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Abstract

This paper introduces JitterBugs, a class of inline inter-
ception mechanisms that covertly transmit data by per-
turbing the timing of input events likely to affect exter-
nally observable network traffic. JitterBugs positioned at
input devices deep within the trusted environment (e.g.,
hidden in cables or connectors) can leak sensitive data
without compromising the host or its software. In partic-
ular, we show a practical Keyboard JitterBug that solves
the data exfiltration problem for keystroke loggers by
leaking captured passwords through small variations in
the precise times at which keyboard events are delivered
to the host. Whenever an interactive communication ap-
plication (such as SSH, Telnet, instant messaging, etc)
is running, a receiver monitoring the host’s network traf-
fic can recover the leaked data, even when the session or
link is encrypted. Our experiments suggest that simple
Keyboard JitterBugs can be a practical technique for cap-
turing and exfiltrating typed secrets under conventional
OSes and interactive network applications, even when
the receiver is many hops away on the Internet.

1 Introduction

Covert channels are an important theoretical construc-
tion for the analysis of information security, but they
are not often regarded as a significant threat in con-
ventional (non-MLS) networked computing systems. A
covert channel allows an attacker that has compromised
a secure system component to leak sensitive information
without establishing its own explicit connection to the
outside world. Covert timing channels, for example, may
exist if there is flexibility in the timing or sequencing of
externally observable events (such as disk accesses or de-
livery of data packets). Covert channels are notoriously
hard to detect or eliminate, but this is somewhat ame-
liorated by the fact that their bandwidth is often rather
low, and, in any case, exploiting them requires that the

attacker somehow compromise a sensitive system com-
ponent in the first place. The sensitive system compo-
nent typically gives the attacker total control over the
system or an output channel, making the threat of covert
channels relatively minor compared with that of what-
ever software vulnerability which made such a compro-
mise possible in the first place. Outside of those intended
explicitly to support multi-level security, conventional
general purpose commercial operating systems, network
components, application software, and system architec-
tures largely ignore the threat of covert channels.

In this paper, however, we suggest that typical gen-
eral purpose computing systems are indeed susceptible
in practice to certain covert timing channels. These chan-
nels require only the compromise of an input channel or
device and can leak sensitive information (such as typed
passwords and encryption keys) through the network in-
terface. Furthermore, this can remain a threat even under
conditions that intuitively seem quite unfavorable to the
attacker, where there is only an indirect, multi-stage link
between the compromised system component and a re-
ceiver placed many hops away on the Internet.

Specifically, we investigate loosely-coupled network
timing channels, in which a compromised input device is
separated from a covert receiver by multiple system lay-
ers at different levels of abstraction. Each of these layers
adds noise to the timing of received events through nor-
mal internal propagation delays, event scheduling, and
buffering. The receiver is assumed only to passively
measure the arrival times of some subset of network
packets but otherwise has no access to sensitive data. We
introduce JitterBugs, a class of mechanisms that exploit
such channels. A JitterBug must have access to sensi-
tive information along with the capability to modulate
event timing. JitterBugs can thus capture and store this
sensitive information and send it later through a loosely-
coupled network timing channel. Loosely-coupled tim-
ing channels and JitterBugs provide a practical frame-
work for exploiting timing channels that exist in general-
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purpose computing systems.
In particular, we built a hardware keylogger, the Key-

board JitterBug, that can leak typed passwords over the
Internet without compromising the host or its OS, with-
out the use of a separate communication channel, and
without the need for subsequent access to the device by
the attacker. The Keyboard JitterBug is intended as an
interesting artifact in its own right (demonstrating a prac-
tical attack tool that can operate under highly constrained
conditions), but also as a platform for studying the prop-
agation of timing information across hardware, operat-
ing systems, network stacks and the Internet. Assuming
that the user is running an interactive network application
(e.g. SSH, X-Windows), it can leak previously captured
passphrases over such network connections. We show
using experiments that one can get good performance in-
dependent of the OS, system and network conditions un-
der which the Keyboard JitterBug is deployed. Such a
device is therefore very robust against any changes in its
environment. Keyboard JitterBugs also raise the threat
of a Supply Chain Attack. In this attack, a powerful ad-
versary subverts a large number of keyboards in the hope
that a target of interest acquires one.

2 Related Work

A common simplifying assumption in the covert chan-
nel literature is that the attacker has direct control over
the timing of the events being measured by the receiver.
That is, the attacker is usually assumed to compromise
important system components that allow partial or to-
tal access to the output subsystem. While this may be a
useful conservative assumption for those concerned with
minimizing covert channel bandwidth or for abstractly
modeling information leakage, we note that those seek-
ing to exploit a timing channel may be able to do so
more indirectly. In particular, network packet timing is
influenced by many system components outside a host’s
network subsystem, including input devices. Event tim-
ing information is propagated from one layer to another,
eventually reaching the external network, where it can be
measured by an adversary. We are not the first to observe
that packet timing can leak sensitive information about
non-network subsystems, which has been effectively ex-
ploited in remote timing “side channel” attacks against
crypto systems [10] and for host fingerprinting [26, 8, 9].
Here, however, we are concerned not with incidental
side channel leakage, but with leakage deliberately in-
troduced (perhaps at somewhat higher bandwidth) by a
malicious adversary.

The term “covert channel” was first used by Lamp-
son [27] in describing program confinement to ensure
processes were not able to leak private data to other
processes. Covert channels have primarily been stud-

ied in the context of multi-level secure (MLS) systems.
MLS systems have multiple security clearance levels.
A “HIGH” level should be able to access any data at
“LOW” level but not vice-versa. It is thus important
that there be no covert channels that allow a rogue agent
(e.g. software trojan horse, spy) to transfer information
from “HIGH” to “LOW”. As a result, some of the earliest
research in covert channels was from the perspective of
these systems. Due to resource sharing and some com-
monly used MLS primitives, getting rid of covert chan-
nels in such systems is often very hard and in some cases,
effectively impractical [38, 33].

Identification of covert timing channels is concerned
with enumerating all possible covert channels that might
be exploited by a software or the user. The US Trusted
Computer System Evaluation Criteria [2] requires ex-
plicit covert channel identification in any system certified
at class B3 or higher. Many methods have been proposed
to identify covert channels, e.g. dual-clock analysis [46],
shared resource matrix [24], high-level scenarios [17].
Note that none of these methods guarantee that all covert
channels will be found, and, more importantly, identified
channels may represent an exploitable threat.

Once practical covert timing channels have been iden-
tified, it is often necessary to take steps to mitigate them.
Mitigation of timing channels involves either neutraliz-
ing the channel completely or reducing its bandwidth to
acceptable levels. The first step in covert channel anal-
ysis typically involves estimating the worst case band-
width and the effect of various system parameters like
noise and delay [35, 6, 16, 43, 34]. Once this is done,
there are many ways in which channel bandwidth can be
reduced, including the network pump [20, 21, 22], fuzzy
time [18], timing jammers [16] and language transfor-
mations [5]. Reducing the bandwidth of covert channel
does not imply that the covert channel threat is removed.
Useful and important information like encryption keys
can still be leaked out over low-bandwidth covert chan-
nel [31].

Because it is often not practical to neutralize covert
timing channels completely, it might be preferable to de-
tect their active exploitation rather than suffering the per-
formance penalties associated with reducing their poten-
tial bandwidth [11]. The detection of network timing
channel exploitation is known to be a difficult problem
in general. Although specific methods [11, 7] have been
proposed to handle various covert encodings, they do not
work against every kind of timing channel. All these
mechanisms rely on some notion of “regularity” to dis-
tinguish between regular network traffic and covert tim-
ing channel traffic. The exact regularity depends on the
specific channel encoding to be detected and therefore,
none of these methods work for every possible scheme.

