1306.3375v1 [cs.SE] 14 Jun 2013

arXiv

The essence of component-based design
and coordination

Raphael ‘kena’ Poss
University of Amsterdam, The Netherlands

June 17, 2013

Abstract

Is there a characteristic of coordination languages that makes them
qualitatively different from general programming languages and deserves
special academic attention? This report proposes a nuanced answer in
three parts. The first part highlights that coordination languages are
the means by which composite software applications can be specified us-
ing components that are only available separately, or later in time, via
standard interfacing mechanisms. The second part highlights that most
currently used languages provide mechanisms to use externally provided
components, and thus exhibit some elements of coordination. However
not all do, and the availability of an external interface thus forms an ob-
jective and qualitative criterion that distinguishes coordination. The third
part argues that despite the qualitative difference, the segregation of aca-
demic attention away from general language design and implementation
has non-obvious cost trade-offs.

Contents

1 Motivation

2 Component-based design

3 Component specifications and instances
4 Coordination vs. computation

5 Discussion

6 Conclusion

Acknowledgements

References

B B B =

=2

B =B =

1 Motivation

During the period 2012-2013 the author was spectator to the evolution of S-
Net [4, Bl 2], a programming language for streaming networks. To this author,
a characteristic feature of the research activities around S-Net is the insistence
that “S-Net is a coordination language,” which pitches S-Net implicitly against
“regular programming languages” and suggests that programming for coordina-
tion is somehow different from programming for computation.

Meanwhile, the EU-funded project ADVANCE has been supporting effort to
optimize the execution of S-Net programs on multi-core computers. During this
effort, it has become apparent that S-Net suffers from similar technical issues
as the “regular programming languages” it is usually pitched against, namely in
two areas: time and space scheduling, and memory allocation. In particular,
ADVANCE has revealed a striking overlap of issues and their potential solutions
between S-Net and Single-Assignment C, a functional language developed by the
same researchers.

This author estimates that this convergence of research issues has caused an
identity crisis of sorts around S-Net. The crisis was especially visible during a
technical meeting in early June 2013, where Alex Shafarenko, designer of S-Net,
was failing to convince Kath Knobe, designer of Intel’s Concurrent Collections,
about what makes coordination fundamentally special.

The crux of the argument was to determine whether the existence of a mech-
anism to define “black boxes” in a language is a clear criterion that separates
coordination languages from other languages. The counter argument was that
most languages, including C, Single-Assignment C, Haskell and all those men-
tioned during the discussion, also enable a programmer to define black boxes at
any level of abstraction. By this counter argument, all these language are also
coordination languages as well.

The reason why this discussion matters is that the existence of a criterion
to identify coordination is a prerequisite to motivate research specialized in “co-
ordination languages and systems” and justify a specialized branch of research
and expertise, separate from general programming language design and imple-
mentation. Without this conceptual frontier, there would be little remaining
justification to continue further effort in developing S-Net and its derived tech-
nologies, or requesting funding to that effect.

In this particular discussion, the participating individuals eventually agreed
that they have observed perceived merit in their work from their community.
From then, they were able to conclude that their work must be worthy of further
effort, even though they could not clearly express why at the time.

This situation was uncomfortable to this author from a conceptual perspec-
tive, and this discomfort motivated the production of the present technical re-
port. In the following sections, we propose a formulation of the essence of
component-based design (section , including the distinction between compo-
nent specification and instantiation (section , and the essence of coordination
(section . We then discuss the trade-offs of specializing research towards co-
ordination systems in section

Abstraction How interfaces are defined How implementations are

defined
Classes (OOP) Method interface Method code and attributes
Functions (FP) Function signature Function code

Unix commands Manual page (list of Executable file
command-line arguments
and program description)
Network service Protocol Service implementation
Hardware Signalling specification Logic design

Table 1: How components are defined in different paradigms

2 Component-based design

2

The word “component” is both versatile and usually well-understood. A simple
definition can be found in [I]: components are defined by their interface, which
specifies how they can be used in applications, and one or more implementations
which define their actual behavior.

