
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADOEM EM CIÊNCIA DA COMPUTAÇÃO

LEONARDO REZENDE JURACY

TESTING THE BLADE RESILIENT ASYNCHRONOUS TEMPLATE:
A STRUCTURAL APPROACH

Porto Alegre

2018
LEONARDO REZENDE JURACY

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

TESTING THE BLADE
RESILIENT ASYNCHRONOUS
TEMPLATE: A STRUCTURAL

APPROACH

LEONARDO REZENDE JURACY

Dissertation submitted to the
Pontifical Catholic University of Rio
Grande do Sul in partial fulfillment
of the requirements for the degree
of Master in Computer Science.

Advisor: Prof. Dr. Alexandre de Morais Amory
Co-Advisor: Dr. Matheus Trevisan Moreira

Porto Alegre
2018

 Leonardo Rezende Juracy

Testing The Blade Resilient Asynchronous Template: A
Structural Approach

This Dissertation/Thesis has been submitted in

partial fulfillment of the requirements for the

degree of Doctor/Master of Computer Science, of

the Graduate Program in Computer Science, School

of Technology of the Pontifícia Universidade Católica

do Rio Grande do Sul.

Sanctioned on March 21st, 2018.

COMMITTEE MEMBERS:

Prof. Dr. César Augusto Missio Marcon (PPGCC/PUCRS)

Prof. Dr. Peter A. Beerel (University of Southern California/USC)

Prof. Dr. Alexandre de Morais Amory (PPGCC/PUCRS – Advisor)

TESTANDO O ARCABOUÇO ASSÍNCRONO RESILIENTE BLADE: UMA
ABORDAGEM ESTRUTURAL

RESUMO

Atualmente, a abordagem síncrona é a mais utilizada em projeto de circuitos in-
tegrados por ser altamente automatizado pelas ferramentas comerciais e por incorporar
margens de tempo para garantir o funcionamento correto nos piores cenários de variações
de processo e ambiente, limitando otimizações no período do relógio e aumentando o con-
sumo de potência. Por um lado, circuitos assíncronos apresentam algumas vantagens em
potencial quando comparados com os circuitos síncronos, como menor consumo de po-
tência e maior vazão de dados, mas também podem sofrer com variações de processo e
ambiente. Por outro lado, circuitos resilientes são uma alternative para manter o circuito
funcionando na presença de efeitos de variação. Sendo assim, foi proposto o circuito Blade
que combina as vantagens de circuitos assíncronos com circuitos resilientes. Blade utiliza
latches em sua implementação e mantém seu desempenho em cenários de caso médio.
Independentemente do estilo de projeto (síncrono ou assíncrono), durante o processo de
fabricação de circuitos integrados, algumas imperfeições podem acontecer, causando de-
feitos que reduzem o rendimento de fabricação. Circuitos defeituosos podem apresentar
um comportamento falho, gerando uma saída diferente da esperada, devendo ser identifi-
cados antes de sua comercialização. Metodologias de teste podem ajudar na identificação
e diagnóstico desse comportamento falho. Projeto visando testabilidade (do inglês, Design
for Testability - DfT) aumenta a testabilidade do circuito adicionando um grau de controla-
bilidade e observabilidade através de diferentes técnicas. Scan é uma técnica de DfT que
fornece para um equipamento de teste externo acesso aos elementos de memória inter-
nos do circuito, permitindo inserção de padrões de teste e comparação da resposta. O
objetivo deste trabalho é propor uma abordagem de DfT estrutural, completamente auto-
mática e integrada com as ferramentas comerciais de projeto de circuitos, incluindo uma

série de métodos para lidar com os desafios relacionados ao teste de circuitos assíncronos
e resilientes, com foco no Blade. O fluxo de DfT proposto é avaliado usando um módulo
criptográfico e um microprocessador. Os resultados obtidos para o módulo criptográfico
mostram uma cobertura de falha de 98,17% para falhas do tipo stuck-at e 89,37% para
falhas do tipo path-delay, com um acréscimo de área de 112,16%. Os resultados obtidos
para o microprocessador mostram uma cobertura de 96,04% para falhas do tipo stuck-at e
99,00% para falhas do tipo path-delay, com um acréscimo de área de 50,57%.

Palavras-Chave: Circuitos resilientes, Circuitos assíncronos, Projeto visando testabilidade,
Projeto de células.

TESTING THE BLADE RESILIENT ASYNCHRONOUS TEMPLATE: A
STRUCTURAL APPROACH

ABSTRACT

Nowadays, the synchronous circuits design approach is the most used design
method since it is highly automated by commercial computer-aided design (CAD) tools. Syn-
chronous designs incorporate timing margins to ensure the correct behavior under the worst-
case scenario of process and environmental variations, limiting its clock period optimization
and increasing power consumption. On one hand, asynchronous designs present some po-
tential advantages when compared to synchronous ones, such as less power consumption
and more data throughput, but they may also suffer with the process and environmental
variations. On the other hand, resilient circuits techniques are an alternative to keep the de-
sign working in presence of effects of variability. Thus, Blade template has been proposed,
combining the advantages of both asynchronous and resilient circuits. The Blade template
employs latches in its implementation and supports average-case circuit performance. Inde-
pendently of the design style (synchronous or asynchronous), during the fabrication process
of integrated circuits, some imperfections can occur, causing defects that reduce the fabrica-
tion yield. These defective ICs can present a faulty behavior, which produces an output dif-
ferent from the expected, and it must be identified before the circuit commercialization. Test
methodologies help to find and diagnose this faulty behavior. Design for Testability (DfT)
increases circuit testability by adding a degree of controllability and observability through
different test techniques. Scan design is a DfT technique that provides for an external test
equipment the access to the internal memory elements of a circuit, allowing test pattern in-
sertion and response comparison. The goal of this work is to propose a fully integrated and
automated structural DfT approach using commercial EDA tools and to propose a series
of design methods to address the challenges related to testing asynchronous and resilient
designs, with focus on Blade template. The proposed DfT flow is evaluated with a criptocore

module and a microprocessor. The obtained results for the criptocore module show a fault
coverage of 98.17% for stuck-at fault model and 89.37% for path-delay fault model, with an
area overhead of 112.16%. The obtained results for the microprocessor show a fault cover-
age of 96.04% for stuck-at fault model and 99.00% for path-delay fault model, with an area
overhead of 50.57%.

Keywords: Resilient design, Asynchronous design, Design for Testability, Cell design.

LIST OF FIGURES

Figure 1.1 – Blade synthesis flow where the red dashed square shows the pro-
posed contribution to improve the Blade testability. The numbers in the
Figure represent the three contributions of this work. 27

Figure 2.1 – Muxed-D cell [WWW06]. 30

Figure 2.2 – Muxed-D waveform [WWW06]. 30

Figure 2.3 – Scan chain with Muxed-D cells [WWW06]. 30

Figure 2.4 – Time borrowing example [Kue18]. 32

Figure 2.5 – Backward retiming [SYN15a]. 33

Figure 2.6 – Forward retiming [SYN15a]. 33

Figure 2.7 – The LSSD cell block diagram [EW77]. 34

Figure 2.8 – The LSSD cell gate level diagram [EW77]. 34

Figure 2.9 – A typical LSSD cell waveform [WWW06]. 35

Figure 2.10 – Scan chain using single-latch LSSD approach [WWW06]. 36

Figure 2.11 – Scan chain using double-latch LSSD approach [WWW06]. 37

Figure 2.12 – LSSD cell using L2* [ABF94]. 37

Figure 2.13 – Logic gate diagram of the LSSD cell using L2* [ABF94]. 38

Figure 2.14 – Scan chain using L2* LSSD cells [ABF94]. The red dashed line
represents the scan-chain path. 38

Figure 2.15 – LSSD test protocol for edge-triggered sequential cells (Clocked-LSSD).
The "R" means that the system data is registered at clock rising edge.
The "*" at the clocks A and B means that clock A must pulse before clock
B [SYN15b]. 41

Figure 2.16 – Bundled-data block diagram [Spa01]. 43

Figure 2.17 – 4-phase handshake protocol waveform [Spa01]. 43

Figure 2.18 – 2-phase handshake protocol waveform [Spa01]. 44

Figure 2.19 – Blade Architecture [HTMH+15]. 45

Figure 2.20 – Blade EDL [HTMH+15]. 45

Figure 2.21 – Q-Flop cell [RMCF88]. 47

Figure 3.1 – Razor flip-flop [EKD+03]. 49

Figure 3.2 – RazorII flip-flop [DTP+09]. 51

Figure 3.3 – Razor-Lite flip-flop [KKF+14]. 51

Figure 3.4 – Bubble Razor flip-flop [FFK+13]. 53

Figure 3.5 – SafeRazor circuit blocks [CBC+15]. 54

Figure 3.6 – Scan Razor flip-flop [ATA15]. 55

Figure 3.7 – Timed flip-flop [FTK08]. 57

Figure 3.8 – Timed flip-flop [VFT+14]. 57

Figure 3.9 – Scan cell proposed by Kuppuswamy et al. [KDF+04]. 59

Figure 3.10 – Scan flip-flop with single-event upset detection. [DKM05]. 60

Figure 3.11 – XSEUFF scan cells [JOC07]. 62

Figure 3.12 – Error detection sequential scan approaches [HGJX13]. 62

Figure 4.1 – Blade sequential elements. 65

Figure 4.2 – Testable Transition Detector. This diagram is an adaptation of the
Blade original paper [HTMH+15]. 67

Figure 4.3 – Static-logic Q-Flop implementation [MM07]. 68

Figure 4.4 – Proposed testable Q-Flop cell. 68

Figure 4.5 – Testable Q-Flop physical synthesis evaluation scenario. 70

Figure 4.6 – Testable Q-Flop physical synthesis results. 71

Figure 4.7 – LSSD protocol violation in Yurash’s [Yur95] clocked-LSSD cell. 72

Figure 4.8 – Proposed optimized Clocked-LSSD schematic. 73

Figure 5.1 – Blade synthesis flow where the red dashed square shows the pro-
posed contribution to improve the Blade testability. The numbers in the
Figure represent the three contributions of this work. 77

Figure 5.2 – Proposed Error Detection Logic implementation. The TD was split
into a latch and a transition detector circuit, and the Q-Flop was split into a
flip-flop and a metastability filter circuit. The red dashed squares highlight
these modifications. 78

Figure 5.3 – Controller modification to support scan chain insertion. MUX com-
ponents were added to allow controllability for the clocks. The red dashed
squares highlight the MUXs. 78

Figure 5.4 – Detailed proposed Blade DfT flow. 80

Figure 5.5 – XTEA pipeline design. This design is based in the Speed XTEA
version presented in [Kap08]. 81

Figure 5.6 – Plasma microprcessor block diagram. 82

Figure 5.7 – Schematic sample of the scan chain. This Figure was extracted from
DC Compiler tool by Synopsys. 82

Figure A.1 – LSSD using 28 nm technology node. 103

Figure A.2 – LSSD using 28 nm technology node with reset. 104

Figure A.3 – LSSD using 28 nm technology waveform. 104

Figure A.4 – LSSD using 28 nm technology setup characterization time arcs defi-
nition. 105

Figure A.5 – LSSD using 28 nm technology delay characterization time arcs defi-
nition. 105

Figure A.6 – LSSD liberty code sample presenting the manual modification nec-
essary to the synthesis tool recognize the LSSD function. The statetable
and the test_cell functions are added manually after the characterization. . . 106

Figure B.1 – Verilog code to Transition Detector cell. 107

Figure B.2 – Transition Detector liberty code sample. 107

Figure B.3 – Spice code to Transition Detector cell. 108

Figure C.1 – Verilog User Defined Primitives code to Metastability Filter cell. 109

Figure C.2 – Metastability Filter liberty code sample. 110

Figure C.3 – Spice code for Metastability Filter cell. 110

Figure D.1 – Verilog User Defined Primitives code to Clocked-LSSD cell. 111

Figure D.2 – Proposed Clocked-LSSD liberty code sample. 112

Figure D.3 – Spice code for the proposed Clocked-LSSD cell. 113

Figure D.4 – Proposed Clocked-LSSD liberty code sample. 114

Figure E.1 – DfT insertion signals declaration. 115

Figure E.2 – DfT insertion test protocol declaration. 116

Figure E.3 – DfT insertion using Q-Flop test setup insertion. 116

Figure E.4 – ATPG tool initialization commands. 117

Figure E.5 – Specifying the stuck-at fault model simulation for the ATPG process. . 117

Figure E.6 – ATPG commands to remove the internal faults of the Transition De-
tector cell. 117

Figure E.7 – Specifying the path-delay fault model simulation for the ATPG process.117

LIST OF TABLES

Table 2.1 – Comparison between the Muxed-D cell and the LSSD cells 39

Table 2.2 – Q-Flop truth table . 47

Table 3.1 – Razor family characteristic regarding test insertion and register com-
ponents. 63

Table 3.2 – Scan approaches limitations regarding DfT automated insertion and
ATPG. 64

Table 4.1 – Comparison of original Q-Flop against testable Q-Flop. 70

Table 4.2 – Area and power evaluation of the synchronous XTEA with full scan
and clocked-LSSD scan cells. 74

Table 4.3 – Area estimation for test cells . 75

Table 5.1 – Synthesis results for the XTEA design regarding the flop-based syn-
chronous version, flop-based synchronous version with DfT, Blade version
and Blade version with DfT. 84

Table 5.2 – Cell proportion of the XTEA synchronous version and XTEA Blade
version. 85

Table 5.3 – Area detailing of extra components used in test insertion and Blade
conversion. 85

Table 5.4 – ATPG stuck-at fault model results for XTEA synchronous version and
XTEA Blade version. 86

Table 5.5 – Details of the XTEA Blade undetected faults. 86

Table 5.6 – Comparison of the ATPG results for stuck-at fault model between the
Blade with and without scannable Q-Flop (Clocked-LSSD). 86

Table 5.7 – Comparison of the undetected faults between the Blade with and with-
out scannable Q-Flop (Clocked-LSSD). The column % represents the per-
centage of the faults detected with the Q-Flop in the scan chain. 87

Table 5.8 – ATPG path-delay fault model results for XTEA synchronous version
and XTEA Blade version. 87

Table 5.9 – Throughput results for XTEA synchronous version and XTEA Blade
version. 88