Side-channel attacks against cryptosystems are some-
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what similar to covert channels. Side-channel attacks ex-
ploit information leaked by an application’s implemen-
tation of a crypto algorithm. By measuring the time it
takes to perform different cryptographic operations and
a knowledge of the implementation, it is sometimes pos-
sible to extract key bits [25]. It has been shown that side-
channel timing attacks can be practical over a network
[10]. Side-channel leakage can also occur in contexts
outside of cryptographic algorithms themselves. Song et
al. [41] describe a timing attack on the inter-keystroke
timing of an interactive SSH connection. Their exper-
iments indicate that one can gain 5.7 bits of informa-
tion about an SSH password from the observed inter-
keystroke timings over a network, assuming a password
length of 8 characters. This corresponds to a 50x reduc-
tion in work factor for a bruce-force attack.

In fact, the most commonly studied examples of net-
work timing channels in the recent literature are cryp-
tosystem side-channel attacks. Here, the amount of in-
formation leaked per packet is very small but given suf-
ficient data and large enough samples, it is possible to
perform effective cryptanalysis [23].

Actual malicious attacks exploiting covert chan-
nels have not been commonly reported in the litera-
ture. Covert storage channels exploiting unused TCP/IP
header fields have been used in the past by DDoS tools
[13]. We are not aware of any public reports document-
ing the use of malicious covert network timing channels
in the wild over the Internet, although it is at least plau-
sible that they too have been exploited as part of real at-
tacks.

Given the high variability in round trip times of net-
work packets and their unreliable delivery mechanisms
without any QoS guarantees, it is natural to ask whether
covert timing channels are even practical on the Internet.
Surprisingly, there has been relatively little research on
the practical exploitation of covert network timing chan-
nels. Cabuk et al. [11] describe the design of a simple
software-based network timing channel over IP. Because
the timing channel is software based, the sender of the
channel has complete control over the network subsys-
tem. Their timing channel uses a binary symbol encod-
ing where the presence or absence of a network packet in
a timing interval signifies a bit of information.

The idea of perturbing the timing information of exist-
ing network traffic is not new. Addition of timing jitters
to existing network packets has been studied previously
for SSH stepping stone correlation [45] and for tracking
VoIP calls [44]. VoIP tracking relies on encoding timing
information in VoIP packets to encode a 24-bit water-
mark that can then be used to correlate two separate VoIP
flows. This is made possible by exploiting the regularity
of VoIP traffic and modifying the statistical properties of
groups of packets to encode bits. Some timing attacks on

anonymizing mix networks also rely on perturbing flows
[36, 30].

3 Input Channels and Network Events

In the discussion that follows, we use the following
terminology while talking about covert network timing
channels. The sender of the channel is the subverted en-
tity that is responsible for modulating the timing to en-
code information. It can be an application software, part
of the operating system or a hardware device. The re-
ceiver in the channel can either be a network connection
endpoint or a passive eavesdropper that extracts infor-
mation from the channel by looking at network packet
timings.

The sender in a covert network timing channel aims to
modulate the timing of packets on the network to which
the receiver has access. This may, for example, be the
result of a software trojan that generates network pack-
ets at specific times corresponding to the information be-
ing sent [11]. Similarly, a router in the path of a net-
work packet can change [44] the timing of the packets
it receives before sending them to their destination. In
both these examples, the sender of the timing channel
has complete control over the network packets and can
directly influence their timing on the network. Ideally,
when the network delay is negligible, the receiver of the
timing channel observes the same timings as those in-
tended by the sender. Thus, the sender of the covert chan-
nel is a part of an already compromised output channel
or device. Research in practical network timing chan-
nels typically considers such direct channel senders. This
threat model, however, is overly conservative. It is possi-
ble to have usable and practical network timing channels
that require only the compromise of system components
that have traditionally been thought to lie comfortably
within a host’s security boundary: the input subsystems.

That the subversion of an input channel or device is a
sufficient condition for a practical network timing chan-
nel to exist is a somewhat surprising claim. However,
once we consider that many network events are directly
caused by activity on input channels, it is easy to see
how such covert channels might work. Also, because we
are just interested in timing, we only need to modify the
timing of existing input events. It is not necessary to gen-
erate any new traffic.

From the attacker’s perspective, the goal of a covert
channel is to leak secrets in violation of the host’s se-
curity policy. Compromised input devices expose any
secrets communicated over the input channel. For ex-
ample, compromising a keyboard (used by the Keyboard
JitterBug) allows the attacker to learn passphrases and
other personal information that can then be leaked over
the covert network timing channel.
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In fact, compromising an output channel to leak se-
crets over a covert channel is not a very interesting sce-
nario for the attacker. Once such a channel or device
has been infiltrated by an attacker, leaking secrets from
it is very easy. A compromised output subsystem has
many options for communicating with an unauthorized
receiver, often at much higher bandwidth than a covert
channel could provide.

Input based channels do not fit well within the tradi-
tional model used in covert channel analysis. As we will
see, their presence – as well as the fact that they can be
exploited in practice – makes it necessary to include in-
put devices in the Trusted Computing Base (TCB).

The coupling between input devices and the network
is made possible by timing propagation often present in
general purpose computing systems. Once these chan-
nels have been identified, they can be exploited with a
JitterBug.

4 Networks and JitterBugs

Loosely coupled network timing channels and JitterBugs
are a way of thinking about covert network channels
in conventional computer architectures that emphasizes
their potential for exploitation. As such, they also pro-
vide a model under which the threat of covert channels
in conventional computer systems can be analyzed.

One of the characteristics of the software and router
based network timing channel described in the previous
section is that the sender and receiver of the channel are
closely coupled together.

In loosely coupled network timing channels, the sender
and receiver might be separated by multiple system lay-
ers, each belonging to a different level of abstraction.
These channels are based on the observation that, just
as data flow occurs in a general computing system, tim-
ing information also propagates from one system object
to the other. By perturbing this timing information, it is
possible to modulate a receiver many stages ahead in this
flow. It is easier to see how this can be done by consid-
ering an example flow that is exploited by the Keyboard
JitterBug.

Consider the case where the user is running an inter-
active network application. Each keypress triggers a se-
quence of events. The keyboard sends scan codes over
the keyboard cable to the host’s keyboard controller. This
transmission is not instantaneous and depends on the
state of the hardware, whether there’s enough space in
the keyboard controller buffer, etc. This in turn causes
an interrupt to be generated to the operating system. De-
pending on the operations being performed, there might
be a variable delay between when the value is received
by the keyboard buffer and when it is read by the op-
erating system. Once the interrupt handling routine has

read the value from the keyboard controller, the operat-
ing system will typically perform some additional oper-
ations (e.g. scan-code → key-code translation) and put
this value into a buffer to be read by the user-space net-
work application, typically through a read() system call.
Once the interactive network software gets the charac-
ter, it might perform additional processing (e.g. encryp-
tion) before requesting the OS to send the character in a
network packet. Similarly, additional delays will occur
due to the network stack and hardware before the packet
is sent out on the network. The timing of the network
packet corresponds to the time when the key is pressed
and the sum of all these additional delays.

In the above example, the flow of timing information
(when the key is pressed) goes through several iterations
of these added delays while the data moves through vari-
ous system layers at different abstractions. Each of these
layers adds noise to the timing information by imposing a
non-deterministic delay due to their internal scheduling,
buffering and processing mechanisms. Loosely coupled
timing channels are based on the idea that the timing in-
formation can be influenced at any one of these several
layers.

As long as the sender of the covert timing channel is
positioned somewhere before or within any of these lay-
ers, it can modulate event timing to transmit data. The
encoding applied by the sender is dependent on the prop-
erties of this channel that exists between itself and the
receiver. The more the number of layers between the
sender and receiver, the weaker is their coupling on the
timing channel. A loosely coupled network timing chan-
nel is one where the source and the receiver of the timing
channel are separated by many such delay inducing lay-
ers.