The two general principles of component-based design are then phrased as
follows. The first is interface-based integration: when a designer uses a compo-
nent for an application, he agrees to only assume what is guaranteed from the
interface, so that another implementation can be substituted if needed with-
out changing the rest of the application. The second is reusability: once a
component is implemented, a designer can reuse the component in multiple
applications without changing the component itself.

Component-based design is embedded in different programming paradigms
using different abstractions. For example, in object-oriented languages, classes
define components: the set of methods defines the component interface, and the
set of attributes and method implementations define the component implemen-
tation. In functional languages, individual functions can be seen as components:
the function signature (list of argument and return types) define its interface,
whereas the function definition (“right-hand side”) defines its implementation.
Other examples are given in table

3 Component specifications and instances

We also need to acknowledge a further distinction which is less commonly found
discussed: the difference between component specification and component in-
stance.

To illustrate our distinction, we can consider the perspective of a software
engineer tasked with designing a web CRM, who decides to realize the work
by combining a proxy cache, a web server, PHP and a database server. From
this engineer’s perspective, the “advertised” structure of the application is likely
to conform to fig. which highlights the logical relationship between the 4
components the engineer has reused. In contrast, the system administrator who
observes the application at run-time may instead observe the situation described
in fig. [[b] Here, contrary to the “abstract” specification in fig. [Tal the Squid
proxy process does not communicate with the Apache server directly; instead it
communicates with two worker instances spawned by the Apache server. Each

requests responses

Squid
process

requests responses

Interface: HTTP

Squid
(Proxy cache)

Interface: HTTP

(Web server)
- Interface: WSGI ‘ T ‘ T

PHP PHP Interpreter PHP Interpreter
(Application) instance 1 instance 2
Oracle process
manager

- Interface: ODBC ‘ f
(a) Specification of a (b) A particular instance of the web

Oracle Oracle server
(Database) instance 2
web CRM. CRM.

Apache Front-
end

Apache worker 1 Apache worker 2

Oracle server
instance 1

Figure 1: Specification and instance of a web CRM.

Conceptual domain Word for blueprint Word for real-world reification
Object-oriented programming “class” “object”
Functional programming “function” “activation record”
Operating systems “program” “process”

Software builds “source code” “object code”
Instruction execution “executable code” “instruction stream”
Computer architecture “design” “implementation”
Simulation “model” “simulator”

Parsers “erammar” “parse tree”
Component-based design “specification” “instance”

Table 2: Vocabulary for models and instances

worker instance has in turn spawned its own PHP process to process its incoming
requests. On the database side, a duplication has also occurred: each time a
PHP process requests an ODBC connection, Oracle creates a new server process
specific to that connection. In this run-time scenario, 9 components are involved
instead of 4.

In the rest of this discussion we name component specification the result of
the design work by the programmer, and component instance the real-world
representation of a specification at run-time. As the previous example shows,
each instance is indirectly “caused by” one specification, but a single specification
may “cause” multiple instances. Again, the distinction between specification and
instance is found in many shapes across computing domains; related terms are
given in table

A reason why this distinction is often not needed or used is that most systems
traditionally have a one-to-one mapping between specifications and instances.
In the example above, in the early age of the Internet the specification would be
reified using exactly one Squid process, one Apache process, one PHP interpreter
and one Oracle process. Both the application programmer and the system
administrator could then use the same words “the Apache server” to designate
either the specification or the instance, using context to disambiguate meaning.

4 Coordination vs. computation

Beyond the basic definitions of components, component-based design relies on
compositionality: defining new aggregate or composite components built out of
sub-components. To achieve this, an application designer works in a coordi-
nation environment which provides both facilities to specify composites, i.e. a
coordination language, and to run these composite specifications, i.e. a coordi-
nating run-time system.

The characteristic of coordination environments is that they can be fully
defined and implemented before the library of actual primitive components is
known. This can be illustrated with the example of Unix. With Unix, an op-
erating system kernel can be implemented to run commands from disk before
the commands themselves are implemented. Moreover, both Unix “shell” inter-
preters and scripts can be implemented and validated, also independently from
the commands they will invoke at run-time.