Table 5.10 – Synthesis results for the XTEA normalized design regarding the flop-
based synchronous version, flop-based synchronous version with DfT, Blade
version and Blade version with DfT. 89

Table 5.11 – ATPG stuck-at fault model results for XTEA normalized synchronous
version and Plasma Blade version. 89

Table 5.12 – ATPG path-delay fault model results for XTEA normalized synchronous
version and XTEA Blade version. 90

Table 5.13 – Synthesis results for the Plasma normalized design regarding the
flop-based synchronous version, flop-based synchronous version with DfT,
Blade version and Blade version with DfT. 91

Table 5.14 – ATPG stuck-at fault model results for Plasma normalized synchronous
version and Plasma Blade version. 92

Table 5.15 – ATPG path-delay fault model results for Plasma normalized synchronous
version and Plasma Blade version. 92

Table 6.1 – Implemented levels of the proposed cells. 95

LIST OF ACRONYMS

ATPG – Automatic Test Pattern Generation

BD – Bundled-Data

BIST – Built-in Self-Test

CAD – Computer-aided Design

DfT – Design for Testability

DSM – Deep Submicron

EDL – Error Detection Logic

IC – Integrated Circuit

LSSD – Level Sensitive Scan-based Design

PVT – Process, Voltage and Temperature

QDI – Quasi-delay-insensitive

SDF – Standard Delay File

SoC – System-on-Chip

SPF – Standard Test Interface Language Procedure File

STA – Static Time Analyses

TCL – Tool Command Language

TD – Transition Detector

UDP – User-Defined Primitives

VHDL – Very-High-Speed Integrated Circuit Hardware Description Language

CONTENTS

1 INTRODUCTION . 23

1.1 GOALS . 25

1.2 RESEARCH SCOPE . 25

1.3 CONTRIBUTION . 26

1.4 DOCUMENT ORGANIZATION . 27

2 CONCEPTS . 29

2.1 STUCK-AT AND DELAY FAULT MODELS . 29

2.2 MUXED-D SCAN CHAIN . 29

2.3 TIMING OPTIMIZATIONS FOR LATCH-BASED DESIGNS 31

2.3.1 CLOCK SKEW AND JITTER . 31

2.3.2 TIME BORROWING . 32

2.3.3 REGISTER RETIMING . 33

2.4 LEVEL SENSITIVE SCAN-BASED DESIGN . 34

2.4.1 LSSD SINGLE-LATCH SCAN . 35

2.4.2 LSSD DOUBLE-LATCH SCAN . 36

2.4.3 LSSD L2* SCAN . 37

2.4.4 COMPARISON BETWEEN LSSD CELLS AND LSSD APPROACHES 39

2.5 LSSD SCAN PROTOCOL FOR FLIP-FLOP MEMORY ELEMENTS 40

2.6 TIMING RESILIENT CIRCUITS . 40

2.7 ASYNCHRONOUS CIRCUITS . 41

2.8 BLADE TEMPLATE . 44

2.9 Q-FLOP . 46

3 STATE OF THE ART . 49

3.1 RESILIENT TEMPLATES . 49

3.1.1 RAZOR . 49

3.1.2 RAZORII . 50

3.1.3 RAZOR-LITE . 51

3.1.4 BUBBLE RAZOR . 52

3.1.5 SAFERAZOR . 52

3.2 TESTING TIMING RESILIENT TEMPLATES . 54

3.2.1 SCAN RAZOR FLIP-FLOP . 54

3.2.2 TIMED FLIP-FLOP . 56

3.3 TESTING SOFT-ERROR RESILIENT TEMPLATES . 57

3.3.1 SCAN APPROACH TO BUILT-IN SOFT-ERROR RESILIENCE 58

3.3.2 SCAN APPROACH TO SINGLE-EVENT UPSET DETECTION, CORRECTION,
AND MONITORING . 59

3.3.3 XSEUFF SCAN CELLS . 60

3.3.4 ERROR DETECTION SEQUENTIAL SCAN APPROACHES 61

3.4 STATE OF THE ART CONCLUSION . 63

4 PROPOSED CELLS DESIGN . 65

4.1 REPLACING LATCHES . 66

4.2 TESTABLE TRANSITION DETECTOR . 66

4.3 TESTABLE Q-FLOP . 67

4.3.1 COMPARISON WITH THE ORIGINAL Q-FLOP . 69

4.3.2 PLACE AND ROUTE METHODOLOGY . 70

4.4 CLOCKED-LSSD OPTIMIZATION . 72

4.4.1 RESULTS . 73

4.4.2 CELL AREA ESTIMATION . 75

5 BLADE DFT SYNTHESIS FLOW . 77

5.1 DETAILED BLADE DFT FLOW . 79

5.2 CASE STUDIES . 80

5.2.1 XTEA . 80

5.2.2 PLASMA . 81

5.3 GENERAL RESULTS SETUP . 81

5.4 XTEA EVALUATION . 82

5.4.1 SILICON AREA RESULTS . 83

5.4.2 STUCK-AT FAULT MODEL RESULTS . 85

5.4.3 PATH-DELAY FAULT MODEL RESULTS . 87

5.5 OPTIMIZED XTEA FOR NORMALIZED THROUGHPUT EVALUATION 87

5.5.1 NORMALIZED SILICON AREA RESULTS . 88

5.5.2 NORMALIZED ATPG RESULTS . 89

5.6 OPTIMIZED PLASMA FOR NORMALIZED THROUGHPUT EVALUATION 90

5.6.1 NORMALIZED SILICON AREA RESULTS . 90

5.6.2 NORMALIZED ATPG RESULTS . 91

6 CONCLUSION . 93

6.1 CONTRIBUTIONS . 94

6.2 CURRENT LIMITATIONS AND FUTURE WORK . 94

REFERENCES . 97

APPENDIX A – LSSD Design and Implementation . 103

APPENDIX B – Transition Detector Codes . 107

APPENDIX C – Metastability Filter Codes . 109

APPENDIX D – Proposed Clocked-LSSD Codes and Scripts 111

APPENDIX E – DfT Automation Scripts . 115

23

1. INTRODUCTION

Nowadays, the most used paradigm in circuits design and implementation is the
synchronous one, due to the automation provided by the commercial computer-aided design
(CAD) tools. The memory elements employed in this approach use a global clock signal to
synchronize the circuit components. Flip-flops and latches are the most common memory
elements used to implement synchronous designs.

Latches are level-sensitive memory elements [RCN03], and according to the litera-
ture, they are employed in circuits designed for high-performance applications. Flip-flops are
edge-triggered memory elements and simplify timing analysis when compared to latches, as
they only depend on the clock period and do not allow complex timing scenarios such as tim-
ing borrowing. However, flip-flops are more susceptible to problems, such as clock skew and
jitter. A major problem in synchronous designs is the necessity to incorporate timing mar-
gins to ensure correct operation under worst-case conditions, which limit the clock period
optimization potential and the performance gains and also increase the power dissipation.
Resilient circuits techniques are proposed to avoid this kind of problem, reducing these tim-
ing margins [EKD+03] [DTP+09] [KKF+14] [BTK+09].

Another class of design styles relies on the asynchronous paradigm. Asynchronous
circuits do not employ a global synchronization signal. Instead, synchronization occurs using
handshake protocols between individual components. Asynchronous designs present some
potential advantages when compared to synchronous ones, such as power consumption and
performance. Also, latches are more usual in asynchronous designs [CKLS06,SN07,NS15],
benefiting from latches advantage as clock skew and jitter tolerances. The Blade [HTMH+15]
template is an example of the use of latches in asynchronous circuits. It is an asynchronous
resilient template that supports average-case circuit performance. A case study using the
Blade template [HTMH+15] showed a 30% power reduction at the same performance, when
compared to a similar synchronous circuit, for an area overhead of about 10%.

Independently of the design style, during the fabrication process of integrated cir-
cuits (ICs), some imperfections can occur, causing defects that reduce fabrication yield
[WWW06]. These defective ICs can present a faulty behavior, which must be identified
before their commercialization. Among the defects that can occur, there are the oxide
break, parasitic transistors, contact degradation and impurities at the surface. Test method-
ologies help to find and diagnose faults, which is important to improve the manufacturing
yield [ABF94].

Faults must be abstracted to make it viable to apply test methodologies to ease
simulating the behavior of the faults and perform diagnosis. A fault model is a computa-
tional abstraction to represent in software a hardware defect [BA02]. Stuck-at is the most
employed fault model because it can represent different kinds of faults independently of the

24

technology [WWW06]. Another existing model is the path-delay fault model [BA02], used to
verify if the output fails to reach the correct value of a predefined time constraint. Still, many
times it can be difficult to test all the defects that can occur in a circuit, once the test time is
limited.

Testability is the parameter that determines how much a circuit is testable, which
is influenced by its logic size and complexity [BA02]. Testability also allows to determine the
circuit state (which can be normal, inoperable or degraded) and to determine the effective
test cost [ABF94]. The test of a design is one of the major components of the manufacturing
cost. A microprocessor circuit test can cost thousand times more than the fabrication cost.
This cost is associated with factors like test generation, testing time and automatic test
generation cost [ABF94].

Two important attributes related to testability are controllability and observability.
Controllability is the capacity to change the internal nodes of a circuit, setting the values
from its primary input pins [ABF94]. Observability is the capacity to determine the value of
the internal nodes of a circuit controlling the inputs and observing the value at the circuit
primary outputs pins [ABF94]. The higher the controllability and observability, the higher is
the testability.

Design for testability (DfT) increases circuit testability by adding a degree of control-
lability and observability through different test techniques. Fault coverage is the percentage
of faults detected during the test process [ABF94]. DfT can reduce the cost of test genera-
tion and guarantee quality by increasing the fault coverage from the test [WWW06]. One DfT
approach is to use ad hoc techniques, which include test point insertion, circuit partitioning,
and logic redundancy. However, to use these techniques, the circuit must be designed for
test purposes at the start of implementation. It is not possible to insert the ad hoc techniques
generically.

Another approach is the scan design. It provides external access to the internal
memory elements of a circuit by interconnecting memory elements of the design, forming
a scan-chain. The scan-chain starts at the primary inputs and ends at the primary outputs
of the design. Thus, it is possible to set a determined memory element with a value and
observe its output, increasing controllability and observability. The use of scans permits
a more generic test approach, this technique modifies just the memory elements of the
design and does not need to be incorporated at the start of implementation. Among the
architectures used to form a scan-chain, there is the Muxed-D cell to replace D flip-flops and
the Level-Sensitive Scan Design (LSSD) cell to replace D latches. When compared to the
literature [WWW06] [EW77], LSSD presents some advantages over Muxed-D. It does not
use a MUX in its input, which makes its performance higher than the Muxed-D, once the
data just pass through a latch. Furthermore, the LSSD is a race-free approach, which is
not the case of Muxed-D. However, LSSD presents a big area overhead once each latch is
replaced by two latches.

25

Specifically for asynchronous designs, the test can present some challenges for
DfT approache. The absence of a global clock and the usage of non-standard sequential
components makes it difficult to create a scan-chain with its memory elements. However,
as mentioned before, some asynchronous designs such as Blade use latches, making the
LSSD an alternative, since latches are level-sensitive memory elements. Considering the
state of the art, although power reduction and lower area overhead were observed, the
proposed Blade template [HTMH+15] does not address testability issues, which means that
the Blade can present a low fabrication yield. Kuentzer [Kue18] proposed an approach to
turn Blade’s error detection logic (EDL) testable, but that work does not consider the others
sequential elements present in the data-path and the circuit controller testability.

1.1 Goals

Considering the above discussion, the strategic goal of this work is to propose a
fully integrated and automated DfT approach for the Blade template using commercial EDA
tools and to check the viability of a fully structural test approach based on scan for Blade. To
reach this strategic goal, the following specific objectives are needed:

• Propose scan cells to perform the test in the Blade template: Blade has uncon-
ventional sequential cells such as latches with error transition detector and Q-Flops.
Those cells need to be scannable to improve the fault coverage. Thus, this goal is to
convert these cells to scannable version that is compatible with standard EDA to allow
DfT insertion at Blade;

• Modify the synthesis flow to allow DfT insertion: The original Blade synthesis flow
does not support automated DfT insertion. Thus, one of the goals of this work is
modifying the synthesis flow to support automated DfT insertion using DfT commercial
tools;

• Evaluate testability using commercial ATPG tools: The DfT insertion is evaluated
using ATPG tools to extract fault coverage, number of patterns and number of cycles
used to perform the test;

• Evaluate the proposed test costs: The test overhead is evaluated regarding area
and number of cells.

1.2 Research Scope

The scope of this work includes:

26

• Only manufacturing test, no online test: this work focuses just on manufacturing
test, with focus on the scan chain DfT technique;

• Only logic synthesis level for Blade: The original Blade synthesis flow does not
address physical synthesis. Specific cell layouts are needed to perform physical syn-
thesis, such as C-elements and latches with error transition detector, besides the test
cells. These layouts require a great amount of time, which were not possible to include
these tasks in the master degree course. Only the Q-Flop evaluation addresses place
and route constraints;

• Only Stuck-at and path-delay fault models: To evaluate the DfT insertion, only stuck-
at and path-delay fault models are used. Others fault-models as gate-delay are out of
the scope of this work;

1.3 Contribution

The main contributions of this work are:

1. A test library to latch-based/mix designs: LSSD and Clocked-LSSD test cells were
implemented. The LSSD cell design and validation was published in [JMKA17];

2. A new set of cells for Blade template: A more test friendly version of error transition
detector cell and a metastability filter cell were implemented;

3. A test flow for Blade circuits: As mentioned before, the original Blade synthesis flow
does not support automated DfT insertion. Additional scripts to include the DfT were
included into the Blade’s design flow.

Figure 1.1 presents the proposed Blade synthesis flow with DfT insertion. The red
dashed square shows the contributions of this work. The Test Cells block represents the
test library to latch-based and mix designs. The New Blade Cells block represents the new
set of testable cells to implement Blade template functions. In addition, the following papers
were derived from this dissertation:

• As first author:

– Optimized Design of an LSSD Scan Cell : published on IEEE Transaction on VLSI
(Qualis A1);

– Testable Q-Flop: A Scannable Metastability-free Memory Element : submitted to
IEEE Transaction on VLSI (Qualis A1);

– An LSSD Compliant Scan Cell for Flip-Flops: submitted to IEEE ISCAS (Qualis
A1).