4.1 JitterBugs

JitterBugs are a class of mechanisms that can be used to
covertly exploit a loosely coupled network timing chan-
nel. They have two defining properties. First, they have
access to (and can recognize) sensitive information. Sec-
ond, they have the ability to modulate event timing over
a loosely-coupled network timing channel.

The covert transmission need not performed at the
same time the sensitive information is captured. A Jit-
terBug can collect and store sensitive information and
replay it later over the loosely coupled network timing
channel. A JitterBug is semi-passive in nature, i.e. it
does not generate any new events. All modulation is
done by piggybacking onto pre-existing events. This also
makes a JitterBug much harder to detect in comparison
to a more active covert timing channel source. Figure 1
shows the general architecture of a JitterBug.
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Figure 1: High-level overview of JitterBug

4.2 Example Channels

The keyboard is not the only channel susceptible to ex-
ploitation by a JitterBug. Other input peripherals can
also provide a suitable environment for a covert network
timing channel to exist. Various network computing ap-
plications allow users to remotely access hosts on the In-
ternet as if they were being used locally. Some exam-
ples of such applications include NXClient, VNC (Vir-
tual Network Computing) and Microsoft Remote Desk-
top. To minimize lag and keep the response time low,
user input is typically transmitted over the network as
soon as it is received on the sender’s side. This timing
channel can be exploited by placing a JitterBug between
the communication path of the input device and the com-
puter. Any digital input device – the mouse, digital mi-
crophone, web camera, etc. – is potentially exploitable
in this way.

Many VoIP implementations support optimizations
based on “silent intervals”, periods of speech where
nothing is being said. Network communication while us-
ing VoIP is typically regular. Packets with voice data
are sent out at regular intervals over the network. If the
silent interval feature is supported, then during periods
of silence, packets are no longer sent to conserve band-
width and system resources. By adding extraneous noise
that influences the times at which these silent intervals
are generated, a covert network timing channel can ex-
ist. In this case, a JitterBug can be placed in the audio
interface or behind a digital microphone.

5 Keyboard JitterBug

In most interactive network applications (e.g. SSH,
XServer, Telnet, etc.), each keypress corresponds to a
packet (possibly encrypted) being sent out on the net-
work. The timing of these packets is closely correlated
with the times at which the keys were pressed. The Key-
board JitterBug adds small delays to keypresses that en-
code the data to be covertly exfiltrated. By observing
the precise times packets arrive on the network, a remote
receiver can recover this data. The Keyboard JitterBug

does not generate any new network packets. It piggy-
backs its output atop existing network traffic by modu-
lating timing.

The Keyboard JitterBug makes it possible to leak se-
crets over the network simply by compromising a key-
board input channel. It is, in effect, an advanced key-
logger that solves the data exfiltration problem in a novel
way.

5.1 Architecture

Our Keyboard JitterBug is implemented as a hardware
interception device that sits between the keyboard and
the computer. It is also possible to implement a Jitter-
Bug by modifying the keyboard firmware or the internal
keyboard circuits, but the bump-in-the-wire implementa-
tion lends itself to easy installation on existing keyboards
without the need for any major modification. Figure 2
shows the high-level architecture of the Keyboard Jitter-
Bug.

The Keyboard JitterBug adds timing information to
keypresses in the form of small jitters that are unnotice-
able to a human operator. If the user is typing in an inter-
active network application, then each keystroke will be
sent in its own network packet. Ignoring the effects of
buffering and network delays (the ideal case), the timing
of the network packets will mirror closely the times at
which the keystroke were received by the keyboard con-
troller on the host. By observing these packet timings,
an eavesdropper can reconstruct the original information
that was encoded by the Keyboard JitterBug.

5.2 Symbol Encoding

The Keyboard JitterBug implements a covert timing
channel by encoding information within inter-keystroke
timings. By modifying the timing of keyboard events
received by the keyboard controller, the inter-keystroke
timings are manipulated such that they satisfy certain
properties depending on the information it is trying to
send.
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Figure 2: Keyboard JitterBug architecture

The sender and the receiver do not require synchro-
nized clocks but they do need clocks with sufficient ac-
curacy. Our prototype Keyboard JitterBug uses its own
crystal controlled clock to govern timing.

Below we describe a simple binary encoding scheme
where each timing interval corresponding to adjacent
keystrokes encodes a single bit of information.

To encode a binary sequence {bi} using the Keyboard
JitterBug, we manipulate the sequence {ti} of times
when the keystrokes are pressed by adding a delay de-
noted by τi to each element of this original sequence.
The new sequence of events {t′i}, where each t′i = ti+τi,
are the times at which the keystrokes are released by the
Keyboard JitterBug to the keyboard controller. The re-
sulting sequence encodes information in the differences
δi = t′i − t′i−1, such that:

δi mod w =
{

0 if bi = 0;
bw/2c if bi = 1;

where w is a real-time parameter called the timing win-
dow.

Therefore, to encode a ‘0’ the delay added is such that
δi mod w is 0 and to encode a ‘1’, the delay added is
such that δi mod w is bw/2c. In this symbol encoding
scheme, within the timing window of length w, bw/2c is
the antipode of 0.

Observe that each τi < w. Hence, w defines the max-
imum delay added to each keystroke by the Keyboard
JitterBug.

It is easy to understand the encoding algorithm
with the help of a simple example. Assuming a
window size w of 20 ms, to transmit the bit se-
quence {0, 1, 0, 1, 1}, the JitterBug would add delay
such that the modified inter-keystroke timings (mod-
ulo 20) would be {0, 10, 0, 10, 10}. So if the (orig-
inal) observed inter-keystroke timings were (in ms)
{123, 145, 333, 813, 140}, the delay added would be
such that the modified inter-keystroke timings are
{140, 150, 340, 830, 150}. Hence, the JitterBug would

use the delay sequence {17, 5, 7, 17, 10} where each of
these individual delays is less than 20 ms.

5.3 Symbol Decoding

For the Keyboard JitterBug network timing channel,
the receiver is a passive eavesdropper that needs only
the ability to measure the times at which each network
packet arrives on the network. There are two ways a re-
ceiver might extract this timing information: TCP Times-
tamps and sniffer timestamps.

The TCP Timestamp option, described in RFC 1323
[19], allows each TCP packet to contain a 32-bit times-
tamp. This 32-bit TCP timestamp is a monotonically
increasing counter and acts as a virtual-clock. In most
modern operating systems, the TCP timestamp is directly
derived from the system clock. The granularity of this
clock depends on the operating system in use. Some
commonly used values are 10 ms (some Linux distribu-
tions and FreeBSD), 500 ms (OpenBSD), and 100 ms
(Microsoft Windows). As TCP timestamps correspond
to the time at which the network packet was sent accord-
ing to the source clock, they are unaffected by network
jitter. The chief disadvantage of using TCP timestamps
is their much coarser granularity on many operating sys-
tems, requiring the use of large timing windows for sym-
bol encoding and decoding. Also, TCP timestamps are
only used for a flow if both ends support the option and in
addition, the initial SYN packet for the connection con-
tained this option.

Sniffer timestamps, in contrast, represent the times at
which packets are seen by a remote network sniffer. Due
to network delays, these timestamps are offset from the
actual time the packet was sent at the source. In addi-
tion, these timing offsets are affected by any network jit-
ter present.

Based on the above discussion, it is clear that the
choice of the particular timestamp to use depends on the
exact network conditions, timing window size and the
placement of the receiver on the network relative to the
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covert channel sender. However, we use sniffer times-
tamps exclusively for our experiments as they provide
sufficient granularity for a much wider range of window
sizes and operating systems. Also, since the Keyboard
JitterBug has no control over the host or its OS, assuming
only sniffer timestamps is a more conservative assump-
tion for the attacker.

