
Towards a Framework for Automatic Correction of
Anti-patterns

Rodrigo Morales, SWAT, Polytechnique Montréal, Canada; rodrigo.morales@polymtl.ca

Abstract—One of the biggest concerns in software maintenance
is design quality; poor design hinders software maintenance
and evolution. One way to improve design quality is to detect
and correct anti-patterns (i.e., poor solutions to design and
implementation problems), for example through refactorings.
There are several approaches to detect anti-patterns, that rely
on metrics and structural properties. However, finding a spe-
cific solution to remove anti-patterns is a challenging task as
candidate refactorings can be conflicting and their number very
large, making it costly. Hence, development teams often have to
prioritize the refactorings to be applied on a system. In addition
to this, refactoring is risky, since non-experienced developers can
change the behaviour of a system, without a comprehensive test
suite. Therefore, there is a need for tools that can automatically
remove anti-patterns. We will apply meta-heuristics to propose a
technique for automated refactoring that improves design quality.

I. BACKGROUND

Software maintenance is defined as the process of modifying
a software system in order to add new features, correct faults
or improve functionality. In previous studies [1], the cost of
software maintenance has been estimated to more than 70% of
the total cost of a software. Thus, researchers have focus their
effort on studying the quality of software systems and proposed
metrics and methodologies to assess their condition. Some
indicators of poor quality are anti-patterns [2], which depict
bad design-choices that makes it hard to understand, modify
and extend a software. To remove anti-patterns, practitioners
perform refactoring [3, 4], which is the process of reordering,
and rewriting existing code, without changing its original
behaviour. However, manually refactoring is an error-prone task
as it is possible to introduce defects when applied without a set
of comprehensive test cases. Multiple anti-patterns detection
techniques have been proposed so far [5, 6], but to the best
of our knowledge, there is no effective automatic correction
approach that can free developers from this difficult and time-
consuming task.

II. RESEARCH OBJECTIVES

1. Perform a qualitative and quantitative study of refac-
torings that are applied during the development of a
software system; what kind of refactorings and to what
extent. To support automating anti-pattern correction, we first
need to improve our understanding of how and when do
developers apply refactoring, and to which extent. Through code
review, which is the practice of having other team members
critique changes to a software system, we can obtain valuable
information about the development process. For the quantitative
study of source code reviews, in [7], we set out to find if there

is any correlation between code review and anti-patterns, using
the last one as a proxy for design quality in three open-source
projects. We found that components with low review coverage
or low participation are more likely to present anti-patterns than
components with highly-active code review practices. For the
qualitative study of source code reviews, we plan to perform
surveys with developers to get a better understanding of code
review activities and refactoring.
2. Develop a search-based approach for the automatic
refactoring of software systems. Using structural, and lexical
information we can define rules to specify and detect Anti-
patterns [5]. Once we have assess the level of design-defectness,
i.e., an heuristic providing the design quality of the source code
in a system, the next step consists of refactoring the code; this is
not trivial if we consider that the number of anti-patterns can be
extremely large, and normally, there is more than one candidate
refactorings for removing any anti-pattern. Hence, we propose
to implement a search-based approach [8] for the correction
step due to the following reasons: 1) there is no formal approach
2) we can explore the space of feasible solutions in a reasonable
time frame. To select the best heuristic to solve our problem, we
explore and compare the different meta-heuristics approaches,
e.g., Genetic Algorithm, Hill-Climbing, Simulated annealing,
etc. We will leverage the knowledge of developers to guide
our algorithm to select the best sequence of refactorings that
improves the most design quality.
3. Implement our proposed approach into an Eclipse plug-
in1 to help developers to refactor their code on the fly
during development and maintenance activities. We will
implement our search-based refactoring approach into an
eclipse plug-in. To assess the benefits of our proposed plug-in
we will perform a series of usability studies. We will also
compare our tool with other refactoring approaches.

III. EXPECTED CONTRIBUTIONS

The main contributions our research can be summarized as
follows:

• We expand the knowledge of source code review and the
relationship with design defects.

• We propose a novel automated refactoring search-based
approach to improve software quality that prioritizes the
refactorings that are targeted by developers.

• We provide practitioners an Eclipse plug-in that can be
used to improve the design quality of their projects.

1http://www.eclipse.org



REFERENCES

[1] R. S. Pressman and W. S. Jawadekar, Software engineering - A Practi-
tioner’s Approach, 5th ed. McGraw-Hill Higher Education, 2001.

[2] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and
T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis, 1st ed. John Wiley and Sons, March 1998.

[3] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disserta-
tion, University of Illinois at Urbana-Champaign, 1992.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[5] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”

Software Engineering, IEEE Transactions on, vol. 36, no. 1, pp. 20–36,
2010.

[6] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “Bdtex: A
gqm-based bayesian approach for the detection of antipatterns,” J. Syst.
Softw., vol. 84, no. 4, pp. 559–572, Apr. 2011.

[7] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices impact
design quality? a case study of the qt, vtk, and itk projects,” in 22nd IEEE
Int’l Conference on Software Analysis, Evolution, and Reengineering,
Submitted.

[8] M. Harman and J. Clark, “Metrics are fitness functions too,” in Software
Metrics. Proc. 10th Int’l on, 2004, pp. 58–69.


	Background
	Research Objectives 
	Expected contributions

