also shares a processor with one of the
solve replicas. As soon as this solve replica receives work, it starts to compute,
starves the management task from processing time, and consequently starves the
following solve replicas that have not yet received work.

The issue appeared because S-Net does not provide the ability to specify
that the management task must be separately scheduled from the solvers. With
S+Net, this can be trivially expressed using the labeling and isolation combina-
tors as explained in section 5.3, yielding the solution illustrated in fig. 9.

6.2. Medical imaging with soft realtime constraints

Another application is the coordination of a piece of medical equipment used in
surgery: a camera captures a video of the operating site at the patient, then a
system analyses the image to recognize the organ to operate, and overlays a cursor
or metadata with the video in the image presented to the surgeon. Simultaneously
with object recognition, a simple linear filter reduces noise on the captured image.
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objdetect

noisered

overlaymerge

“dup .. (noisered | objdetect) .. merge .. overlay”

Figure 10. Example medical imaging application.

markv discarddup

testv

objdetect

noisered

overlaymerge

ρ:Mfl(75%)v

β:Violation

ρ:Mfl(40ms)

“P/:Mfl(40ms)”,
with P = “markv..dup..(T | noisered)..merge..overlay”,

with T = “(testv..(objdetect/:Mfl(75%) | discard))$(v=Violation)”

Figure 11. Medical imaging application with extra-functional annotations.

Functionally, the processing pipeline is fed with video frames; at the head
of the pipeline, frames are duplicated to be processed concurrently by object
recognition and noise reduction; and finally the result of object recognition is
overlaid with the result of noise reduction to obtain a resulting video. We can thus
specify the application with the functional network in fig. 10, where dup is a filter
that duplicates video frames, noisered and objdetect the two processing boxes,
merge a synchronizer and overlay to fuse intermediate results into resulting
frames.

Next to this basic functional specification, the application has two addi-
tional extra-functional requirements: the frame latency through the entire pipeline
should not exceed 40ms, so that the surgeon keeps an up-to-date image of the
operating site at all times; and the object detection algorithm may take an unpre-
dictable amount of time to complete, which may cause its results to be outdated
relative to the video, in which case the overlay should be discarded.

The extra-functional specification is transparent with S+Net; we give its
notation in fig. 11:

• the entire network is enclosed in a budget combinator (“/:Mfl(40ms)” or ρ
in the diagram) to cap the overall latency;

• the markv filter equips all frames with a v field used subsequently by the
exception handling construct (“$(v=Violation)” or β in the diagram);

• the inner objdetect is annotated with another budget combinator to re-
strict to 75% of the outer Mfl budget, i.e. 30ms latency;

• if the 30ms latency is violated, an exception is raised, caught by the excep-
tion handler construct, and the testv filter changes the type of the input
frame to be routed to discard instead.

As is, this specification instructs the S+Net environment to make a
best effort at guaranteeing the latency stays below 40ms; however this may



violated at run-time if insufficient resources are provisioned or the coordi-
nation fails to find a suitable schedule. In this case the entire application
would fail. It is possible to enclose the entire network into another scaffold of
“markv..(testv..(P/:mfl(40ms)|discard))$(v=Violation)”, to instead sim-
ply drop the input frames upon latency violations.

Finally, the combined specification degrades automatically to the original
functional specification when the extra-functional operators are removed, despite
the semi-functional introduction of the components markv, testv and discard.
We demonstrate as follows. The budget combinator around objdetect can be
removed without effect on its inner operand. Once removed, the budget violation
exception cannot be raised any more, and the exception handling mechanism is
known to never report the exception to testv, which can then be automatically
elided. When testv is elided, the discard branch is determined via typing to
become inactive and can be elided as well. Meanwhile, once testv is elided, there
is no component left using markv’s output, which can then be elided as well.
Finally, the outer budget combinator can be removed without effect. The result
is identical to the purely functional specification in fig. 10.

7. Discussion and future work

True to the principles established in [8], S+Net separates two forms of distributed
application design: component and system, with the former focused on the math-
ematics of data processing and the latter exclusively on its logistics. S+Net, like
its predecessor S-Net, is a glue that is effective in combining the two without
one contaminating the other.

The author of [8] had concluded with two open issues. To enable self-
adaptation and self-reconfiguration, which are strong requirements for large dis-
tributed applications, a “disciplined form of feedback” was required. Strong with
industrial experience, we have embraced the realization that a solution to this
issue necessarily involves a mix of human tuning with automated optimization
based on run-time environment feedback; our proposed environmental awareness
has answered this need.

The other identified issue was how to deal with the dual nature of coordi-
nation: either the transparent view where component specifications are reified
directly to instances at run-time; or a competing view in which coordination is
treated as a high-level computation modulo non-determinism, where pipelines can
be reifed by functional composition, at the cost of a non-trivial behavior intu-
ition. We have recognized that this duality is in fact an extra-functional trade-off
between locality of computation vs. locality of communication, and we propose to
embrace this duality by letting the coordination designer choose which approach
to take for any sub-network in a specification.

From an implementation perspective, S+Net is an ongoing project at the
University of Amsterdam, the University of Hertfordshire and their research part-
ners. Two implementation directions are investigated: one using a custom tech-
nology stack, primarily oriented towards research in language design; and one as
a library of reusable coordination tools in existing concurrency-aware languages,



e.g. Google’s Go or Haskell, for deployment in existing applications. In this latter
view, we do not market our proposal as a specialized language on its own, but
rather a compositional coordination tool box reusable in a variety of environments.

From here, we envision that this coordination tool box will be used in two
scenarios. As a programming language, its extra-functional constructs enable ap-
plication designers to establish contracts between extra-functional constraints,
such as energy budgets or latency deadlines, and the execution environment. By
accounting semantically for unexpected failures or unsolvable constraints, our co-
ordination tool box also provides a mechanism by which a specification can adapt
to an environment where extra-functional contracts cannot be honored.

Meanwhile, compositional coordination can also be used as a modeling lan-
guage. When considering any other parallel programming system, it is common
to see the implementers make concrete run-time choices relative to the mapping
and scheduling of source-level concurrency, while not documenting these choices
or let them vary unpredictably across platforms. By providing a consistent and
orthogonal vocabulary of concepts beyond the mere functional description of the
input-output relationship, our tool box allows a scientist to observe any concrete
parallel application, then describe and reason about the extra-functional decision
mechanisms of its execution environment.

8. Conclusion

This article has presented a compositional coordination tool box with separate
constructs for functional and extra-functional specifications. The functional part
is complete and can serve to define arbitrary computational patterns. The extra-
functional part contains both “by-contract” specification constructs, which are
high level but may be sometimes unsolvable, and “by-mechanism” constructs rel-
evant when by-contract constructs are insufficient or for performance tuning.

Our tool box is reusable in any coordination technology which aims to sup-
port component-based design, inductive specifications of component instance mul-
tiplicity, and compositional extra-functional constraints over inductive specifica-
tions. According to our analysis, these traits are becoming increasingly relevant in
large deployments due to the complexity of working with resource heterogeneity.

We are constructing this tool box in the context of S+Net, a coordination
programming environment originating from the previous work S-Net. Like S-
Net, S+Net is primarily based on concepts from stream processing networks,
although we show via examples that its coordination facilities are applicable to
client-server web applications and industrial-grade computational optimizations.
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