27

• As co-author author:

– On the Reuse of Timing Resilient Architecture for Testing Path Delay Faults in
Critical Paths: published on DATE (Qualis A1);

– Testable Error Detection Logic Design Applied to an Asynchronous Timing Re-
silient Template: submitted to IEEE ISCAS (Qualis A1);

RTL Specification

Synchronous

Synthesis

FF to Latch

Conversion

Retiming

Blade Conversion

Final Netlist

DfT
Blade Conversion DfT

Insertion

Yes

No

Test

Cells

28nm

Library

Cells

Blade

Cells

New

Blade

Cells

(1)

(3)

(2)

Figure 1.1 – Blade synthesis flow where the red dashed square shows the proposed con-
tribution to improve the Blade testability. The numbers in the Figure represent the three
contributions of this work.

1.4 Document Organization

The rest of this dissertation comprises the following sections: Section 2 provides
relevant background information; Section 3 presents the state of the art in latch-based de-
signs, LSSD approaches, resilient circuits and DfT to asynchronous and resilient designs;
Section 4 describes the implementation of the test cells used to insert DfT in the Blade tem-
plate; Section 5 describes the necessary modification in the Blade flow to add DfT logic;
finally Section 6 presents the conclusion of this work.

28

29

2. CONCEPTS

This Chapter presents basic concepts about fault models, sequential cells, design-
for-testability, asynchronous circuits and resilient architectures.

2.1 Stuck-at and Delay Fault Models

A fault model is a computational abstraction to represent a defect as software [BA02].
The stuck-at fault model is the most employed, due to its capability to represent different kind
of faults and for being independent of technology. For example, a circuit node fixed in zero
(stuck-at 0), like a short circuit with the ground, or one (stuck-at 1), like a short circuit with
the supply voltage [WWW06].

Another model is the delay fault model [BA02]. This model uses a pair of test
vectors, one to initialize the circuit in a known state and other to stimulate the logical paths.
Logical path is a stretch of combinational logic from a start point to an end point. These
points can be even Inputs and outputs or memory elements. If the delay of a logical path
exceeds the design timing constraints, invalid values are captured by sequential cells or
primary outputs, which characterize a fault.

2.2 Muxed-D Scan Chain

Standard D flip-flops are the most used memory element to implement synchronous
designs. D flip-flops are registers that, when occurs a clock edge event (either rising or
falling) the input data is sampled and copied to the output. Thus, one of the most used cells
to implement scan-chains are the Muxed-D cells. These cells are composed of a D flip-flop
and a MUX, as illustrated in Figure 2.1. This cell has two additional input pins, SI that is used
to input test data, and SE that is used to choose if the cell is operating in normal mode or test
mode. This cell uses the output pin both as normal output (Q) and test output (SO) [ABF94].

Figure 2.2 shows the time behavior of the Muxed-D cell. When SE is at logic level
low, the circuit operates in normal mode, which means that the DI input value is transmitted
to Q/SO in the clock edge event. When SE is in logic level high, the circuit is operating in test
mode, which means that the SI input value is transmitted to Q/SO in the clock edge event.

Figure 2.3 shows a scan-chain formed by Muxed-D cells. The output Q/SO is
connected to the next scan cell SI input, making the connection between the scan elements.
When in normal mode, SE is at logic level low and the registers store the DI input value.
When in test mode, SE is at logic level high and the circuit stores the SI input. The register

30

DI

SI

Q/SO

0

1

SE CK

D Q

Figure 2.1 – Muxed-D cell [WWW06].

CK

SE

DI

SI

Q/SO

6

5

4

3

2

1

Figure 2.2 – Muxed-D waveform [WWW06].

stored values are shifted to the register on the right side at each clock cycle, which means
that it takes n clock cycles to initialize a scan-chain with n registers. After the initialization of
all registers, SE is set to logic level low, and the circuit goes back to operate as in normal
mode, now with the initialized values through SI capturing the response of the combinational
logic in the DI input. The test results are observed in the output SO after n clock cycles.

SFF3SFF2SFF1

DI

SI

SE

DI

SI

SE

DI

SI

SE

Q QQ
Combinational

Logic

Combinational

Logic

DI

SI

SE

CK

Q/SO

Figure 2.3 – Scan chain with Muxed-D cells [WWW06].

The scanning approach permits two ways to insert scanable cells [MZ00]:

• Full-scan insertion: All the memory elements of the design are replaced by scannable
elements;

• Partial-scan insertion: A subset of memory elements of the design are replaced by
scannable elements;

31

As an advantage, partial-scan allows a smaller test overhead than full-scan and
reduce application time, once the number of elements of the scan-chain is reduced. How-
ever, the processing time of the ATPG algorithm may increase using partial-scan insertion.
Partial-scan insertion can need a number of test vectors greater than full-scan insertion to
keep the fault coverage of the full-scan insertion, once some part of the circuit cannot be
covered due the reduction of the number of scan elements.

2.3 Timing optimizations for Latch-Based Designs

Latch-based designs present advantages compared to flop-based designs, for ex-
ample, the capacity to store data in each half clock cycle. Besides, the level-sensitive char-
acteristic enables latches to use a full cycle even in the presence of clock skew [Har00].
Nevertheless, depending on the path delay of the design, some latches need more than
half clock cycle to process the data. Latches support the time borrowing characteristic that
permits work around this problem. Register retiming is another technique that works both
for latches and flip-flops. Time borrowing and register retiming are described next because
they are used in the proposed testable flow. These processes are supported by EDA tool
vendors, like Synopsys [SYN15a] and Cadence [Cad11].

2.3.1 Clock Skew and Jitter

Flip-flop-based designs can present timing related issues such as clock skew and
jitter, which increase the sequential logic overhead. Clock skew is a phenomenon that occurs
when the clock signal does not reach all the memory elements at the same time, which may
affect the circuit correctness. Jitter is a statistical measure of the time difference between
the clock edges of the expected clock signal and the real clock behavior [YK04].

The above phenomena are aggravated by the fabrication process and can influence
the circuit operating frequency and the flip-flop setup and hold times. Thus, they must be
considered to specify the clock period, which can decrease the performance of flop-based
designs, once the clock period may be subject to additional margins to avoid these problems.
As advantages, latches are more robust to skew and jitter, which means that the sequential
overhead decreases when compared to flip-flop-based designs, improving the performance
of the circuit [YK04].

32

2.3.2 Time Borrowing

Time borrowing [Har00] is a latch-based design style where time is borrowed from a
previous logic stage by following logic stages in order to meet timing constraints. Figure 2.4
shows an example of time borrowing where the C1 and C2 are outdated and have a period
of 10 ns, with setup and hold times equal to zero. The duty cycle of these clocks is 50%,
which means that 50% of the period the clocks are high, and the other 50% are low. Thus,
when c1 is high, the latch L1 and L3 are transparent and the path between L1 and L2 have
5 ns to process the data from the input. When c2 is high the latch, L2 is transparent and the
path between L2 and L3 have 5 ns to process the data from L2.

However, the path L1 and L2 have a delay of 7 ns, and it is not possible to process
the data when c1 is high. The path between L2 and L3 has a delay of 3 ns, which means
that this path has a slack of 2 ns relative to the c2 duty cycle. So, when c2 is high, L2 is
transparent, making possible to process the 2 ns remaining of the path between L1 and L2
and pass the value through L2 to the path between L2 and L3 process the data, avoiding
additional margins in the system clock periods to work around this situation. Time borrowing
is automated by EDA tool vendors, like Synopsys [SYN15a] and Cadence [Cad11].

L2
Combinational

Logic

path = 7ns

L1 L3
Combinational

Logic

path = 3ns

c1 c2 c1

c1

c2

5ns

2ns

5ns

Figure 2.4 – Time borrowing example [Kue18].

33

2.3.3 Register Retiming

Register retiming [SYN15a] is a sequential optimization technique that consists
of moving memory elements (flip-flops or latches) through the combinational logic gates to
reduce the area and timing of a given circuit. This process is supported by EDA tool vendors,
like Synopsys [SYN15a], which makes the process easier and faster to apply in specific
circuits, due to the automation of the registers location and adjustment. The technique
moves registers forward or backward through the combinational logic, balances the delay,
and optimizes the design based on a given clock period. The modified circuit design keeps
the same functional behavior. In Figure 2.5 and Figure 2.6, the registers are examples of
backward and forward retiming, respectively.

Backward retiming is when the memory element is connected to the cells fanout
and moved to its input. In Figure 2.5, the register Flop 8 is moved to the OR gate inputs,
and Flop 7 is moved to AND gate input. Forward retiming is when the memory element is
connected directly in the fanin of the cell and moved to the cell output. In Figure 2.6, the
registers Flop 2 and Flop 4 are moved to the OR gate output, and Flop 6 is removed from
the circuit.

Flop 1 Flop 2

Flop 3 Flop 4

Flop 5 Flop 6

Flop 8

Flop 7
Flop 1 Flop 2 Flop 8

Flop 3 Flop 4 Flop 8

Flop 5 Flop 6 Flop 8

Flop 7

Figure 2.5 – Backward retiming [SYN15a].

Flop 7
Flop 1 Flop 2

Flop 4Flop 3

Flop 6Flop 5

Flop 7

Flop 8

Flop 1

Flop 3

Flop 5

Flop 2

Flop 4 Flop 8

Figure 2.6 – Forward retiming [SYN15a].

34

2.4 Level Sensitive Scan-based Design

While some scan cells use the clock edge to process data, as the Muxed-D men-
tioned before, other cells assume the use of the clock level. It is the case of the Level
Sensitive Scan-based Design (LSSD), proposed by Eichelberger and Williams [EW77].

An LSSD cell, as shown in Figure 2.7, is a shift register composed by two latches,
one type D master with two inputs and other type D slave with one input. This cell has three
clock signals: C and A, used to select between D data input and I scan input to be copied
to the output L1, and clock B, used to propagate the L1 node value to the L2 output. These
three clocks signals must be non-overlapping to avoid race condition [WWW06].

Figure 2.7 shows the original LSSD block diagram, where “*” in L1 is used to sepa-
rate test pins from normal pins [EW77]. Figure 2.8 shows the originally proposed gate level
diagram for this circuit.

Latch1

D

C

I

A Latch2

L1

B

L2 Scan Out

System Data

System Clock

Scan Data

Shift A Clock

Shift B Clock

*

System Out

Figure 2.7 – The LSSD cell block diagram [EW77].

Latch1

Latch2

D

C

I

A

B

L1

L2

Figure 2.8 – The LSSD cell gate level diagram [EW77].

In normal mode, the clock signal C enables the normal input D to store its value
in output L1. In shift mode, the clock signal A is used to enable the test input I to store its
value in L1 output. In test mode, the clock signal B is used to store the L1 value in output
L2 [WWW06]. Figure 2.9 shows the time behavior of the LSSD cell. When C is in logic level

35

high, latch L1 is transparent. The same behavior occurs when A is at logic level high. When
B is at logic level high, L2 is transparent. The literature shows some proposed variations that
address to power, area and delay reduction [DPH+12,SS03,Sav86,Sav97a,ZM01,Sav97b].
Also, the literature shows the application of the LSSD in high-performance processors from
IBM and Motorola [HBB+05, WKP+02, PAG+99, BMS+02], asynchronous designs [EBE05]
and others works that rely on LSSD to apply and reduce the overhead of test techniques,
as boundary-scan [ZUC01]. The following sections discuss some variations of LSSD-based
scan chains.

C

D

I

L1

A

B

L2

6

5

4

3

2

1

7

Figure 2.9 – A typical LSSD cell waveform [WWW06].

2.4.1 LSSD Single-Latch Scan

Figure 2.10 shows the scan connection using the LSSD single-latch approach. This
approach uses L1 to connect to the combinational logic and L2 to connect to the I test input.
This approach uses two non-overlapping system clocks (C1 and C2) to avoid combinational
loop in the design [WWW06].

In normal mode, the D input is used as the system input, and L1 as a functional
output, and the system clocks are C1 and C2. In test mode, I is used as test input, and A
is used as selector of I input. L2 is connected to I, and this output is activated when the B
clock is is high, copying the L1 value to L2 output of the next cell.

In Figure 2.10, X is a primary input and Y is a primary output, the input SI is con-
nected in the test input I of the first scan element of the chain and SO is connected with
the output L2 of the last scan element of the chain. The test protocol works as following to
initialize the scan-chain:

• Input SI is set to the test value;

• Clock A is set at one and clock B must be zero;

36

• Clock B is set at one and clock A must be zero;

• Repeat the above steps n times, where n is the number of scan elements.

After the scan is initialized, clocks C1 and C2 are set to one to execute the test
values. Finally, the same protocol to initialize the scan-chain is employed, but now to shift
and observe the test values at the test output SO. Some logic synthesis tools like Cadence
RTL Compiler [Cad11] does not support the LSSD test protocol. DC Compiler from Synop-
sys [SYN14] is an example that supports LSSD test protocol and can replace the latches
registers by the LSSD cell.

C

D

A

I

B

L1

L2

C

D

A

I

B

L1

L2

C1

X

A

SI

B

C2

Y

SO

Combinational
logic

Combinational
logic

C

D

A

I

B

L1

L2

Figure 2.10 – Scan chain using single-latch LSSD approach [WWW06].

2.4.2 LSSD Double-Latch Scan

Another approach to connect the LSSD cell in a scan-chain is the double-latch.
Double-latch is an approach used to replace master-slave registers by the LSSD cell, and
also is supported by DC Compiler from Synopsys [SYN14]. Figure 2.11 shows the connec-
tions used to form the chain using this approach. As in the single-latch approach, C1 and
C2 are non-overlapping, but in this case, C2 and B can be the same [WWW06], once even
in normal mode or test mode, the design has a master-slave behavior.

The inputs D, C1 and C2 are used in normal mode, and the inputs I, A and C2
(the same as B) are used in test mode. The L1 output is not used, the data always pass
through L2, making the behavior of this approach the same of a master-slave flip-flop. The
test protocol is the same of the single-latch approach, described in Section 2.4.1.

37

C

D

A

I

B

L2

L1

C

D

A

I

B

L2

L1

C1

X

A

SI

C2 or B

Y/SO
Combinational

logic

Combinational

logic

C

D

A

I

B

L2

L1

Figure 2.11 – Scan chain using double-latch LSSD approach [WWW06].