For decoding, the receiver on the timing channel
records the sequence of times {t̂i} of network packets
corresponding to each keystroke. Then the sequence of
differences {δ̂i = t̂i − t̂i−1}, encodes the bits of infor-
mation being transmitted. To allow the receiver to handle
small variations in network transit times due to network
jitter, the decoding algorithm allows some tolerance. The
tolerance parameter ε is used by the decoder to handle
these small fluctuations. The decoding algorithm is as
follows:

if −ε < δ̂i ≤ ε ( mod w) then bi = 0;
if w/2 − ε ≤ δ̂i < w/2 + ε ( mod w) then bi = 1;

0 w/2 w

e e2e

Decode as 0

Decode as 1

Figure 3: Timing Window for binary symbol decoding

The tolerance ε is an important parameter that decides
the length of guard bands that compensate for the vari-
ability in the network and other delays. Figure 3 shows
how the receiver decodes bits based on the inter-packet
delays modulo the length of the timing window. The
bands used for the decoding are calculated based on the
value of ε. From the figure it is easy to see that maximum
value of ε is w/4. Note that for a particular choice of w
and ε, the proportion of timing window allocated for ‘1’
and a ‘0’ may not be equal.

For applications where the total added jitter is an im-
portant consideration, the tolerance ε can be used during
symbol encoding to reduce the average jitter added at the
cost of some channel performance.

The length of the timing window is an important pa-
rameter. We want it to be small so as to minimize the
keyboard lag experienced by the user. At the same time,
we want to make sure the guard bands are large enough
to handle channel noise.

Because the receiver uses inter-packet delay and not
absolute packet times, there is no need for synchroniza-

tion between the source and receiver clocks. The clocks,
however, need to run at the same rate.

The above scheme allows one bit of information to be
transmitted per keypress. However, it is also possible
to use a more efficient symbol alphabet with cardinality
greater than two by subdividing the window further (in-
stead of just two regions) corresponding to each possi-
ble symbol that can be transmitted. This choice however
impacts the required granularity of the timing window.
More specifically, for an encoding scheme with alphabet
A, cardinality k, and a tolerance of ε for each symbol, the
timing window w needs to be atleast 2kε units in length.
We experimentally evaluate one such scheme in Section
6.3.6.

5.4 Framing and Error Correction

Our Keyboard JitterBug assumes that there will be bursts
of contiguous keyboard activity in the interactive net-
work application generating network packets, though
these bursts themselves might be interrupted and infre-
quent. In our model, the only information sent over
the covert timing channel is ASCII text corresponding to
short user passphrases. Consequently, we do not perform
any detailed analysis of the performance of the channel
using different framing mechanisms. However, we tested
the Keyboard JitterBug using two very simple framing
schemes.

One approach is based on bit-stuffing [28], which uses
a special sequence of bits known as the Frame Sync
Sequence (FSS) that acts as frame delimiter. This se-
quence is prevented from occurring in the actual data be-
ing transmitted by “stuffing” additional bits when it is
encountered in the data stream. Conversely, these extra
bits are “destuffed” by the decoder at the receiver to re-
cover the original bits of information. The advantage of
using bit-stuffing is that it does not require any change to
the underlying low-level symbol encoding scheme. For
example, the symbol alphabet can still be binary.

An alternative framing mechanism adds a third symbol
to the low-level encoding scheme. This special symbol
in the underlying transmission alphabet acts as a frame
delimiter. Note that if the length of the timing window is
kept constant, this reduces the maximum possible length
of the guard bands used for decoding the information
symbols (0 and 1) compared to a purely binary scheme.
So this might lead to lower channel performance if net-
work noise is present. It is also useful to give more toler-
ance to the frame delimiter symbol encoding as framing
errors cause the whole frame to be discarded at the re-
ceiver. Thus, delimiter corruption causes a much higher
commensurate effect on the overall bit error rate than the
corruption of a single bit. This issue is discussed further
in Section 6.3.
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Figure 4: Prototype Keyboard JitterBug

Error correction might also be required if the timing
channel suffers from a lot of noise. However, in the sim-
ple case in which a short encryption key or password
is being leaked, forward error correction is provided in-
herently by repeating the transmission each time it com-
pletes.

5.5 Prototype PIC implementation

We implemented a prototype Keyboard JitterBug on the
Microchip PIC18F series of Peripheral Interface Con-
trollers (PICs). The PIC18F series is a family of 12-bit
core flash programmable microcontrollers. Our source
code is a combination of C and PIC assembly and the
final machine code uses less than 5KB program mem-
ory. The implementation works for keyboards that use
the IBM PS/2 protocol. It should be easy to port the code
to other kinds of keyboards, e.g. USB. The bump-in-
the-wire implementation acts as a relay device for PS/2
signals. It derives its power from the PS/2 voltage lines
and hence no additional power source is required. When
enabled, it adds jitters to delay the time at which the
keyboard controller receives notification of the keypress.
It also supports programmable triggers (as described in
Section 5.6) that help identify typed sensitive informa-
tion to leak over the covert channel. Figure 4 shows our
PIC-based prototype implementation. A truly surrepti-
tious Keyboard JitterBug would have to be small enough
to conceal within a cable or connector. Since the com-
putational requirements are quite modest here, miniatur-
ization could be readily accomplished through the use of
smaller components or with customized ASIC hardware.

5.6 Attack scenarios

We consider a real and somewhat famous example from
recent news reports that motivated our design. In gath-
ering evidence in the 2000 bookmaking case [3] against

Nicodemo “Little Nicky” Scarfo, the FBI surreptitiously
installed some sort of keylogger device in the suspect’s
computer to gain access to his PGP passphrases. In-
stalling the device apparently required physical access to
the suspect’s office, a high-risk and expensive operation.
Once installed, the device recorded keypresses under cer-
tain conditions. This introduced a new problem: retrieval
of the captured information. A conventional keylogger
must either compromise the host software (to allow re-
mote access and offloading of captured data) or require
physical access to recover the device itself. Neither op-
tion is entirely satisfactory from the FBI’s perspective.
Compromise of the host software creates an ongoing risk
of discovery or data loss (if the host software is updated
or replaced), and physical recovery requires additional
(risky) physical access. The Keyboard JitterBug adds a
third option: leaking the targeted information atop nor-
mal network traffic through the timing channel, obviat-
ing the need for subsequent retrieval or compromise of
the host.1

As the Keyboard JitterBug lies in the communica-
tion path between the keyboard and the computer sys-
tem, it has access to the keystrokes typed in by the user.
The covert network timing channel is relatively low-
bandwidth and thus the JitterBug needs the capability to
recognize and store the specific information of interest
with high confidence. JitterBug’s programmable triggers
do just that by acting as recognizers of sensitive informa-
tion (like passphrases) and storing this information for
sending out later over the covert network timing chan-
nel. Programmable triggers allow a Keyboard JitterBug
to wait for particular strings to be typed. When such a
condition is detected, it stores whatever string is typed
next into its internal EEPROM for subsequent transmis-
sion.

For example, a Keyboard JitterBug might be pro-
grammed with the user name of the target as the trig-
ger, on the assumption that the following keystrokes
are likely to include a password. It might also be pro-
grammed to detect certain typing patterns that tend to in-
dicate that the user is initiating an SSH connection (e.g.
“ssh username@host”). By storing whatever is subse-
quently typed by the user, the Keyboard JitterBug effec-
tively gets hold of the user’s SSH password. The covert
channel transmits the password back to the attacker with-
out the need to retrieve the bug; the password can even
be sent atop the victim’s own encrypted SSH connection.