This separation is possible because interfaces in component specifications
map to interfacing mechanisms between component instances at run-time. With
Unix, command-component interfaces are specified via their acceptable command-
line arguments and how they promise to behave with regards to network, file,
signal and IPC operations. At run-time, these specifications are mapped to uses
of system calls.

A coordination environment is thus composed of:

e a run-time system where execution occurs, which can be extended with

new components after the system is implemented;

e a coordination language, where a designer can specify external primitive

components by interface only, and composites thereof;

e an interfacing mechanism in the run-time environment, between the co-

ordination system and component implementations;

e language semantics that guarantee common run-time properties over com-

posites, without requiring a full definition of the primitive components
(since this definition may not be known at specification time).

Environment Coordination Specification con- Run-time mechanism for interfacing

language struct for exter-
nal primitive com-
ponents
POSIX POSIX fork/exec File, network, signal and IPC system calls
API
GHC and Haskell foreign Any of C/C++, .NET, JVM, Windows or
run-time other system-specific ABI call conventions
.NET C#, F+#, DllImport/extern Dynamic linker and standard call conven-
VB# etc. tion
C C extern Static linker and ABI call convention
C C asm Processor’s Instruction Set Artchitecture
C/Unix C dlopen/dlsym Dynamic linker and ABI call convention
JVM Java, Scala native Linker and ABI call convention
Common LISP defctype, defcfun Linker and ABI call convention
LISP
CPython Python import Linker and ABI call convention
S-Net and S-Net box Linker and ABI call convention
run-time

Table 3: How existing programming environments provide interfaces for exter-
nally defined primitive components

Coordination languages Computatjon languages

&

Cc

POSIX API POSIX shell

Haskell Java

OpenType

Amazon SWF

PostScript

L=

Python S-Net
[}

Languages with no interné{l primitive component Languages with no foreign interface
Languages with both internal and external primitive components

Figure 2: Coordination vs. computation: a Venn diagram

This definition partly contrasts with what we can call “computation” lan-
guages. The part of a language dedicated to computation requires that the lan-
guage semantics fully define how to manipulate data values and how to explicitly
express them using /literals within the language. However, most programming
languages oriented towards computation are actually implemented using a co-
ordination environment. For example, C programs can use extern definitions
and the asm statement to compose behavior from components only known in
the execution environment. Other examples are given in table [3

In other words, coordination environments are a subset of programming
environments, which also contain computation environments. This relationship
is illustrated in fig. 2

The availability of a foreign interface depends on the language, and with-
out it a computation language cannot be used for coordination. For example,
PostScript lacks the ability to define components externally and is thus “only”
a computation language.

Complementarily, a language may offer a foreign interface but no expressiv-
ity to express computations “within it”. This is the case of Amazon’s Software
Workflow Frameworkﬂ as of this writing, which only manipulates services de-
fined externally. This type of language can thus be called “purely coordinating.”
Note that S-Net, which is usually “marketed” as a coordination language, does
provide facilities to express literals and compute over them (record tags and
filters) and can thus be used for computation without using external primitive
components at all.

5 Discussion

Perhaps unsurprisingly, the formulation so far confirms the idea that most pro-
gramming languages contain some elements of coordination. However, it also
confirms that coordination can be recognized using a clear-cut criterion.

This criterion is whether the language designer enables a programmer to
import and use new primitive components not defined by the language itself and
which may only be fully known in the run-time environment. Using this criterion,
one can recognize that PostScript, for example, does not support coordination.

However, the fact remains that most languages contain both elements of
computation and coordination. Also, the expressive power of a language focused
on coordination can be equally well be constructed using abstractions within a

Thttps://aws.amazon.com/swf/

https://aws.amazon.com/swf/

language focused on computation that also provides a foreign interface. The
two fundamental questions that motivated this analysis thus remain:

1. is there room in the technology landscape for languages and run-time

systems designed and advertised mainly towards coordination?

2. if so, should they be implemented using their own technology stack, or in-

stead as libraries of constructed abstractions within established languages?