2.4.3 LSSD L2* Scan

This approach decreases the area overhead of the LSSD. The main difference of
this approach compared to the others two is that latch L2 (now called L2*) has an additional
port enabled by a clock signal D* and an additional clock signal C*. Figure 2.12 shows
the proposed LSSD cell using L2* in a register level and Figure 2.13 shows the gate level
diagram of an LSSD using L2* [ABF94].

Latch1

D1

CK1

D2

CK2

Latch2

Q

CK2

Q

L*

L*

D1

CK1

D2

L1

L2

D

C

I

A

D*

C*

B

Figure 2.12 – LSSD cell using L2* [ABF94].

In this approach, A and B are test clocks, as in the previous one. C and C* are
system clocks, I is the test input, and D and D* are functional inputs. D is enabled by C, I is
enabled by A, B shifts the L1 value to L2 and D* is enabled by C*.

Figure 2.14 shows the connection of the scan-chain with the L2* cell using a single-
latch approach. D is connected to N1 output and D* is connected to N2. As a disadvantage,
it is not possible to test combinational logic N1 and N2 at same time since it is possible to
load just one test vector for each logic at a time.

In normal mode, the latches L*1 and L*2 are enabled by the clock C, while L*3 and
L*4 are enabled by the clock C*. Thus, when C is at logic level high, the data in L*1 and L*2
are transmitted to the logic N2. When C* is at logic level high, the data in L*3 and L*4 are
transmitted to the logic N1.

38

D

C

I

A

B

D*

C*

L1

L2

D1

D2

CK1

CK2

D1

D2

CK1

CK2

Q

Q

G1
G3

G4

G2

G8

G7

G5

G6

L*

L*

Figure 2.13 – Logic gate diagram of the LSSD cell using L2* [ABF94].

D1

CK1

D2

CK2

L2

N1X

Sin

A

C*

B

n

e1(0)

e1(n)

... N2

Y1(0)

Y1(n)

... Y1

e2(0)

e2(n)

...

D1

CK1

D2

CK2

Y

D1

CK1

D2

CK2

L1

D1

CK1

D2

CK2

L1 Sout

C

L2

L*1

L*2

L*3

L*4

Figure 2.14 – Scan chain using L2* LSSD cells [ABF94]. The red dashed line represents the
scan-chain path.

In test mode, L*1 and L*2 are enabled by clock signal A, and L*3 and L*4 are
enabled by clock signal B. The test protocol works as follow:

• SI is connected to input I and is set to the test value;

• Clock A is set at one and clock B must be zero. Thus, SI input value is copied from
L*1 to L*3, and the L*2 value is copied to L*4;

• Clock B is set at one and clock A must be zero. Thus, the L*3 value is shifted to L*2,
and the L*4 value is shifted to output Sout;

• Repeat the above steps n/2 times, where n is the number of scan elements.

After the initialization, the clocks C and C* must be started to execute the test with
the test values. Finally, the same protocol to initialize the scan-chain is used to observe the
test values at the test output Sout.

39

2.4.4 Comparison between LSSD Cells and LSSD Approaches

This Section presents a comparison, proposed by the author, between the Muxed-D
cell and the LSSD cells, since the literature does not present a similar comparison. Regard-
ing area overhead, the Muxed-D cell has just a MUX as overhead (two ANDs, one NOR, and
an inverter). The LSSD has an extra latch (four NANDs) and the overhead control between
test input and normal input (two NANDs and an inverter), reaching seven extra gates.

The single latch approach has the biggest overhead compared to the others ap-
proaches using LSSD [WWW06]. In normal mode, the single-latch uses only L1 and L2
stays in idle mode. In test mode, both latches are used. Thus, the L2* approach rises as a
potential alternative to reduce the area overhead since it uses just one latch in both normal
and test modes.

About pin overhead, the LSSD has more pins than Muxed-D. The LSSD cell adds
two clock pins plus two pins to test input and test output, summing up four extra pins. Once
the Muxed-D cell shares the output pin to test, it adds the test input and the input selector,
summing up two extra pins.

The single-latch and L2* approaches have the same number of clock signals, one
more than double-latch. The double-latch approach does not need an additional clock to
avoid combinational loops, which facilitates the clock tree routing. Table 2.1 resume this
information about pin and area overhead. The column Extra Gates inform the number of
extra gates necessary to implement each test approach. Column Extra Pins inform the
number of necessary extra pins in each approach.

Table 2.1 – Comparison between the Muxed-D cell and the LSSD cells

Extra
Gates

Extra
Pins

Muxed-D 3 2
LSSD Single-latch 7 4

LSSD Double-latch 7 3
LSSD L2* 6 6

About performance, the test occurs in the same way in both Muxed-D and LSSD
cells, once the initialize, shift and capture operations are the same. The difference is in
the control of these operations, once Muxed-D uses an additional signal to control the data
selection, while the LSSD uses extra clocks.

The Muxed-D cell has a longer delay than LSSD, once the extra MUX increases
the number of logic levels to compute the data, increasing propagation delay. Besides, the
LSSD uses latches instead of flip-flops. Latches are memory elements potentially faster
than flip-flops, once latches have fewer logic levels in their implementation. Furthermore, in

40

normal mode, the path to the LSSD output uses just the (L1 latch, as shown in Figure 2.7,
while the Muxed-D cell always includes the MUX and the flip-flop delay.

The fanout of the Muxed-D cell is bigger than that of the LSSD, once the Muxed-
D shares the output pin to functional and test outputs. The LSSD cell has separate pins
to functional output (L1+ pin) and test output (L2+ pin), which makes the LSSD potentially
faster than Muxed-D, due to the smaller fanout in the output pins.

According to the state of the art [WWW06] [BA02], the single-latch approach has a
potential advantage regarding performance when compared to the double-latch approach.
In normal mode, the single latch approach uses just one latch in the data-path, which does
not occur with the double-latch approach, making single-latch faster than double-latch in
normal mode.

The use of L2* can be an alternative to increase performance. The data does
not need to pass through two latches in its path in normal mode, unlike the double-latch ap-
proach. This characteristic makes the L2* approach faster than the other approaches in both
normal and test modes, except the single-latch approach. However, unlike the approaches
single-latch e double-latch, EDA tools do not support automatic L2* insertion.

2.5 LSSD Scan Protocol for Flip-flop Memory Elements

As mentioned before, Eichelberger and Williams [EW77] proposed a test protocol
for latch-based designs called LSSD. However, when a design mixes latches and flip-flops,
it is necessary to have an LSSD compliant scan cell to replace both types of cells. An LSSD
compliant cell for flip-flop is illustrated in Figure 2.15(a), called Clocked-LSSD.

The Clocked-LSSD has a D flip-flop behavior in normal mode, which means that
the memory elements are edge-triggered. In test mode, the Clocked-LSSD has the standard
LSSD behavior mentioned before, which means that the memory elements are level sensi-
tive. Figure 2.15(b) shows the Clocked-LSSD truth table. The "R" means that the system
data is registered at clock rising edge. The "*" at the clocks A and B means that clock A
must pulse before clock B.

2.6 Timing Resilient Circuits

As silicon technology advances into the deep submicron (DSM), it allows perfor-
mance improvements and energy efficiency, but it also brings concerns such as varia-
tions in process, voltage, and temperature (PVT), and reliability issues due to the use of
lower voltages and transistors degradation, which can cause a premature failure of the sys-

41

Latch

Latch

Double

Latch

CLK

D

CLKA

I

CLKB

Q

(a) Clocked-LSSD cell [SYN15b].

D CLK I CLKA CLKB Q

Normal Mode 0 R x 0 0 0
Normal Mode 1 R x 0 0 1
Normal Mode x x 0 0 0 Q

Test Mode x 0 0 1* 1* 0
Test Mode x 0 1 1* 1* 1

(b) Clocked-LSSD truth table [SYN15b].

Figure 2.15 – LSSD test protocol for edge-triggered sequential cells (Clocked-LSSD). The
"R" means that the system data is registered at clock rising edge. The "*" at the clocks A
and B means that clock A must pulse before clock B [SYN15b].

tem [TBW+09]. Delay margins are added to deal with PVT problems and achieve a good
yield. However, these additional margins affect system performance. An alternative to mini-
mize these delay margins is the timing resilient design technique.

Timing resilient design techniques allow the circuit to operate with relaxed timing
constraints that eventually cause a timing violation. This technique has the capability to
recover its normal operating status, even after some internal failure or a fault caused by
these violations. For such cases, these techniques use some timing error detection logic
and a timing violation recovery mechanism. Besides, timing resilient circuits benefit from
the average-case performance. They rely on the fact that errors have a low probability of
occurrence and thus the recovery penalties have a small effect on performance. Thus, the
error rate is a critical parameter of this kind of design, once timing resilient circuits present a
trade-off between allowed error rate and the performance, power and reliability of the circuit.
The Razor family is one of the first resilient approaches, and is described in Sections 3.1.1
to 3.1.4.

2.7 Asynchronous Circuits

A synchronous circuit is a design style where the circuit operations are synchro-
nized by a global clock signal, which simplifies the implementation of circuits. This style is
used in most of the digital circuits fabricated nowadays.

42

Asynchronous is a class of design styles that does not have a global signal to
synchronization. Instead, the synchronization occurs using local handshaking protocols be-
tween circuit blocks. Different from the synchronous style that always processes data, when
no handshaking protocol occurs, the circuit remains in idle mode, which means that the
component process data just when requested. Asynchronous circuits present potential ad-
vantages when compared to synchronous circuits [SF01]:

• Low power consumption, once the circuit only processes data when and where re-
quested;

• High operation speed, once the circuit speed is determined by local latencies, instead
of by a global worst-case period signal;

• Reduction of the power for clock tree distribution.

However, asynchronous circuits may also present as drawbacks [BOF10]:

• Can presents more gates than a functionally equivalent synchronous circuit;

• Difficult to test and debug, once exist a lack of test cells and test tools for asynchronous
design.

• There is a lack of CAD tools and cell libraries compared to the synchronous approach.

Asynchronous circuits can be designed using different data-encoding schemes and
handshake protocols. The choice of handshake protocol and of the data-encoding scheme
is called a template [BOF10]. Currently, there are two main families of asynchronous tem-
plates, Quasi-delay-insensitive (QDI) and Bundled-data (BD) [BOF10].

QDI uses the multi-rail data encoding, where a completion signal is embedded
into the data representation. One example is the dual-rail protocol that uses two wires to
represent one bit of data and the corresponding encoded request signal. QDI provides
relaxed timing constraints, but the circuits from this family of templates are usually larger
and have higher power consumption when compared to BD, and can have an area overhead
3.45 times greater when compared to a synchronous approach [CVG07].

BD templates use standard Boolean encoding for data, and separate request and
acknowledge wires are bundled with respective data signals to provide synchronization, as
illustrated in Figure 2.16. A BD template can employ either 2-phase or 4-phase handshake
protocols. Figure 2.17 shows the waveform for a 4-phase protocol. This protocol behaves
as follows:

1. The sender generates the data and sets the request to high;

2. The receiver stores the data and sets the acknowledge to high;

43

Req

Ack

Data

Figure 2.16 – Bundled-data block diagram [Spa01].

3. The sender sets the request to low;

4. The receiver sets the acknowledge to low, allowing the sender to transmit new data.

1

2

3

4

Req

Ack

Data

Figure 2.17 – 4-phase handshake protocol waveform [Spa01].

The 4-phase protocol has the disadvantage of the additional return-to-zero (RTZ)
transitions, that cost unnecessary time and energy, and potentially reduce the performance
of the circuit. The 2-phase protocol is shown in Figure 2.18. This protocol waits for an event
in the request and acknowledge signals, and behaves as follows:

1. The sender generates data and switches the request signal;

2. The receiver stores the data and switches the acknowledge signal, allowing the sender
to transmit new data.

This protocol avoids the RTZ transitions and improves the performance of the cir-
cuit. However, the 4-phase requires less complex control circuitry.

BD control blocks can be implemented with different design styles. The main tem-
plates available in the state of the art use 2-phase handshake protocols. The concept of
micropipeline was introduced in [Sut89], which uses special capture-pass latches that are
event controlled and capable of sensing transitions at their inputs. Another approach is
the latch-based design Mousetrap for high-performance asynchronous designs, leveraging

44

1

2

Req

Ack

Data

Figure 2.18 – 2-phase handshake protocol waveform [Spa01].

the fact that latches present less logic complexity than flops and are level sensitive. This
template implements a 2-phase BD circuit using level-sensitive latches and XOR gates.

A more recent template is Click [PtBdWM10] that instead of using latches and C-
elements, conventional asynchronous circuits components, they proposed a 2-phase BD
template that only uses edge-triggered cells. This approach, due to the use of edge-
triggered, has support to scan insertion using the Muxed-D cell, making this template a
possible choice for DfT insertion in asynchronous BD design.

2.8 Blade Template

Synchronous resilient circuits are an alternative to eliminate worst-case safety mar-
gins, as mentioned in Section 2.6. However, this kind of circuits are prone to failure, if
metastability occurs [BCC+14], or it presents a high recovery penalty. Blade [HTMH+15] is
an asynchronous template for 2-phase bundled-data (BD) circuits that helps to overcome
some problems in current synchronous timing resilient architectures. Figure 2.19 illustrates
the basic Blade architecture. It consists of a controller, two configurable delay lines (δ and
Δ), and an error detection logic (EDL). The controller uses a BD channel L/R to communi-
cate with others pipeline stages.

The value δ is the delay used to control the moment that data at the output of
the combinational logic can be sampled and propagated through the EDL. The Δ is a delay
value used to define the amount of time that the latch is transparent and the timing resilience
window (TRW), which is a period where errors are allowed to happen. The values of δ and
Δ must be designed such that their sum is sufficiently large to cover the longest critical path
in the stage.

The signal Err is used to flag a time violation. When this signal is set to high, the
controller then communicates with its right neighbor using a speculative handshake through
the error channel RE/LE. To recover from the timing violation, the next stage uses the time
borrowing property of the latch, keeping it transparent until the correct data is propagated
through the combinational logic.

45

EDL
(Error

Detecting
Latch)

R.data
Combinational

Logic

Blade
Controller

L.data

Reconfigurable Delay Line (δ) Err

Δ
L.ack
L.req

LE.req
LE.ack

R.ack

RE.ack

R.req

RE.req

Sa
m

pl
e

CL
K

Blade Stage
Error Detection Logic

2

TD
(Transition
Detector)

Figure 2.19 – Blade Architecture [HTMH+15].