In this sense, Keyboard JitterBug can be seen as a
next step in the evolution of keyloggers. The possibil-

1Because the Scarfo case never went to trial, the technology used
by the FBI to capture the keystrokes was never publicly disclosed – it
may have been a JitterBug, although it was more likely a conventional
keylogger. The PGP passphrase of interest turned out to be based on
Mr. Scarfo’s father’s US Prison ID number.
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ity of such devices raises obvious privacy and security
concerns.

The Keyboard JitterBug implementation can also
serve as the basis for more advanced worms and viruses.
Many newer keyboards are software programmable.
Some of these keyboards even allow their internal
firmware to be upgraded by software. A malicious
virus program might rewrite the firmware with a Jitter-
Bug(ged) version and delete itself, effectively avoiding
any form of detection by an antivirus program.

Finally, perhaps the most serious (and also the most
sophisticated to mount) application of the JitterBug is as
part of a Supply Chain Attack. Rather than targeting a
specific system, the attacker subverts the keyboard sup-
ply and manufacturing process to install such a device in
many keyboards from one or more suppliers, in the hope
that a compromised device will eventually be acquired by
a target of interest. Such an attack seems most plausible
in the context of government espionage or information
warfare, but could also be mounted by an industrial or
individual attacker who manages to compromise a key-
board vendor’s code base.

5.7 Non-interactive network applications

Although the Keyboard JitterBug’s primary application
is for leaking secrets or other information over interactive
network applications, it can also be used in a restricted
setting with very low bandwidth for less interactive net-
work applications. Much network activity has a causal
relationship with specific keyboard events. This is true
for many commonly used network programs such as web
browsers, instant messengers and email clients.

For IM programs, pressing return after a line of text
causes the message to be sent over a network. In addi-
tion, many IM protocols also send a notification to the
other end as soon as the user starts typing another line.
By detecting and manipulating keystroke timings when
such events happen, the Keyboard JitterBug can leak in-
formation. Similarly, typing a URL into a web-browser
typically requires the user to press “return” before the
browser fetches it. The Keyboard JitterBug can manip-
ulate this timing to affect the time at which the URL is
fetched over the network. The relevant “return” when
the jitter should be added can be detected by using a pro-
grammable trigger (e.g. Ctrl-L → URL→<return> for
Mozilla Firefox). E-mail clients also sometimes use key-
board shortcuts which cause specific network events (e.g.
sending an e-mail) to occur. By adding jitter to the ap-
propriate keypresses, the timing of these network events
can be manipulated (and observed).

For the above applications, the coupling between key-
board events and network activity make them susceptible
to attacks using the Keyboard JitterBug. The bandwidth

of leakage, however, is significantly lower. One advan-
tage they have over SSH from the perspective of the at-
tacker is that many of these applications tend not to use
encryption. This reduces the number of insertion errors
(Section 6.2) by making it easier for the covert channel
receiver to distinguish between normal network packets
and those whose timing was manipulated by the Key-
board JitterBug.

6 Keyboard JitterBug: Evaluation

In this section, our focus is on evaluating the efficacy
of the timing channel under a variety of practical condi-
tions.

6.1 Factors affecting performance

Because the JitterBug is so far removed from its receiver,
many factors affect its performance.

• Buffering: Keyboard buffering affects the delay be-
tween when the key is received by the keyboard
controller and when it is available to the application
that is trying to send the keystroke over the network.
Similarly, network buffering affects the delay be-
tween when the request for sending the packet is re-
ceived by the OS network stack and when it is actu-
ally transmitted over the network. If the variance of
buffering delay (keyboard + network) is high, then
the number of symbol errors increase, reducing the
effective bitrate of the channel.

• OS Scheduling: For a loosely-coupled covert tim-
ing channel, the noise added by OS scheduling de-
pends on a variety of factors including the time
quantum used, the scheduling algorithm, system
load, etc. Fortunately, keyboard and network han-
dling in most modern operating systems is given
high priority and hence, the noise added to the chan-
nel from scheduling effects is usually quite insignif-
icant.

• Nagle’s algorithm: Described in RFC 896 [37],
Nagle’s algorithm is used to handle the small-packet
problem that is caused by the increase in packet
header overhead when interactive network applica-
tions are used as each keystroke is sent in its own
network packet. The algorithm is an adaptive way
of deciding when to buffer data before sending it
out in a single network packet based on the net-
work conditions (latency and bandwidth). If Na-
gle’s algorithm is enabled it can cause two problems
with the timing channel. Firstly, it creates a varying
network buffering delay that adds noise to the tim-
ing information. Secondly, it can lead to multiple
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keystrokes being sent out in a single packet. Hence,
the timing information for all but the first keystroke
might be lost leading to missing symbols in the tim-
ing channel. Fortunately, Nagle’s algorithm is usu-
ally disabled by default (using the TCP NODELAY
option) for better responsiveness in interactive net-
work applications including most commonly used
SSH client implementations (e.g. OpenSSH). This
means that each keystroke generates it own network
packet that is sent out as soon as possible (assuming
no network congestion).

• Network Jitter: This is the most important factor
for a network timing channel. Network Jitter, i.e.
variability in round trip times (RTT), adds noise to
the timing information and affects the accuracy of
symbol decoding at the receiver. The placement of
the receiver also affects the “observed” network jit-
ter and thus changes the observed channel accuracy.
Encoding a symbol in the timing of two adjacent
packets has a mitigating effect on the channel ac-
curacy as each change in network delay causes a
maximum of one error to occur.

6.2 Sources of Error

The Keyboard JitterBug timing channel can suffer from
three kinds of transmission errors: insertions, deletions
and inversions.

Insertions occur when receiver cannot distinguish be-
tween network packets corresponding to the Keyboard
JitterBug and those corresponding to other network traf-
fic. This will happen when any form of encryption is
being used. Depending on the protocol layer at which
encryption is being applied, the frequency of insertion
errors will be different. The worst case is when link en-
cryption is being used. In this case, it would be very
hard to separate covert channel packets with that of nor-
mal network traffic, causing insertion errors to happen
all the time. Fortunately, the use of link layer encryption
along the whole path of a network packet on the Internet
is quite rare, so this restriction is not that much of an is-
sue. Encryption at the network or transport layers (e.g.
IPSec, TLS) would also cause significant insertion errors
to occur, especially if one of the network applications of
interest use them for communication. Application layer
encryption can cause insertion errors but they are pretty
rare as the visible packet format and size (e.g. SSH)
makes it possible (in most cases) to distinguish packets
of interest from normal network traffic. Finally, if no
encryption is being used (e.g. telnet), then no insertion
errors occur.

Deletion errors are of two kinds. As the Keyboard
JitterBug only has access to keystrokes and no other

system information, it is not possible to distinguish be-
tween when the user is typing inside a network applica-
tion of interest or in other applications running on the
system. The situation can be ameliorated somewhat by
using heuristics to determine when the user is typing in
a network application (e.g. by detecting shell commands
being typed when previously the user opened up a new
ssh connection) and add jitters only then. In cases where
this is not possible, multiple chunks of bits might be lost.
The second kind of deletion errors occur when network
buffering causes multiple keystrokes to be sent in the
same packet. These deletion errors occur less frequently
and typically cause very few symbols to be lost. They
can always be detected when no encryption is being used
(e.g. telnet). For the more general case, an appropriate
framing scheme would be required.

The main application of the Keyboard JitterBug chan-
nel is to leak passwords, typed cryptographic keys,
and other such secrets. As these secrets are relatively
short, they can be transmitted repeatedly to increase the
chances that they will be received correctly. Both inser-
tion and deletion errors are, by their nature, bursty. The
redundancy through repetition provides inherent forward
error correction (FEC) to handle them.

Finally, symbol corruption errors are caused by de-
lays that might occur on the sender’s side or in the net-
work while the packet is in transit (due to network jitter).
These errors cause a different symbol to be received than
what was originally sent. For the binary symbol encod-
ing scheme, the errors take the form of bit inversions.
Symbol corruption errors can be handled by using suit-
able error correction coding schemes.