There are two arguments in favor of the first point. One is that industrial
software engineering acknowledges, supports and extensively exploits black-box
design when designing large applications. This audience may find interest in
technology that acknowledges componentization and promotes willful ignorance
of component definitions while specifying composites. The other argument is
reuse: it is a fact that software components already exist in different languages,
and coordination technology that can integrate them together enables more
reuse.

There are also two arguments against. One is that different languages create
fragmentation of expertise in the population of programmers and subsequently
effort duplication: common coordination features end up being implemented
both as features of coordination languages and as libraries in computation lan-
guages. This translated to redundancy of human effort. The second is that
systematic componentization creates an artifical barrier to cross-layer optimiza-
tions, for example inter-procedural optimizations in a compiler between the pro-
cedures of different components. In other words, componentization is a likely
source of run-time inefficiency.

From the implementation perspective (the second point mentioned above),
the argument in favor of a separate technology is one of research efficiency.
Indeed, in a research environment, time and effort are precious. The luxury
of a specialized implementation enables researchers to focus on issues specific
to coordination, without requiring them to care about integration in a more
general language whose implementation is thus also necessarily more complex.

The argument against is, again, fragmentation of expertise. When embed-
ding coordination in an existing language substrate, research projects can re-
cruit new members from the pool of existing programmers acquainted with that
language’s implementations. If the substrate language and implementations are
different /new, recruiting is more difficult and/or implies more training overhead.

The discussion about the consequence of these trade-offs on the future of
S-Net and related work lies outside the scope of this report.

6 Conclusion

This report has confirmed the existence of a view in which coordination lan-
guages and programming languages are not two disjoint sets. Programming for
coordination can be seen as a mere style of programming, which requires a tech-
nical means by which composite software applications can be specified using
components that are only available separately, or later in time. This technical
means is the availability of a foreign component interface in the language, and
we propose to call “coordination languages” those language who provide this
facility.

Meanwhile, most currently used languages provide foreign interfaces, and
thus exhibit some elements of coordination. However not all do, and the avail-

ability of a foreign interface thus forms an objective and qualitative criterion to
identify languages that can be used for coordination.

However, despite the availability of a clear-cut qualitative definition of co-
ordination, the segregation of academic attention away from general language
design and implementation has non-obvious cost/benefit trade-offs, mostly re-
lated to duplication of effort and skill fragmentation across language boundaries.

Acknowledgements

This document reports on thoughts nurtured during successive discussions with
Merijn Verstraaten, Alex Shafarenko, Sven-Bodo Scholz, Kath Knobe, Roy
Bakker, Michiel W. van Tol and Sebastian Altmeyer.

References

[1] Don Batory and Sean O’Malley. The design and implementation of hierar-
chical software systems with reusable components. ACM Trans. Softw. Eng.
Methodol., 1(4):355-398, 1992. ISSN 1049-331X. doi:10.1145/136586.
136587.

[2] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. Asynchronous
stream processing with S-Net. International Journal of Parallel Program-
ming, 38(1):38-67, 2010. |doi:10.1007/s10766-009-0121-x!

[3] Frank Penczek, Jukka Julku, Haoxuan Cai, Philip Kaj Ferdinand Holzen-
spies, Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. S-Net lan-
guage report, version 2.0. Technical Report 499, University of Hertfordshire,
School of Computer Science, Hatfield, AL10 9AB, United Kingdom, April
2010.

[4] Alex Shafarenko. Non-deterministic coordination with S-Net. In Wolf-
gang Gentzsch, Lucio Grandinetti, and Gerhard Joubert, editors, High
Speed and Large Scale Scientific Computing, number 18 in Advances in
Parallel Computing. IOS Press, 2009. ISBN 978-1-60750-073-5. |doi:
10.3233/978-1-60750-073-5-74.

http://dx.doi.org/10.1145/136586.136587
http://dx.doi.org/10.1145/136586.136587
http://dx.doi.org/10.1007/s10766-009-0121-x
http://dx.doi.org/10.3233/978-1-60750-073-5-74
http://dx.doi.org/10.3233/978-1-60750-073-5-74

	1 Motivation
	2 Component-based design
	3 Component specifications and instances
	4 Coordination vs. computation
	5 Discussion
	6 Conclusion
	Acknowledgements
	References