Error Detection Logic

Dout

SampleCLK

Din Q

X

E
rr

1

E
rr

0

From other
Q-Flops

From other
C-elements

Latch

tcomp

Q-Flop

Controller

TD

tTD

C
+

Figure 2.20 – Blade EDL [HTMH+15].

Figure 2.20 details the error detection logic. The design consists of a latch with
error transition detector, called Transition Detector (TD), an asymmetric C-element and a
Q-Flop [RMCF88]. The asymmetric C-element stores any violation detected when CLK is
high. This C-element switches to logic level low when CLK is low and to logic level high only
when CLK and the XOR output are high. The output of the C-element is sampled at the end
of the TRW by the Q-Flop. The Q-Flop uses a metastability filter that ensures safe operation
against metastability.

46

The signal Err is a dual-rail signal that stalls the controller until the TDs outputs are
stable. The delay element tTD defines the transition detector pulse width, while tcomp is the
compensation delay added to ensure that a transition before the rising edge of CLK is not
considered a violation. The error detection logic is only used in the critical paths to minimize
the area overhead since these paths are more susceptible to timing violations than other
paths of the design.

The Blade template has a synthesis flow that converts a synchronous Flip-flop
based design into an asynchronous design [HTMH+15]. First, this flow converts the Flip-flop
based design into a latch-based version by changing the edge-triggered flip-flops into two
latches. After this conversion, the retiming technique is applied to reduce the critical path,
which leads potentially to a reduction in the number of inserted EDLs. The last step of this
flow is to convert the latch-based retimed circuit to an asynchronous circuit with the Blade
template.

A 3-stage version of the Plasma microprocessor1 (based o MIPS-I instruction set)
targeting a 28nm FD-SOI technology is used as case study. Results show that the overall
area overhead of the Blade version is 8.4% when compared to the original synchronous
design. The standard benchmark CoreMark was used to evaluate its performance. The
performance of the Blade version increased 19%, with an average frequency of 793MHz.

2.9 Q-Flop

Metastability is a phenomenon where a circuit element assumes an undetermined
value between logic zero and one. This value can be propagated through the entire design,
making the circuit produce a wrong value at its output. Register elements can easily be
made metastable just toggling the clock and the input data at the same time [Gin11]. Thus,
it is necessary to avoid the propagation of this wrong value through the entire design.

The original Q-Flop architecture, illustrated in Figure 2.21, was proposed by Rosen-
berger et al. [RMCF88] as a metastability-free memory element. Table 2.2 shows the logic
behavior of the Q-Flop in a truth table. As described by the authors, when the clock input is
at logic level 0, the Q-Flop outputs are also at logic level 0. At the rising edge of the clock in-
put, the Q-Flop has a type D flip-flop behavior, sampling data at the clock rising edge. For its
memory element, the Q-Flop relies on a pair of cross-coupled NANDs (as in a traditional SR
latch) driven by two control NANDs that ensure the data is only sampled at the rising edge.
It has a single-rail input, as in conventional digital circuits, but the output is dual-rail, as com-
monly used in non-synchronous digital circuits, and guaranteed to be metastability-free by a
metastability filter.

1https://opencores.org/project,plasma

47

D

CLK

Q

Qbar

Figure 2.21 – Q-Flop cell [RMCF88].

Table 2.2 – Q-Flop truth table

CLK D Q Qbar

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 0

The initial state of the filter circuit has the node N1 at logic level 1, driving the
output Q to 0 using the NMOS transistors T1. When N1 changes to logic level 0, the PMOS
transistor T0 is activated and propagates a logic one value at the other input N0 to the
output Q. An equivalent behavior can be observed for output Qbar. Note that this behavior
happens only if D respects its setup and hold timing constraints with respect to CLK, as in a
conventional flop.

However, in the event of D switching too close to a transition in CLK, and violating
its constraints, the element can go metastable. For example, let us assume that the setup
time of a Q-Flop is 50 ps and that input D switches from 0 to 1 20 ps before input CLK
switches from 0 to 1, causing a violation in the setup constraint. In this case, the component
may sample a transitioning signal that will drive nodes N0 and N1 to an undefined voltage
level, between the levels that define logic 0 and 1. For simplicity sake, let us assume that
both nodes assume Vdd/2 V. This value is enough to partially activate NMOS transistors t1
and t3, keeping the outputs at logic 0, even with the small current produced in this case.
Besides, PMOS transistors t0 and t2 will present Vdd/2 V at their gate and source terminals,
not activating the transistors and not driving current to the outputs.

Eventually, for some internal or external event, one of the internal nodes (say N0)
will start to drive to a value greater than Vdd/2, and the PMOS T0 will start to conduct. At
the same time, the cross-coupled NANDs will drive node N1 to a value smaller than Vdd/2
when the node N0 has a value greater than the Vdd/2. Thus, the next circuit state has N1 at
0 and N0 at 1, switching the Q output to level logic 1 and keeping Qbar at 0 without glitches
and errors. A similar scenario can happen if node N1 pulls to a value greater than Vdd/2
while in a metastable state, in which case the Q-Flop will resolve to a Qbar at logic 1 and

48

Q at 0. The importance of this component relies on the fact that while it is resolving these
metastable states, the outputs are kept at 0 by the metastability filter, preventing metastable
signals to propagate.

49

3. STATE OF THE ART

This Chapter presents an overview of the current literature on resilient circuits (Sec-
tion 3.1), test of resilient circuits (Section 3.2 and Section 3.3) and a conclusion about both
topics (Section 3.4).

3.1 Resilient Templates

This Section describes some of the resilient templates present in the literature,
more specifically the Razor family. This family of resilient circuit was chosen to show the
presence of synchronous resilient templates in the literature and the techniques used in this
kind of circuit, which are necessary to understand the scope of this work.

3.1.1 Razor

As mentioned before in Section 2.6, delay margins are added in synchronous de-
signs to deal with PVT variations and achieve good yield, which affects the system perfor-
mance. The Razor synchronous architecture [EKD+03] is a technique to eliminate worst-
case safety margins in the clock period by using a novel voltage management technique,
where the processor operates with dynamic voltage scaling (DVS). This technique replaces
the flip-flops on critical paths of the design by Razor flip-flops, illustrated in Figure 3.1.

clk

Errorcomparator

Error_L

clk_del

D1 Q1

RAZOR FF

Logic StageLogic Stage
0
1

Main
FlipFlop

Shadow
Latch

L2L1

Figure 3.1 – Razor flip-flop [EKD+03].

The clk signal is designed with less pessimistic time margins and it controls the
Main Flip-flop. The Shadow Latch is controlled by a delayed clock (clk_del), that is de-

50

signed to meet the latch setup time in worst-case situations, guaranteeing its data validity
even when the Main Flip-flop timing is violated. To detect a timing violation, the Razor
flip-flop compares the values stored in the Main Flip-flop and in the Shadow Latch. If the
values are different, then an error is detected, and the output Error changes its value to logic
level high. The error signal causes the circuit to redirect the valid data stored in the latch to
the flip-flop with a one cycle penalty. Besides, the previous stage must be stalled, and data
at the following stage must be flushed.

By replacing the flip-flops on critical paths of the design by Razor flip-flops, the
circuit can scale down the supply voltage to the point of the first failure for a given frequency,
eliminating all margins due to global and local PVT variations, saving energy. The supply
voltage can be scaled lower than the first failure point, achieving additional energy savings,
if the application tolerates a low error rate. The error rate is the fraction of the input vectors
that do not complete within the clock period.

A set of simulated benchmark experiments shows that an error rate of 1.5% allows
an average energy savings of 41% with a maximum performance slowdown of 6%. A 64-bit
Alpha processor Was manufactured in 0.18 µm technology using the Razor technique, that
operates at 200MHz and a delayed clock for the shadow latch set at 1/2 from the system
clock. 192 flip-flops Were replaced by Razor FFs out of a total of 2408. Razor presents
a power overhead up to 3.1% of the total power due to the error detection and correction
circuitry in error-free operation. Area overhead results are not presented in this work.

3.1.2 RazorII

RazorII [DTP+09] is a simplification of the original Razor described in Section 3.1.1.
It removes the error recovery mechanism, once the error rate at the point of the first failure
is in the order of 1 error in 10 million cycles, which makes error correction energy negligible.
Therefore, RazorII FF performs only error detection and error recovery takes place through
architectural replay.

The RazorII flip-flop uses a single latch combined with a transition detector. If a
transition occurs after the rising edge of the clock, while the latch is transparent, the RazorII
flip-flop detects and asserts the error signal. When an error occurs, all pipeline is flushed,
and the failing instruction is re-executed. In the case of successive failures, the clock fre-
quency is reduced by half during eight cycles. Figure 3.2 shows the RazorII flip-flop diagram.

A 64-bit 7-stage Alpha processor was manufactured in 0.13 µm technology featur-
ing RazorII as a case study. The results show that a energy savings up to 37.4% were
obtained with an error rate of 0.04% compared to worst-case, when the supply voltage is set
to ensure correct operation. RazorII circuitry presents a power overhead up to 1.2% of the

51

Figure 3.2 – RazorII flip-flop [DTP+09].

total power due to the error detection and correction circuitry in error-free operation. Area
overhead results are not presented in this work.

3.1.3 Razor-Lite

The Razor-Lite approach [KKF+14] uses a side-channel detection strategy compat-
ible with standard D flip-flops to reduce additional error detection circuitry. This approach
is used in well-balanced pipelines implementations, which present a significant number of
critical paths and need a large number of flip-flops with timing violation detectors.

Figure 3.3 illustrates a conventional flip-flop design and the added logic required by
Razor-Lite. The added logic connected to the virtual VDD (VVDD) and virtual VSS (VVSS)
rails of the flip-flop acts as a transition detector. Under normal operation, after the rising
edge of the clock, VVDD and VVSS are kept charged and discharged, respectively, and no
error is detected. A timing violation is detected if D changes after the rising edge of the clock.
If D transitions to logic level low, VVDD is discharged through node DN. If D transitions to
logic level high, VVSS is charged through node DN. VVDD and VVSS are restored to their
original state after the falling edge of the clock.

Figure 3.3 – Razor-Lite flip-flop [KKF+14].

A 64-bit 7-stage Alpha architecture pipeline demonstrates the use of Razor-Lite.
The processor was prototyped in 45 nm SOI CMOS technology, and all 492 of decode and

52

execute registers, which are the processor’s critical path, were replaced by Razor-Lite reg-
isters. Error outputs are grouped via an OR-three and recorded at a pipeline register. After
the rollback, the clock frequency is reduced by half during four cycles to allow the affected
instruction to execute correctly. The total penalty for an error is 11 cycles. Razor-Lite cir-
cuitry increased the area in 4.42% and power by 0.3%. An 83% peak energy efficiency
improvement was observed, compared to the baseline processor.

3.1.4 Bubble Razor

Bubble Razor [FFK+13] is an architecturally independent approach to timing error
detection and correction. This approach uses a two-phase latch-based data-path instead of
a flip-flop based data-path.

The error detection circuit presented in Figure 3.4 is similar to the original Razor,
which uses a shadow latch to detect timing violations. Local stalling is used to perform error
correction. When a timing violation is detected, an error signal (bubble) is propagated to
neighboring latches, preventing them from becoming transparent and disabling the clock by
a clock gating logic at each stage. This clock gating adds time for the correct data to arrive
at the latch that identified the timing violation. Once a neighbor latch receives a bubble, it
is propagated to the next stage. When loops are present, the authors propose a bubble
propagation algorithm to avoid indefinite bubble propagation.

An ARM Cortex-M3 microcontroller with Bubble Razor was implemented using a
45nm SOI CMOS technology. A flop-based design was converted to a two-phase latch-
based implementation. The error detection logic was added to all latches, resulting in 87%
area overhead. When considering the combination of eliminating margins and running be-
yond the point of the first failure, besides replacement of flip-flops by latches in the design,
this implementation enables 100% throughput increase or 60% energy reduction when com-
pared to the microcontroller with worst case timing margins.

3.1.5 SafeRazor

Even with the advantages of the Razor family of synchronous design templates
to deal with timing errors, all known implementations are prone to failures due to the non-
deterministic timing behavior introduced by metastability. SafeRazor [BCC+14] [CBC+15]
is a Razor-based circuit design technique that combines the Razor principle with stoppable
clocks in a globally asynchronous locally synchronous (GALS) design. This approach avoids
any timing failure due to metastability and does not require any checkpoint mechanism or
pipeline restarting logic, other than the usual auxiliary latch to store the valid data.

53

Figure 3.4 – Bubble Razor flip-flop [FFK+13].

Figure 3.5 shows the locally synchronous SafeRazor module. The COMB LOGIC
block is identical to the logic blocks presents in conventional circuits, which means that it
processes the combinational logic of the design. The STORAGE block has the memory
elements and the logic to detect metastability and speculation errors. RING OSCILLATOR
block contains the adaptable delays to generate the clock under different operating modes.

The operating modes are:

• Normal mode: In this mode, the STORAGE block behaves as a standard flip-flop.
Setup and hold constraints are not violated, and the data at shadow latch is correct;

• Operation with metastability: In this mode, if metastability is detected, the MD com-
ponent extends the cycle period until metastability is resolved;

• Operation with error detection and correction: In this mode, the error signal gen-
erated at the error detecting FF selects one of the delays in the MUX of the ring
oscillator (Err or No Err). The cycle period is extended by the extra delay d4 to allow
the circuit to recover from metastability.

A SafeRazor circuit with 3 GALS islands, each containing a pipelined multiplier
with four stages was implemented to show the results. Also, a standard flip-flop version and
a Razor version were implemented to compare with the SafeRazor version. The designs
were synthesized with Synopsys Design Compiler using a 90 nm standard cell library. The

54

COMB

LOGIC
main

FF

Clk Tree

Shadow

Latch

META

Detection

(MD)

ERROR

Detection

(ED)

No

Err

Sel Tree

main

FF

RESET

STORAGE
metastability and

error detection

Err

EN

data_in

internal

data

data_out

No

Err

Err

d1

d4

d2

d3

Shadow

Latch

EN

R M
d5

PULSE

GENRING

OSCILATOR

clock meta error clk error

Figure 3.5 – SafeRazor circuit blocks [CBC+15].

physical layout of the netlist was performed using the Cadence Encounter tool. Compared
to the synchronous circuit, the total area overhead for Razor is 27.7%, while in SafeRazor
this overhead can increase more 15% due to the ring oscillator.