As insertion and deletion errors are very specific to the
application and environment under which the Keyboard
JitterBug is deployed, we do not focus on them in our
experimental evaluation.

6.3 Experimental Results

We performed various experiments to test the Keyboard
JitterBug under a variety of sender configurations, net-
work and receiver conditions. The experiments were per-
formed with our bump-in-the-wire implementation of the
Keyboard JitterBug on a PIC microcontoller.

As our covert channel relies on manipulating the tim-
ing of keypresses to piggyback information, the key-
board needs to be in use for the channel to work and be
tested. Instead of manually typing at the keyboard for
each experiment, we built a keyboard replayer for our
controlled experiments. A special mode in the Keyboard
JitterBug allows it to store all keyboard traffic into the
EEPROM for later replay. Then the covert timing chan-
nel can be turned on and the replay information is used
to simulate a real user typing at the keyboard preserving
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the original user’s keystroke timing information. This
way we can test different Keyboard JitterBug parame-
ters under the same set of conditions. Note that the Key-
board JitterBug is still placed as a relay device between
the keyboard and the computer. The available memory of
the PIC device limits the maximum length of the replay.
When the end of a replay is reached, the JitterBug starts
the replay from the beginning. This does not materially
affect our experiments, since we are concerned only with
the inter-character timing, not the actual text.

w/4 w/2 w/4

Decode as 0

Decode as 1

Figure 5: Timing Window (ε = w/4) used for binary
symbol decoding in experiments

For all experiments where a pure binary symbol en-
coding is being used, the user-defined tolerance parame-
ter ε = w/4. Figure 5 shows the decoding timing win-
dow used with the bands for ‘0’ and ‘1’.

The source machines used for the experiments were
connected to the LAN network at the Dept. of Com-
puter and Information Science, University of Pennsylva-
nia, Philadelphia. The source machines ran Linux 2.4.20
(unless otherwise noted). All network connections were
made via a 100Mbps switch. As we are interested in
finding how well the Keyboard JitterBug performs un-
der a range of different network conditions, we used the
PlanetLab network [12] to test our covert network timing
channel using various geographically displaced nodes.
Interactive SSH terminal sessions were initiated between
the source and destination nodes. All measurements of
the timing information for the covert channel were per-
formed at the destination host using tcpdump. Using
the time of arrival of network packets at the destination
host gives us a worst case estimate of the channel per-
formance. In practice, the covert channel receiver can be
placed anywhere in the path of the network packets. The
channel is configured to send an ASCII encoded string.

The standard measure of the performance of channel
under the presence of noise is the bit error rate (BER)
[40]. For channels with bit slips2, due to the possibil-
ity of bit loss, this metric cannot directly be used. For
the Keyboard JitterBug, as network buffering can cause
more than one keystroke to be sent in each packet, there
is potential for missing bits leading to synchronization

2In general, the lack of synchronization might occur for various
other reasons, such as the lack of buffer space, variation in clock rate,
etc.

errors. Therefore, while measuring raw channel perfor-
mance (without framing or error correction), the tradi-
tional definition of bit error rate based on the Hamming
Distance metric cannot be used. Instead, we use Leven-
shtein Distance, also called the edit distance to get the
raw bit error rate. Here, an error constitutes inversion or
deletion of bits. The edit distance is a measure of similar-
ity of two strings and is equal to the number of insertions,
deletions, and substitutions needed to convert the source
string (bits received) into the target string (bits sent).

While measuring channel performance with framing,
the bit error rate is calculated using the Hamming Dis-
tance metric for correctly received frames. For frames
discarded because of framing errors, all the data bits (of
the frame) are assumed to have been in error. Because
of framing, the receiver can detect and recover from bit
deletions and synchronize itself with the covert chan-
nel data stream. For evaluating the performance of the
channel with framing, three parameters are calculated:
Net BER (EC), Average Correct Frame BER (ECF ) and
Frame Discard Rate (EDF ). Net BER measures the total
fraction of bits that are lost or corrupted due to bit errors
within a frame or framing errors caused due to corrup-
tion of the Frame Sync Sequence or delimiter. Framing
errors cause whole frame(s) to be discarded leading to
the loss of all bits they contain. These bit errors (equal
to the frame size) are included in the calculation for Net
BER. Average Correct Frame BER is the average BER
only for the frames that were successfully decoded (with-
out framing errors). Therefore, bits lost due to framing
errors are not accounted for in calculating the Average
Correct Frame BER. The suitable error correction cod-
ing scheme to use would depend on this measure. Frame
Discard Rate is a measure of the frequency with which
frames get dropped or lost due to framing errors. It is
easy to see that:

EC = ECF + EDF − ECF EDF

6.3.1 Window Size and RTT

Table 1 summarizes the measured raw BER of the covert
network timing channel for six different nodes on the
PlanetLab network using different window sizes. These
nodes were chosen based on their wide ranging geo-
graphical distances from the source host and different
network round-trip times.

The raw BER is the channel performance without the
use of any error correction coding or framing. As the
calculation of the raw BER metric uses the edit distance
metric, the error rates also consider bit deletions and in-
sertions in addition to inversions. The notion of accept-
able raw channel performance would depend on a vari-
ety of factors including the framing mechanism used, the
application, and the capability of error correction codes.
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Node RTT Hops 1s 500ms 100ms 20ms 15ms 10ms 5ms 2ms
ColumbiaU (NYC, NY) 6 ms 14 0 0 0 .007 .007 .010 .044 .089
UKansas (Lawrence, KS) 42 ms 14 0 0 0 .005 .007 .008 .067 .143
UUtah (Salt Lake City, UT) 73 ms 23 0 0 0 .005 .005 .005 .039 .092
UCSD (San Diego, CA) 84 ms 19 0 0 0 .010 .011 .011 .044 .102
ETHZ (ETH, Zurich) 112 ms 17 0 0 0 .005 .006 .009 .049 .092
NUS (Singapore) 236ms 18 0 0 0 .045 .047 .048 .228 .240

Table 1: Measured Raw Bit Error Rate for different window sizes and network nodes (Levenshtein Distance
Metric)

Many error correction codes exist for channels where
both substitutions and deletions are possible and that use
the Levenshtein distance metric as the error rate met-
ric [29]. Marker Codes [15, 39] and Watermark Codes
[14] are some examples of such error correction schemes.
As our primary application for the channel is very low-
bandwidth, we consider a measured raw bit error rate of
less than 10% to be acceptable. We discuss channel per-
formance using the Hamming distance metric in Section
6.3.5 when we discuss experiments with the use of some
simple framing schemes.

For a fixed window size, the round-trip times and the
channel performance do not exhibit any clear trend. Intu-
itively, this lack of a trend is to be expected. The channel
encoding relies on the packet inter-arrival times for en-
coding the information. Thus, it is the network jitter and
not the end-to-end latency that affects performance of the
channel.

Acceptable performance is achievable even if the re-
ceiver is at a large distance from the source of the timing
channel. The node in Singapore, with a RTT of 236 ms,
is a case in point. For a window size of 20 ms, the raw
channel error rate is around 4.5%, which is quite usable
for many low-bandwidth applications of the JitterBug.

The maximum lag introduced by the Keyboard Jitter-
Bug for each keypress is equal to the window size w.
Consequently, the choice of this parameter is dependent
upon how large the value can be made while still keep-
ing the Keyboard JitterBug undetectable by the user. Al-
though we can get a perfect channel for all the nodes
tested with a window size of 1 second, this value is effec-
tively unusable because the user will detect the presence
of the Keyboard JitterBug. It is widely believed that 0.1
seconds is about the limit for the response time for a user
to feel that the system is reacting instantaneously [32].
Therefore in practice, the window size will have to be
smaller than that. Our own experience with the Keyboard
JitterBug shows that 20 ms is a perfectly acceptable win-
dow size and this amount of added lag for each keystroke
is effectively unnoticeable by the user.