3.2 Testing Timing Resilient Templates

This Section describes approaches used to test timing resilient templates, with
focus on scan cells/components used to apply the scan-chain technique at timing resilient
architectures.

3.2.1 Scan Razor flip-flop

As mentioned in previous Sections, Razor is a well-known design technique used
to deal with timing errors. However, as described in Section 3.1.5, the area overhead is
high, and it makes difficult to insert DfT in the Razor design since it will increase the area
overhead even further.

Anastasiou et al. [ATA15] propose to reuse the Razor topology to achieve low power
scan testing operations, as illustrated in Figure 3.6. This technique is a viable solution off-
line AND low-power testing requirements. The work also explores the ability to apply this
technique to at-speed scan testing.

55

Figure 3.6 – Scan Razor flip-flop [ATA15].

The scan Razor flip-flop (SR-FF) topology has in the feedback path of the circuit
an additional multiplexer controlled by the signal SE. The Shadow Latch is replaced by a
pulsed latch synchronized by the signal PCLK to support the proposed scan operations. A
pulser circuit [SP11] generates the PCLK, and its rising edge of the PCLK signal is delayed
according to the corresponding edge of the CLK signal.

The SR-FF has three operation modes:

• Normal mode: In this mode, SE and EC must be at logic level low. The data at the
D input are propagated to the Main flip-flop (MFF) and to the Pulsed Shadow Latch
(PSL). This mode is the same as in the standard Razor approach;

• Error correction mode: To enable the error correction mechanism, it is necessary to
set SE to logic level low and CE to logic level high, storing the value of the PSL in the
MFF. This mode, as the normal mode, is the same as in the standard Razor approach;

• Scan mode: In this mode, SE and EC must be in logic level high. The test data input
SI is propagated to the MFF and the PSL while the test data stored in the PSL is
propagated through the test data output SO. For shift operation, the PSL is used for
the scan-in/out of test data. Only the PCLK signal is active in the shift phase, and each
pulse propagates the test data from the SI to SO output.

Experimental results using ISCAS89 benchmarks show that the scan power con-
sumption of this approach is reduced compared to the classic scan-chain approach, since
the signal transitions at the inputs of the combinational logic are eliminated during the scan
testing operations, reducing the dynamic power of the circuit.

56

3.2.2 Timed flip-flop

Floros et al. [FTK08] proposed as scan flip-flop design that provides timing error
detection/correction capabilities called Timed flip-flop. Besides, the work also presents a
time dilation scan architecture that is suitable for concurrent error detection/correction and
off-line testing. This architecture also offers concurrent multiple error detection and correc-
tion at the small penalty of one clock cycle delay at the normal circuit operation for each error
correction.

Figure 3.7 shows the Timed flip-flop architecture, where D is the normal data input,
Scan_EN is the test enable signal and Q is the data output. The XOR gate is used to
compare the data at the M node and the Q output of the Main Flip-Flop for error detection.
Also, the two MUXs gates and the feedback path from the M line to the input of the MUX-B
forms a register element that holds the valid data for error correction, called MUX-latch. The
MUX-latch is enabled by the signal Memory, which is controlled by the signal Mem_CLK.
When Memory is at logic level high, the register MUX-latch is opaque. When Memory is at
logic level low, the register MUX-latch is transparent.

The Timed flip-flop can be divided into three operation modes:

• Normal mode: In this mode, Scan_EN must be in logic level low. The test data input
D is propagated to the Main Flip-Flop, and propagated to the output Q when the CLK
is activated. This behavior is similar to the standard flip-flop;

• Error detection/correction mode: In this mode, Scan_EN must be in logic level low.
When an error is detected, the output error_F change its value to a logic level one,
paralyzing the circuit by one clock cycle, and the value registered in the MUX-latch
fed the main flip-flop. When the circuit recoveries from the error, the output error_F
change its value to logic level zero and the Main Flip-Flop still fed the D input.

• Scan mode: In this mode, Scan_EN must be in logic level high. The test data input
Scan_IN is propagated to the Main Flip-Flop, and propagated to the scan output when
the CLK is activated. This behavior is similar to the standard Muxed-D component
presented in Section 2.2.

The Timed flip-flop has a performance penalty less than 4%. According to the
authors, the design approach is characterized by low silicon area requirements, with a re-
duction of about 24% when compared to the Razor flip-flop area [EKD+03].

An extension of the Timed flip-flop was proposed by Valadimas et al. [VFT+14]
that concerns with metastability, illustrated in Figure 3.8. The value at the node M and
the CLK signal can transition at the same time, causing a setup violation. It produces a
wrong value at the Main Flip-Flop output, making the XOR gate not capable of providing

57

Figure 3.7 – Timed flip-flop [FTK08].

a reliable comparison between the data at the input and the output of the Main Flip-Flop,
compromising timing errors identification. Thus, a metastability filter is added at the output
to avoid the XOR gate comparison problem.

Figure 3.8 – Timed flip-flop [VFT+14].

3.3 Testing Soft-Error Resilient Templates

This Section describes approaches used to test soft-error resilient templates. Soft-
errors can occur in a circuit when it is exposed to radiation, like cosmic rays an neutrons
particles. This exposition can change the memory elements values, generating erroneous
outputs [JOC07].

58

These works are evaluated in this dissertation due to the similarity with timing re-
silient approaches. Soft-error resilient circuits also use techniques as shadow logic and
comparator components to identify and correct errors. It is possible to use some of these
soft-errors resilient approaches for timing resilient operation adding buffers or delays at the
components, allowing to capture timing violations. Also, it is possible to combine both soft-
error and timing techniques to improve the circuit. As in Section 3.3, the focus of this Section
is to present works based on scan cells/components.

3.3.1 Scan Approach To Built-In Soft-Error Resilience

Kuppuswamy et al. [KDF+04] present a scan cell that provides structural testing
using automated test pattern generation tools, functional testing using signature analysis
and efficient post-silicon debug. Figure 3.9 shows this scan cell, which is divided in two
portions: system flip-flop and scan portion. This scan cell has two operation modes:

• Normal mode: In this mode SCA, SCB, UPDATE, and CAPTURE are at logic level
low. The system data input D is propagated to the output Q when the CLK is activated,
similar to the standard flip-flop;

• Scan mode: In this mode, clocks SCA and SCB are used to shift the test pattern into
latches LA and LB. Next, the UPDATE clock is applied to move the contents of LB
to PH1, to the test pattern be registered in the system flip-flop portion. After, CLK
is applied to captures the system response from the test pattern, and the CAPTURE
signal is applied to move the contents of PH1 to LA. Finally, SCA and SCB are used
to shift the test pattern result to the SO.

Besides, if the CAPTURED signal is forced to the logic level high, the scan portion
is converted to a shadow register of the system flip-flop. Thus, it is possible to capture soft-
error (which can be a single-event upset or a single-event transient) in the design comparing
the outputs Q and SO adding some comparison circuitry.

Mitra et al. [MSZ+05] modified this scan cell approach to reduce the soft-error rate.
This work adds an XOR gate to compare Q and SO and detect the soft-error. A scan-chain
assuming that 25% of the flip-flops are protected from soft-errors was used to evaluate the
system-level impact of soft-error of the proposed scan cell. The results show a reduction
of more than 20 times compared to the error rate for an unprotected flip-flop, with an area
overhead of 0.30% and a power overhead of 5%.

Elakkumanan et al. [EPS06] present a novel single-event transient mitigation scheme
for flip-flops that also is based in the scan cell presented by Kuppuswamy et al. [KDF+04]. In
this paper, the time redundancy principle is used to achieve single-event transient tolerance.

59

Time redundancy is a technique where a regular input of a flip-flop is delayed and applied
as the second input to the same flip-flop. Simulation results for a stand-alone flip-flop and
ISCAS benchmark circuits in 70 nm predictive technology show that the area overhead of
the technique is 70.83% and the power overhead is 25%.

Latch

LB

1D

C1

CLK

D

SI

SCA

CAPTURE

UPDATE

SCB

Latch

LA

1D

C1

C2

2D

Latch

PH2

1D

C1

Latch

LA

1D

C1

C2

2D

SO

Q

System flip-flop

Scan portion

Figure 3.9 – Scan cell proposed by Kuppuswamy et al. [KDF+04].

3.3.2 Scan Approach To Single-Event Upset Detection, Correction, and Monitoring

Drake et al. [DKM05] proposed a scan flip-flop with single-event upset detection,
correction, and monitoring capabilities. Figure 3.10 shows the proposed scan component.
An extra latch SL is added in the master-slave register to form triple redundancy of the stored
value. A voter on the output ensures correct data operation by analyzing the data stored at
the MA and Sl registers. The Maj component detects when one of the latch stages has
changed its value. When an error occurs, the output of the voter is stored back into all of the
latches, correcting the error.

This scan cell has three operation modes:

• Normal mode: In this mode the system data input DIN is propagated to the output
DOUT using the clocks C_MA and C_SL;

• Scan mode: In this mode, Ctrl must be in logic level low. Clocks C_SC and C_SL are
used to shift a test pattern into latches MA and SL. The Maj component determines
the value to be passed to the SOUT.

60

• Monitor mode: This mode is enabled when the scan operation is finished, and the
control signal gives the error detection circuit control of the clock inputs to the latches.
The error detecting circuit monitors the three latches to analyze if they have the same
stored data. If an error is detected, the signal ERROR change to logic level high,
making the latches transparent and storing the Maj value back into the upset latch.
When the error is corrected, ERROR is at logic level low, and the latches return to their
opaque state.

Simulations show that this scan flip-flop with single-event upset detection is 34%
faster than the triple-redundant flip-flop, which is an approach that uses three flip-flops and a
voter circuit, while dissipating equivalent power. However, the use of triple-redundant latches
to achieve single-event upset tolerance results in an area 3.71 times larger than a standard
flip-flop.

SIN

1

0

CTRL

C_MA

D

S

MA

DIN

C_SC

1

0

CTRL

SL

C_SL

1

0

CTRL

CTRL ≠

Maj

ERROR

SOUT
1

0

DOUT

SL

Figure 3.10 – Scan flip-flop with single-event upset detection. [DKM05].

3.3.3 XSEUFF Scan Cells

Jagirdar et al. [JOC07] proposed two register approaches that provide tolerance
to single-event upset and single-event transient effects, called XSEUFF 1 and XSEUFF 2.
Figure 3.11 show these components.

XSEUFF 1 works as follows:

• Normal mode: In this mode, TESTBAR must be in logic level high. The master-
slave flip-flop composed by LA and LB are activated when CLK is high, acting as the
shadow logic. The master-slave flip-flop composed by PH1 and PH2 are activated
when SYS_CLK is high. The voter votes on LA, LB and PH1 when SYS_CLK is high,

61

and the value of the voter is captured by the keeper at the output node. The voter votes
on the keeper, LB and PH1 when SYS_CLK is low.

• Scan mode: In this mode, TESTBAR must be in logic level low. The latches LA and
LB forming a scan behavior and are activated by the scan clocks SCA and SCB, like
the LSSD test protocol [EW77]. The input SI receives the test input. After LA and
LB load the test input, the UPDATE signal is pulsed to store the test input and the
system change to the normal mode operation. The test response is captured after
one functional clock cycle, PH2 loaded the test response and propagated this value
to PH1 at the end of the cycle. CAPTURE is activated, and the final output of the
test is captured in LA. The system returns to scan mode operation, and the captured
response is copied to the SO output.

XSEUFF 2 works as follows:

• Normal mode: SyncLA and SyncLB are used as gating signals for LA and LB re-
spectively. Pulses SyncLA and SyncLB are at logic level low after the active clock,
which allows LA and LB to sample copies of the expected data in PH2. When the
clock is at logic level high, the voter circuit compares PH2, LA and LB to ensure the
data correctness.

• Scan mode: In this mode, ScanMode must be in logic level high. The latches LA
and LB form a scan behavior and are activated by the scan clocks SCA and SCB,
like the LSSD test protocol protocol [EW77]. The input SI receives the test input. UP-
DATE and CAPTURE are used to apply the test input and capture the circuit response,
respectively.

The results are extracted using the ISCAS’89 benchmark circuits. The registers of
the benchmark circuits are replaced by the XSEUFF scan cells and compared using as ref-
erence the cell proposed by Kuppuswamy et al. presented in the Section 3.3.1. The results
show an average transistor overhead of 28% and 20% for XSEUFF 1 and XSEUFF 2 respec-
tively when compared with the Kuppuswamy et al. cell. According to the authors, the designs
provide concurrent error correction with minimal degradation of system performance.

3.3.4 Error Detection Sequential Scan Approaches

Han et al. [HGJX13] analyze and compare three scannable error detection sequen-
tial approaches to replace the Intel resilient memory element [BTK+09]. Figure 3.12 shows
the three scan designs. The Scan Shadow flip-flop approach (Figure 3.12(a)) adds a MUX
gate to select between the system input D and the test input S_I controlled by the Mode

62

(a) XSEUFF 1 scan cell. (b) XSEUFF 2 scan cell.

Figure 3.11 – XSEUFF scan cells [JOC07].

signal. The test output S_O is drived by the shadow flip-flop. The Scan tail flip-flop approach
(Figure 3.12(b)) adds a new flip-flop at the latch output as the scan register. This version
also adds a MUX gate to select between D and S_I. To perform the test, the S_I test input is
copied to the latch activated by the signal CLK and to the flip-flop activated by the T_CLK
signal. The third approach is based on the LSSD (Figure 3.12(c)). It uses a separate system
and scan clocks to distinguish between normal and test mode. CLK is the system clock and
controls the D input. The scan clocks are generated by the T_CLK signal, and controls the
S_I input.

(a) Scan Shadow flip-flop
cell.

(b) Scan tail flip-flop cell. (c) Scan cell based on
the Level Sensitive Scan-
based Design.

Figure 3.12 – Error detection sequential scan approaches [HGJX13].

According to the authors, the Scan tail flip-flop approach reduces the scan-path
switching power consumption when compared to the Scan Shadow flip-flop approach. How-
ever, the area overhead of The Scan tail flip-flop is large, once it adds a new register element.
The Scan Shadow flip-flop has the smallest area overhead between the three approaches,
but introduces the metastability problem on error-paths and adds a delay on data paths.
LSSD has medium area overhead and does not present metastability and delay problems,
which makes this approach a suitable design among all trade-offs.

63

3.4 State of the Art Conclusion

Despite the Razor family brings solutions to eliminate worst-case safety margins
in the clock period, few architectures of this family concern with DfT. The Razor registers
presented by this family are complex and can present test issues as area overhead. Another
characteristic of this family is that some solutions present both latches and flip-flops in its
implementation, and it may require a specific cell that allows test both types of registers
simultaneously, once they have different test protocols. Also, the Razor techniques can
present solutions that difficult the DfT insertion, like Bubble Razor that uses clock gating
techniques. Clock gating technique increases the test area overhead, once extra logic in the
clock gating is necessary to allow controllability to the clock during the test process.

Table 3.1 summarizes the test limitations of Razor family. The DfT proposals col-
umn informs if the template addressed DfT insertion. Only the Razor template [EKD+03]
presents a scan cell approach: the Scan Razor flip-flop (described in Section 3.2.1). The
Columns Flip-flop and Latch inform whether the template uses flip-flops and latches cells.

Table 3.1 – Razor family characteristic regarding test insertion and register components.
DfT proposals Flip-flop Latch

Razor [EKD+03] A [EKD+03] Yes Yes
RazorII [DTP+09] NA No Yes

Razor-Lite [KKF+14] NA Yes No
Bubble Razor [FFK+13] NA No Yes

Saferazor [CBC+15] NA Yes Yes

Section 3.2 and Section 3.3 present some alternatives to insert DfT in resilient
circuits. However, few papers mention ATPG validation, and all the works do not present
automated DfT insertion for these scan approaches. All the scan components presented in
Section 3.2 are custom solutions to allow testability at resilient designs, and commercial DfT
and ATPG tools may not support these solutions.

Table 3.2 summarizes the limitations of these scan approaches. The Automated
DfT insertion column informs if the scan cell approach can be inserted automatically into
the design by a DfT tool. The ATPG Validation column informs if the scan cell was or can
be integrated ATPG tools. The Scan Razor flip-flop [ATA15] approach was validated using
test vectors generated by an ATPG tool, while Kuppuswamy et al. [KDF+04] mention that its
scan cell is compatible with ATPG tools.

The state of the art presents test solutions to resilient circuits regarding timing
issues or soft-error issues. All works present custom test solution based on the scan chain
technique. Most of these works concern with area overhead, and present approaches that
reuse the existent components of the register elements to implement the scan function, as in
the Scan Razor flip-flop [ATA15]. Other works describe solutions that have a small overhead

64

Table 3.2 – Scan approaches limitations regarding DfT automated insertion and ATPG.
Automated

DfT insertion
ATPG

Validation

Scan Razor flip-flop [ATA15] No Yes
Timed flip-flop [FTK08] No No

Kuppuswamy et al.’s Scan cell [KDF+04] No Yes
Scan flip-flop with

single-event upset detection [DKM05] No No

XSEUFF 1 [JOC07] No No
XSEUFF 2 [JOC07] No No

Scan Shadow flip-flop [HGJX13] No No
Scan tail flip-flop [HGJX13] No No

Scan cell based on the LSSD [HGJX13] No No

increase due to the addition of small components like MUXs used to allow the test, as the
Scan Shadow flip-flop cell [HGJX13].

However, none of these works concern with DfT tools compatibility. The works do
not mention if the proposed scan cell can be recognized by a DfT tool as a test cell and if the
tool can replace the registers of the design by these test cells automatically. This limitation
increases the time spent with the design for test, once the registers must be replaced by the
test cells either manually or using custom TCL scripts that find and replace these registers.
Therefore, according to the works presented in Section 3.2 and Section 3.3, test automation
is a gap in resilient templates.

Besides, few works mention the use ATPG tool in its evaluation or mention fault
coverage estimation. None of the works presented in Section 3.2 and Section 3.3 evaluate
the fault coverage for fault models like stuck-at and path-delay. Thus, the support to ATPG
is also a gap in resilient templates.

65

4. PROPOSED CELLS DESIGN

This Chapter presents contributions 1 and 2 (see Section 1.3) of this dissertation,
which consists of the description and implementation of the cell implementations needed to
add scan chain into the Blade design flow. As mentioned before, Blade uses different types
of memory elements such as latches, EDLs and Q-Flops, as shown in Figure 2.20. These
cells must be replaced by scannable cells to build scan chains. This section presents the pro-
posed scan cells for the latches, EDLs and Q-Flops. The following cells were implemented
to replace the Blade sequential elements:

• An active low LSSD;

• An active high LSSD;

• An active low LSSD with active low reset;

• An active high LSSD with active low reset;

• An active high Clocked-LSSD.

Also, the following cells were implemented to specific Blade functions:

• A transition detector;

• A metastability filter.

Figure 4.1 shows a generic example and where the sequential cell is localized in
the Blade circuit. Sections 4.1, 4.2 and 4.3 show the scannable version of latches (identi-
fied by the number one), TDs (identified by the number two) and Q-Flops (identified by the
number three), respectively. All of these cells are implemented targeting the 28 nm FD-SOI
technology. Section 4.4 shows an option compatible with the LSSD test protocol to replace
the Q-Flop flip-flop.

Combinational

Logic

Combinational

Logic

Blade

Controller

Blade

Controller

Blade

Controller

Latch (1) Latch (1)

EDL

TD (2)

Latch
Transition

Detector

Q-Flop (3)

Flip-

Flop

Metastability

Filter

Figure 4.1 – Blade sequential elements.

66

4.1 Replacing Latches

This Section describes part of the contribution number 1 presented in Section 1.3
at page 26. The Blade synthesis flow has a phase where flip-flops memory elements are
replaced by latches (described in Section 5). This phase uses different kinds of latches such
as active low, active high, active high with active low reset and active high with active low
reset latches. Thus, it is necessary the LSSD cell versions that are compatible with these
latches. So, the following LSSD versions were implemented:

• An active low LSSD;

• An active high LSSD;

• An active low LSSD with active low reset;

• An active high LSSD with active low reset.

These cells were designed by the guideline presented in [JMKA17]. A Spice de-
scription, a Verilog description, and a Liberty file were generated for each LSSD cell. The
Liberty file was generated using Liberate by Cadence [SYN14], and the Verilog description
was generated using User-Defined Primitives (UDP). Appendix A details the design and im-
plementation of these cells. The obtained results are presented in Section 5.3 that evaluates
the case study XTEA criptocore [NW97] using full scan approach.

4.2 Testable Transition Detector

This Section describes part of the contribution number 2 presented in Section 1.3
at page 26. As mentioned before, the Blade template EDL has a latch with an error transition
detector, called TD. This circuit consists of a D latch and a transition detector implemented
as a single cell.

The Latch inside the TD must be replaced by an LSSD to allow the DfT insertion in
the Blade flow. The solution to automate the DfT insertion into the TD cell is to split the TD
cell into two different cells:

• A latch cell available in the 28 nm library;

• A transition detector cell;

Figure 4.2 shows the TD diagram with these two blocks. The split description allows
the synthesis tool to recognize the latch as a simple memory element. Thus, it can be

67

replaced by an LSSD. To perform the split in the TD cell, a Spice description and a Liberty
file for the transition detector cell were generated. The Liberty file was generated using
Liberate by Cadence [SYN14]. Section B details the generated codes for TD.

Even though splitting the TD into two blocks solves the DfT insertion issue, it can
present some problems for physical synthesis. If the cells are placed apart from each other,
the wire delays can affect the expected cell behavior. Section 4.3.2 presents a solution to
this challenge using the Q-Flop as example. The obtained results for DfT insertion in the TD
are presented in Section 5.3 that evaluates the case study XTEA criptocore [NW97] using
full scan approach.

DL2

Latch

XOR1

Din

CLK

Q

X

Latch Transition Detector

Figure 4.2 – Testable Transition Detector. This diagram is an adaptation of the Blade original
paper [HTMH+15].

4.3 Testable Q-Flop

This Section describes part of the contribution number 2 presented in Section 1.3
at page 26. The Q-flop is a complex memory element and it is not natively supported by
conventional DfT flows and technology libraries. One solution to enable that is to split the
Q-flop cell into two different cells:

• D-Type Flip-Flop;

• Metastability Filter;

Mullins and Moore [MM07] proposed a static-logic implementation of the Q-Element
[RMCF88] separating the Q-Flop into a flip-flop and a metastability filter. In this proposal,
the clock signal is connected to the reset port to implement the Q-Flop behavior, as shown
in Figure 4.3. Thus, the DfT insertion tool recognizes the flip-flop as a standard register
cell and can replace it by scannable testable cells. Nevertheless, this kind of connection
generates a DfT rule violation: the same signal can not feed a clock and reset inputs of
a sequential cell. In other words, the clock and the reset inputs must be independent and
with high controllability. Connecting the same signal in these two pins prevents the DfT tool

68

from applying the test protocol to the scan cell, which can lead to a mismatch between test
patterns and captured values.

D

R Qbar

Q
Q

Qbar

D

CLK

Figure 4.3 – Static-logic Q-Flop implementation [MM07].

To solve that, a new component that deals with the DfT violation and allows auto-
mated DfT insertion using a DfT tool was proposed, called testable Q-Flop. Figure 4.4 shows
the gate-level diagram of the proposed testable Q-Flop. The D-Type Flip-Flop block is the
sequential component of the testable Q-Flop, which can be recognized by commercial DfT
tools. The Metastability Filter block is composed of two circuits: the Dual-Rail Converter and
the Filter. The Dual-Rail Converter circuit converts the flip-flop output to a dual-rail codifica-
tion and the Filter circuit avoids metastability. This way, it is possible to insert a scannable
element without DfT violations and replace the sequential block to a scan cell.

D QD

CLK

Qbar

Q

Metastability FilterD Flip-Flop

Dual-Rail Converter Filter

Figure 4.4 – Proposed testable Q-Flop cell.

Moreover, it is not necessary to implement a new sequential cell, once the 28 nm
library had standard flip-flop sequential cells. Besides, being able to control the Q-Flop
during the test can reduce the test time. This is because its metastability filter can take
an unbounded time to resolve its outputs values if it goes metastable, which can happen if
input data stability is not guaranteed. With the scan-chain, the filter always receives stable
values at the input, increasing the controllability of the filter, and, therefore, the output values.
Another advantage is that the electrical characterization is simplified with the testable Q-
Flop since its array configuration transistor does not produce unpredictable transitions like

69

the cross-coupled NANDs approach used in the original Q-Flop. The feedback between the
NANDs can generate delayed values, which produce this mentioned unpredictable values
in the internal nodes and cause miss matches at the characterization simulation. Avoiding
the cross-coupled NANDs implementation allows the commercial electrical characterization
tools to more easily measure setup and hold times.

A Spice description, a Verilog description, and a Liberty file were generated for the
metastability filter cell. The Liberty file was generated using Liberate by Cadence, and the
Verilog description was generated using User-Defined Primitives (UDP). Appendix C details
the metastability filter codes.

4.3.1 Comparison with the Original Q-Flop

This section compares the proposed solution to the original Q-Flop and evalu-
ates overheads considering propagation delay, leakage power and energy values. Leakage
power represents the power of the circuit when the inputs are stable. Energy represents
how much the circuit consumes when it is operating and is measured as the average energy
per transition in the cell. Propagation delay represents the amount of time required for a
change in the input to reach the output. In order to perform a fair comparison between the
components, both of them were described in Spice, targeting the 28 nm FD-SOI technology
and sized with logical effort assuming a fanout of 4. All reported results are based on Spice
simulation, using the Spectre Circuit Simulator.

The experimental setup assumed slew values typical of a simple buffer in the 28 nm
target technology, (0.003 ns for best case, 0.065 ns for nominal case and 1 ns to worst case).
These values allow a range of possible operating conditions. The columns of Table 4.1 show
the obtained values and the respective overheads. The values presented in the table are
the average of the three corner cases values, and the overhead column is presented as
percentage. The values highlight in red represent a loss of the testable Q-Flop compared
with the original Q-Flop.

The testable Q-flop has six transistors more than the original. Part of this over-
head is due to the dual-rail converter in the metastability filter. The rise propagation time
decreases once the outputs pass to a two-input NANDs instead three-input NANDs, which
has a transistor stack smaller. The fall propagation values are similar because in both cases
a NAND logic gate drives the output to zero when the CLK is zero. The dynamic energy and
leakage power have a small improvement, once the register is implemented with tri-state
and standard inverters, which are less complex than crosscoupled NANDs.

70

Table 4.1 – Comparison of original Q-Flop against testable Q-Flop.

Q-Flop Testable
Q-Flop

Overhead
(%)

Total Transistors 28.00 34.00 21.43
Average Rise

Propagation time (ns) 97.56 79.80 -18.20

Average Fall
Propagation time (ns) 22.84 22.35 -2.12

Average
Dynamic Energy (fJ) 18.16 15.11 -16.79

Average
Leakage Power (nW) 161.47 151.03 -6.47

4.3.2 Place and Route Methodology

This Section presents a methodology to keep the register and the metastability filter
close in the physical synthesis, which is a requirement to ensure the correct behavior of the
Q-Flop. If both cells were placed distant from each other, the filter behavior could be affected
by additional wire delays and capacitances, impacting its reliability metrics electrical charac-
teristics. To show the results, a small circuit was implemented containing four Q-Flops, one
four-input AND logic gate and one four-input OR logic gate, as shown in Figure 4.5. This
example is based on the logic to detect errors of the Blade template. The Encounter tool of
Cadence was used to perform the physical synthesis of this case study.

Q-Flop 3

Q-Flop 1

Flip-Flop
Metastability

Filter

Flip-Flop
Metastability

Filter

Flip-Flop
Metastability

Filter

Flip-Flop
Metastability

Filter

D

Q

Qbar

Q-Flop 2

CLK

Q-Flop 0

Figure 4.5 – Testable Q-Flop physical synthesis evaluation scenario.

The following methodology was used to ensure that the cells are placed close:

i. Perform the floorplan and powerplan;

71

(a) Placement results for physical synthesis without
fence and blockage constraints.