The window size also affects the size of the guard
bands that help absorb some network jitter. The jitter

Load 20ms 15ms 10ms 5ms
SSH .010 .011 .011 .044
Telnet 0 .006 .01 .01

Table 2: Measured Raw Bit Error Rate for SSH and
Telnet (Levenshtein Distance Metric)

has two components: the frequency of change and the
magnitude of change. For a window size of w the im-
plementation can handle a maximum jitter of w/4 per
packet pair.

From Table 1, it is clear that, as expected, smaller win-
dow sizes lead to higher error rates. The increase in the
error rate, however, is not very drastic over the ranges we
tested. The channel remain usable even if window sizes
as low as 2 ms are used. For a window size of 20 ms or
more, channel performance is consistently high on all the
nodes tested. Our observations are supported by previous
studies of round-trip delays on the Internet. It has been
shown that on average, round-trip delays on the Internet
tend to cluster around within a jitter window of 10 ms
for significant periods of time [4]. Thus, this choice of
window size is likely to work under a wide gamut of net-
work conditions. When the exact conditions are known,
it is possible to optimize the Keyboard JitterBug further
by choosing smaller window sizes.

6.3.2 Network application

We measured the raw BER for four different windows
sizes for a covert timing channel to a PlanetLab node
in University of California, San Diego. The node is 19
hops away with an average Round-Trip Time (RTT) of
84.3 ms. Table 2 shows the measured raw BER for SSH
and Telnet. The channel performance is not affected by
the choice of the interactive network terminal applica-
tion. The advantage of Telnet, of course, is its lack of
encryption, which makes it easy to detect deletion errors
caused by multiple characters being sent in the same net-
work packet.
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OS 20ms 15ms 10ms 5ms
Linux 2.4.20 .010 .011 .011 .044
Linux 2.6.10 .010 .010 .010 .013
Windows XP(SP2) .001 .001 .001 .007
FreeBSD 5.4 .017 .033 .044 .058
OpenBSD 3.8 .022 .043 .05 .075

Table 3: Measured Raw Bit Error Rate for differ-
ent window sizes and operating systems (Levenshtein
Distance Metric)

Load 20ms 15ms 10ms 5ms
Idle .010 .011 .011 .044
Heavy Load .010 .016 .016 .05

Table 4: Measured Raw Bit Error Rate for differ-
ent windows sizes and system loads (Levenshtein Dis-
tance Metric)

6.3.3 Operating System

To confirm that the performance of the channel is not
significantly affected by the operating system through
which the Keyboard JitterBug is working, we performed
experiments to measure the performance of the imple-
mentation on several popular operating systems.3 We
again performed the experiments on the PlanetLab node
at San Diego, California for four different window sizes.
Table 3 summarizes the measured raw BER of the covert
timing channel for different operating systems. The raw
BER remains quite similar for all the operating systems
tested without any major fluctuations. The small differ-
ence in the results arises from two factors: variations
in network conditions and different OS implementations
of keyboard processing. Both these factors affect the
amount of noise present in the timing channel when it
reaches the receiver.

6.3.4 System Load

Keyboard and network events in general-purpose oper-
ating systems are typically given high processing prior-
ity. Moreover, their implementation is usually interrupt-
driven for better responsiveness and performance. So,
we do not expect the normal variation in system loads to
have any major influence on the performance of the tim-
ing channel. To confirm this, we used the stress [1] tool
to generate high system loads4 at the source machine and
then measured the performance of the timing channel at
the receiver. As before, the receiver of the timing chan-
nel is located at the PlanetLab Node in San Diego, CA.

3We did not perform experiments with Mac OS X because of the
absence of a PS/2 keyboard port on the Mac hardware.

4The command-line used was: stress –cpu 8 –io 4 –vm 2 –vm-bytes
256M

Node ET ECF EDF

ColumbiaU (NYC, NY) .142 0 .142
UKansas (Lawrence, KS) .152 0 .152
UUtah (Salt Lake City, UT) .093 0 .093
UCSD (San Diego, CA) .184 0 .184
ETHZ (ETH, Zurich) .112 0 .112
NUS (Singapore) .384 .014 .375

Table 5: Measured Bit Error Rate(s) with Framing
(Bit-Stuffing) (ET = Net BER, ECF : Average Correct
Frame BER, EDF : Frame Discard Rate)

Node ET ECF EDF

ColumbiaU (NYC, NY) .121 .002 .12
UKansas (Lawrence, KS) .104 0 .104
UUtah (Salt Lake City, UT) .137 .001 .136
UCSD (San Diego, CA) .202 .001 .2
ETHZ (ETH, Zurich) .088 0 .088
NUS (Singapore) .39 .005 .386

Table 6: Measured Bit Error Rate(s) with Framing
(Ternary Encoding) (ET = Net BER, ECF : Average
Correct Frame BER, EDF : Frame Discard Rate)

The source of the timing channel is a Pentium 4 2.4 GHz
Desktop System with 1GB of system memory running
Linux 2.4.20.

Table 4 shows the measured raw BER for normal sys-
tem load vs. heavy system load. The results show that
the behavior of the channel remains quite similar with-
out any drastic drops in the channel performance.

6.3.5 Framing

Many applications of the Keyboard JitterBug would re-
quire the use of framing for transmission of data on the
timing channel. We tested the JitterBug with two very
simple framing schemes: one based on bit stuffing and
the other using a low-level special frame delimiter sym-
bol. Our goal is to evaluate the performance of the chan-
nel using the Hamming distance metric rather than de-
scribe an optimal framing scheme for the timing channel.

The timing window used for the experiments is 20 ms
and the frame size is 16 bits. The bit-stuffing frame sync
sequence (FSS) used is 8 bits in length. The results are
summarized in Table 5 and Table 6. As described in Sec-
tion 6.3, three parameters are calculated for each run: the
Net BER, Average Correct Frame BER and the Frame
Discard Rate. The receiver discards any frame that is not
the correct size or has a corrupted frame delimiter.

It is clear from the results that the bulk of the net-
work errors are the result of discarded frames. Many
of these are synchronization errors caused by deletion of
bits from a frame due to network buffering. There are
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Node ET ECF EDF

ColumbiaU (NYC, NY) .150 .011 .140
UKansas (Lawrence, KS) .174 .030 .148
UUtah (Salt Lake City, UT) .170 .012 .16
UCSD (San Diego, CA) .173 .021 .156
ETHZ (ETH, Zurich) .153 .007 .147
NUS (Singapore) .34 .057 .299

Table 7: Measured Bit Error Rate(s) with high bit-
rate encoding (4bits/symbol + frame delimiter) (ET

= Net BER, ECF : Average Correct Frame BER, EDF :
Frame Discard Rate)

many possible ways the framing scheme could be opti-
mized to reduce the frequency of framing errors. Us-
ing smaller frame sizes can reduce the affect of dis-
carded frames on the overall BER. One could also use
a much more optimistic decoder so that partial frames
are not discarded completely but parts of their contents
are recovered. This would most likely need to be com-
bined with an error correction coding scheme for the
data within the frame. Coding schemes based on either
the Hamming distance metric (to handle substitutions) or
Levenshtein distance metric [42] (to handle deletions as
well) could be used. Another approach would be to mod-
ify the framing scheme to reduce the chance of frame
corruption. For example, using two frame delimiters at
the start of every frame instead of one. This way if only
one of the delimiters gets deleted or corrupted, the frame
can still be decoded correctly.

6.3.6 Encoding Scheme

Our results for smaller window sizes indicate that for
many environments in which the Keyboard JitterBug
might be deployed, one could use a more efficient sym-
bol encoding scheme by packing more than one bit of
information with each transmitted symbol. To con-
firm this hypothesis, we implemented a 16 symbol (four
bits/symbol) encoding scheme with an additional symbol
acting as the frame delimiter. The results of our experi-
ments are summarized in Table 7. The frame size used
is 16 bits (four symbols). The Average Correct Frame
BER stays at above acceptable levels for all the nodes
tested. The results show that it is possible to optimize the
framing and encoding schemes to increase the bandwidth
of the channel and at the same time maintain acceptable
channel performance.

6.4 Summary of the results

Our experimental results indicate that a conservative
choice of the window size as 20 ms is small enough to
be undetectable by a normal user and at the same time

gives good channel performance under a variety of sys-
tem loads, operating systems and network conditions.
One can also increase the bandwidth of the channel by
choosing a more aggressive encoding scheme as our re-
sults for the high bit rate encoding show. However, our
primary goal was to design an encoding scheme that is
robust and general enough to work under any unknown
environment without affecting user perception. The bi-
nary encoding scheme with a timing window of 20 ms
serves that purpose quite well.

6.5 Detection

The detection of covert network timing channels is a sep-
arate research problem of its own and as such, quite dif-
ficult. Thus we do not focus on the detectability aspects
of the channel in this paper. However, we briefly analyze
some of the issues.

It has been suggested in previous studies that covert
network timing channels can be detected by looking at
the inter-arrival times of network packets [11, 7]. These
detection algorithms rely on the notion of regularity, a
channel-specific property that can be used to distinguish
normal traffic from certain kinds of covert channel traffic.
None of these techniques work for detecting the presence
of any covert timing channel. The Keyboard JitterBug is
a low-bandwidth timing channel and has a different form
of regularity. Hence, these techniques are unlikely to be
able to detect the exploitation of our timing channel.

However, it might be possible to detect Keyboard Jit-
terBug activity by directly observing the inter-arrival
times of network packets. The inter-arrival times tend
to cluster around multiples of the window size or half
the window size. This is because the symbol encoding
scheme relies on using an inter-arrival time of 0 (modulo
w) for sending a ‘0’ and w/2 (modulo w) for sending a
‘1’. We collected an SSH trace without the use of a Key-
board JitterBug. We then modified the trace by adding
simulated jitter so that packet timings corresponded to
the case when a Keyboard JitterBug is being used. Be-
cause we do not model the effect of noise added by net-
work jitter, this gives us a worst case analysis of the de-
tectability of our channel.

Figure 6 shows the inter-arrival times for 550 packets
in the original trace for a range between 0.2s and 0.3s.
In Figure 7, we show the same trace except now with
simulated jitter that would be added by a Keyboard Jit-
terBug. Notice the banding around multiples of 10 ms,
which corresponds to a window size of 20 ms. Thus, a
simple plot of the inter-arrival times reveals that that a
covert timing channel is being exploited.

To evade such a simple detection scheme, an approach
based on rotating the timing window used for symbol en-
coding is described below. Note, however, that we do
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Figure 6: Original SSH Trace
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Figure 7: JitterBug applied to the original SSH Trace
(stationary time windows)

not claim that the use of the following technique makes
our channel undetectable using any other technique. It is
simply a countermeasure against the most direct way of
detecting our covert timing channel. The timing channel
might still be susceptible to other forms of analysis that
detect its presence in network traffic.

The method works as follows. As before, let us de-
note by {bi} the binary sequence to be transmitted using
jitters, and by {ti} the sequence of the times when the
keys are pressed. Assume there exists {si}, a pseudo-
random sequence of integers that range from 0 to w − 1,
where w is, as before, the length of the timing window.
The sequence {si} is assumed to be known by the sender
and the receiver but not by anyone else, and works as a
shared secret. Rather than encoding bits by adding de-
lays so that the inter-arrival distances cluster around 0
and its antipode, the source adds jitter such that they clus-
ter around the sequence {si} and its associated antipodal
sequence.

More precisely, in order to transmit the bit bi, the Jit-
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Figure 8: JitterBug applied to the original SSH Trace
(rotating time windows)
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Figure 9: Rotating timing windows: The symbol encod-
ing window is rotated for sending each bit

terBug adds a delay such that:

(δi − si) mod w =
{

0 if bi = 0;
bw/2c if bi = 1;

where δi = t
′

i − t
′

i−1, as before are the difference in
times when adjacent keystrokes are sent to the keyboard
controller by the Keyboard JitterBug.

Consider an example where Bob wants to send 3-bits
of information {1, 0, 1} to Eve using JitterBug. Assume
that the window size is 20 ms, and that they agreed on
the sequence {s0, s1, s2} = {3, 9, 5}. Figure 9 illustrates
how the timing window is rotated at each step before de-
ciding on the amount of jitter to add.

Figure 8 shows the inter-arrival times for the same
SSH trace with packet timing adjusted for JitterBug but
this time using rotating windows during symbol encod-
ing instead of the original static scheme. The sequence
{si} is chosen to be a pseudo-random sequence of in-
tegers between 0 and 19. The inter-arrival times are no
longer clustered now and there are no new noticeable pat-
terns compared to the original SSH trace.
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The intuition behind this approach is that the resulting
sequence {δ̂i} on the receiver’s side looks as arbitrary
as {si}. The choice of {si} is obviously important and
should be sufficiently random . Note that when {si = 0
; ∀ i}, this reduces to the original case with a stationary
time window.

7 Conclusions and Future Work

Compromising an input channel is useful not only for
learning secrets, but, as we have seen, is also often suffi-
cient for leaking them over the network. We introduced
loosely-coupled network timing channels and JitterBugs,
through which covert network timing channels can be ex-
ploited to leak sensitive information in general-purpose
computing systems. We described the Keyboard Jitter-
Bug, our implementation of such a network timing chan-
nel. The Keyboard JitterBug is a keylogger that does
not require physical retrieval to exfiltrate its captured
data. It can leak previously captured sensitive informa-
tion such as user passphrases over interactive network
applications by adding small and unnoticeable delays to
user keypresses. It is even possible to use the Keyboard
JitterBug, at low-bandwidth with other, non-interactive,
network applications, such as web browsers and instant
messaging systems.

Our experiments suggest that the distance over the net-
work between the receiver and the JitterBug doesn’t mat-
ter very much. The timing window size w is the basic
parameter of the symbol encoding scheme. Its choice
is dictated by the expected amount of jitter in the net-
work and by the maximum delay that can be tolerated.
A conservative choice of the window size as 20 ms is
small enough to be unnoticeable to a human user and at
the same time gives good channel performance over a
wide range of network conditions and operating systems
tested. This makes a Keyboard JitterBug very robust and
less susceptible to major changes in the environment in
which it is installed. We also described experimental re-
sults with some simple framing schemes and more ag-
gressive encoding mechanisms. Our results show that
the symbol encoding and framing could be further op-
timized for better performance in certain environments.
Finally, we showed simple techniques for defeating the
most direct ways of detecting our attacks.

The most obvious extension to this work is the de-
velopment of better framing and encoding schemes with
higher bandwidth, by making less conservative assump-
tions that take advantage of specific channel properties.
In this paper, however, we deliberately avoided optimiz-
ing for any particular channel, operating system, or net-
worked application, instead identifying parameters that
give satisfactory performance and that remain highly ro-
bust under varied conditions.

All covert timing channels represent an arms race be-
tween those who exploit such channels and those who
want to detect their use. This necessitates the use of
countermeasures by a covert channel to elude detection
by network wardens. We suggested only very simple
countermeasures in this paper. Our initial results with
rotating encoding timing windows indicate that the use
of cryptographic techniques to hide the use of encoded
jitter channels may be a promising approach. We plan to
explore this direction in the future.
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