(b) Placement results for physical synthesis with fence
and blockage constraints.

Figure 4.6 – Testable Q-Flop physical synthesis results.

ii. Put the register and the metastability cells close in the design area, which can be done
using a hierarchical approach;

iii. Create fence constraints, which restricts the cell placement to the fenced area;

iv. Create blockage constraints specifying M2 and M3 layers;

v. Perform the placement;

vi. Define the cells placement status as FIXED, which prevents the tool from moving them
in the layout;

vii. Perform the clock tree synthesis;

viii. Perform the routing;

ix. Add the filler cells, metal layers and perform sign-off checks.

This process can be automated by Tool Command Language (TCL) scripts using
standard commands to perform an hierarchical synthesis and preserve the fence and block-
age constraints. Some specific commands can be used too to put the cells close, such as
gravity commands. Besides, the proposed methodology is compatible with any tool that sup-
ports hierarchical placement, as the only requirement is that both cells must be placed in a
bounded physical region defined by the module that contains them.

Figure 4.6 shows the synthesis result with a conventional flow, and without the
fence constraints and layers blockage. Figure 4.6(b) shows that the fence constraint ensures
the placement of the flip-flop next to the metastability filter, while Figure 4.6(a) shows that
the cells are distant. Thus, it is possible to ensure the correct behavior of the testable Q-Flop
split in two different cells using constraints provided by the synthesis tool.

72

System Clock

Shift Clock A

Shift Clock B

LSSD Protocol Violation
Test Operation

Shift Mode Capture ModeObserve Primary Outputs

Figure 4.7 – LSSD protocol violation in Yurash’s [Yur95] clocked-LSSD cell.

4.4 Clocked-LSSD Optimization

This Section describes part of the contribution number 1 presented in Section 1.3
at page 26. The previous section described a Q-Flop version that allows the DfT insertion
using a standard D-Type Flip-Flop and a metastability filter. However, a typical LSSD test
protocol assumes latches as the memory element. In spite of that, there is a particular
LSSD-compatible flip-flop scan cell called Clocked-LSSD, described in Section 2.5. How-
ever, this original cell has a big area overhead because it is composed of three latches,
while a standard flip-flop has two latches.

There is a reduced set of works about Clocked-LSSD about it optimization in con-
temporary literature. Yurash [Yur95] patented an optimization of Clocked-LSSD that uses two
latches instead of three latches in the original design. This cell has 40 transistors against 48
transistors required by the original cell design. However, this patent presents a different test
protocol that is not compliant with the standard LSSD protocol, see Figure 2.15(b).

Unlike the conventional Clocked-LSSD, this cell requires that the system clock is
kept at a high logic value during the shift operation, as shown in Figure 4.7. In the original
test protocol, the system clock is at 0 logic value during this operation. If the clock is at
low logic value during the shift operation in the patent cell, the data at input SI does not
pass through the first latch, interrupting the operation. Moreover, this cell needs an overlap
between the clocks A and B (as shown in Figure 4.7), while in the LSSD test protocol does
not allow the test clock overlap to avoid a race condition. Thus, this implementation is
not compatible with contemporary standards and commercial synthesis tools, significantly
reducing the levels of automation provided for designs using it.

To solve that, a new transistor architecture for a Clocked-LSSD optimization was
proposed. Figure 4.8 shows the schematic of the proposed optimized cell. As the cell
proposed by Yurash, this optimization uses two latches. This optimization has 2 additional
transistors (ET0 and ET1) than the Yurash’s cell which ensure that the proposed optimization
cell has the same test protocol presented in Figure 2.15(b).

73

Although it seems at a first look that inverting the system clock signal is sufficient
to ensure protocol compatibility, the truth is that a review in this cell is needed to ensure the
correct test protocol behavior. The clock inversion just changes the clock edge, and the test
protocol violation still happens once the clock must be active during the test operation. In the
proposed optimized cell, it is necessary only these extra transistors to implement the logic
that ensure the non-influence of data D selector in the behavior of the cell when the clock A
is at logic level 1. Thus, this cell can be integrated with the commercial synthesis tools. The
cell sizing was designed by the guideline presented in [JMKA17].

D

A

A

CLK

CLK

I

I

A

A

CLK

CLK

A

A

B

Q

CLK

A

B

CLK

B

A

B

B

ET0

ET1

MASTER LATCH SLAVE LATCH

D

CLK

CLK

CLK

CLK

B

Figure 4.8 – Proposed optimized Clocked-LSSD schematic.

A Spice description, a Verilog description and a Liberty file were generated for the
proposed Clocked-LSSD. The Liberty file was generated using Liberate by Cadence, and the
Verilog description was generated using User-Defined Primitives (UDP). Section D details
the Clocked-LSSD codes.

4.4.1 Results

This Section compares the conventional Clocked-LSSD and the proposed cell us-
ing a case study to perform power and area analyses. Note that, because the Yurash’s cell is
not compatible with the protocol used by the synthesis tool, is not possible to perform a com-
parison between this cell and the proposed optimized cell using standard EDA tools. In order
to perform a fair comparison between the components, both the Clocked-LSSD cells were
described in Spice, targeting the 28 nm FD-SOI technology. The steps of the characteriza-

74

tion process to generate the liberty file is the same reported in Appendix A and Appendix B
show the timing arcs of the Clocked-LSSD.

A synchronous version of a pipelined XTEA criptocore was chosen as the case
study to perform the synthesis and DfT insertion using both Clocked-LSSD cells. The reason
behind the choice for this design is that it enables a controlled environment for inserting test
cells and comparing results, as it is a simple pipeline with well defined sequential stages
and combinatorial logic. Accordingly, the XTEA design has data inputs of 64-bit width, a
128 bits key input and a 64 bits data outputs. This design has 32 pipeline stages, 23,681
combinational cells, and 6,238 D flip-flop cells. The circuit operates at 200 MHz frequency.

A full flop-based design was chosen to demonstrate these results to ensure that
the result will reflect only the Clocked-LSSD characteristics. Synopsys Design Compiler
and DFT Compiler were used to perform logic synthesis and automatic full scan insertion.
Two designs were generated: one using the conventional Clocked-LSSD and one using our
proposed cell. To perform the power analyses, a value change dump (VCD) was generated
by a simulation with delay provided by the standard delay format (SDF) generated in the
logic synthesis. Table 4.2 shows the test overhead reduction of the proposed optimized cell.

Table 4.2 – Area and power evaluation of the synchronous XTEA with full scan and clocked-
LSSD scan cells.

Area
(µm2)

Leakage Power
(nW)

Dynamic Power
(nW)

Dft Using the
Conventional Clocked-LSSD 106,134.35 1,275,976.24 4,742,273.18

Dft Using the
Proposed Clocked-LSSD 88,203.24 985,096.69 1,815,258.32

Proposed
Clocked-LSSD reduction (%) 16.89 22.80 61.72

As the table shows, the circuit that used the proposed Clocked-LSSD presents an
area reduction of 16.89% when compared with the circuit using the conventional Clocked-
LSSD. Also, this reduction was of 22.79% and 61.72%, respectively, considering leakage
and dynamic power data. The leakage reduces due to the number of transistor reduction in
the proposed optimized cell, once the leakage power has relation with the number of tran-
sistors. The dynamic power has a significant reduction due to the extra transistors EXT0
and EXT1 (presented in Figure 4.8), once they prevent the master latch data selection from
activating simultaneously and not propagating the switching through the circuit. The transis-
tor configuration of the slave latch also contributed to this reduction, once the master latch
of the conventional Clocked-LSSD is implemented using a double latch, and the optimized
version is implemented with a single latch.

75

4.4.2 Cell Area Estimation

As the Blade flow only address logic synthesis, the cell described before does not
have an implemented layout. Thus, a methodology was adopted to estimate the area value
for each test cell. First, was extracted the cell area values of a flip-flop (DFPQ cell), Muxed-D
(SDFPQ cell) and latch (LDHQ cell) from 28 nm library documentation [STM12]. After, this
value was divided by the number of transistors necessary to implement each cell. Thus, the
obtained proportion was used to estimate the values for the LSSD and Clocked-LSSD cells.
Table 4.3 shows the obtained values for each cell. By using this method, the cell area for
LSSD and Clocked-LSSD was estimated as 6.2 and 6.8 µm2, respectively.

Table 4.3 – Area estimation for test cells
Flip-flop Muxed-D Latch LSSD Clocked-LSSD

Number of transistors 18 24 10 36 42
Area (µm2) 2.61 4.08 1.47 6.20 6.80

Area (µm2)/Number of transistors 0.15 0.17 0.15 0.17 0.17

76

77

5. BLADE DFT SYNTHESIS FLOW

This Section presents the necessary modifications in the Blade synthesis flow to
integrate DfT insertion, which represent the contribution number 3 presented in Section 1.3
at page 26. Figure 5.1 presents the proposed Blade synthesis flow with DfT insertion. This
Figure is the same presented in Section 1.3 at page 27, and it is shown again in this Section
to make the work reading easier. The Blade template has four synthesis phases:

• Synchronous Synthesis;

• FF to Latch Conversion;

• Retiming;

• Blade Conversion.

RTL Specification

Synchronous

Synthesis

FF to Latch

Conversion

Retiming

Blade Conversion

Final Netlist

DfT
Blade Conversion DfT

Insertion

Yes

No

Test

Cells

28nm

Library

Cells

Blade

Cells

New

Blade

Cells

(1)

(3)

(2)

Figure 5.1 – Blade synthesis flow where the red dashed square shows the proposed con-
tribution to improve the Blade testability. The numbers in the Figure represent the three
contributions of this work.

The Synchronous Synthesis phase performs a flip-flop based synchronous design
synthesis. A synchronous design RTL description is needed as a start point in this phase.
This RTL must be described using the pipeline technique. Although it is possible to work
around, the flow works best if the RTL has a single clock where all flip-flops work at the

78

same edge and the reset activated at the same level. The FF to Latch Conversion phase
replaces all the flip-flops by master-slave latches, keeping the edge-triggered behavior de-
sign of the Synchronous Synthesis phase. The Retiming phase applies the register retim-
ing technique [SYN15a] to perform the dual-phase implementation. This phase splits the
master-slave latches in single latches, converting the design to a synchronous dual-phase
latch based implementation. Thus, the design works at the high and low clock levels, chang-
ing the edge-triggered behavior of the Synchronous Synthesis phase. The Blade Conversion
phase converts the dual-phase implementation to a Blade implementation. This phase re-
places the clocks of the dual-phase design by asynchronous controllers. It also inserts delay
lines and error detection logic blocks.

Error Detection Logic

Dout

SampleCLK

Din

X

From other

C-elements

DL1

Flip-Flop

Controller

TD

DL2

G1

Latch
Latch

Latch

C
+

CEL

G2

E
r
r
1

E
r
r
0

From other

Q-Flops

G3 G4

Metastability

Filter

Figure 5.2 – Proposed Error Detection Logic implementation. The TD was split into a latch
and a transition detector circuit, and the Q-Flop was split into a flip-flop and a metastability
filter circuit. The red dashed squares highlight these modifications.

01

sample_scan

clk_scan

scan_mode

01

Error Detection Logic

clk_ctrl sample_ctrl

Clk Sample Error0 Error1

Scan Mode Controller

Controller Logic

Figure 5.3 – Controller modification to support scan chain insertion. MUX components were
added to allow controllability for the clocks. The red dashed squares highlight the MUXs.

The DfT insertion is performed after the Blade conversion synthesis phase, as
shown in Figure 1.1. After the end of this phase, the circuit has latches in the datapath

79

and EDLs with transition detector (TD) in the critical paths. Section E details the scripts
used to automate the DfT insertion in the Blade synthesis flow. Figure 5.2 shows the new
error detection logic block. Each TD is replaced by a standard latch cell and a TD cell, as
described in Section 4.2. Also, the Q-Flops are replaced by a standard flip-flop cells and
a metastability filter cells, as described in Section 4.3. Thus, it is possible to automatically
replace all the latches by LSSDs test cell (as detailed in Section 4.1) and all the flip-flops by
Clocked-LSSD cells (as detailed in Section 4.4) using the logic synthesis tool.

Furthermore, the controller must be modified to allow DfT insertion, as shown in
Figure 5.3. Tree new inputs are added: the test clocks clk_scan and sample_scan and
the MUX selector scan_mode. Besides, two MUX are added in the controller to choose
between the signals provided by the controller or the test signals. These modifications allow
the clocks to be controllable during the test operation.

5.1 Detailed Blade DfT Flow

This Section details the proposed Blade flow steps executed by the DfT tool, shown
in Figure 5.4. TCL scripts automate these steps, and no manual intervention is needed
during the flow execution. The first step is the DfT Signals Specification. A netlist from logic
synthesis is needed as an input to the DfT tool to perform the first step. The necessary test
signals are declared to perform the scan-chain operations, as the test enable and test input.
The next step, Test Interface Configuration, defines the behavior of the circuit signals during
the test operation, as the level of the test enable signal.

The Test Protocol Definition step specifies the edge-triggered test protocol or the
LSSD test protocol. As Blade is a latch-based design, the test operation uses the LSSD
test protocol. The Replace Register step replaces all latches of Blade by LSSD cells and
all flip-flops of Q-Flops component by Clocked-LSSD cells. This step needs the test cell as
an input to the DfT tool. The next step, Connect Scan-Chain, interconnects all LSSD and
Clocked-LSSD cells into a scan-chain. The Check DfT Rules step analyzes the design with
the scan-chain to detect DfT rules violations.

The Export to ATPG step generates all the files to perform the ATPG step. It exports
the final netlist with the scan-chain and the Standard Test Interface Language Procedure File
(SPF) used by the ATPG tool. The SPF file contains information about the scan connection,
test signals, and signals behavior. The ATPG step reads the final netlist, the SPF file, and
the setup script for the fault models. Stuck-At Setup Script is used to generate the stuck-
at fault list which contains the faults for the circuit internal nodes. Path-Delay Setup Script
extracts the combinational paths from the design. The ATPG step also generates the test
patterns used in the Fault Simulation step. Fault Simulation is the last step and simulates

80

the test patterns from the stuck-at or path-delay models to extract reports like fault coverage
estimation and total clock cycles used in the test operation.

DfT Signals

Specification

Test Interface

Configuration

Test Protocol

Definition

Check DfT Rules

Replace RegisterTest

Cells

Connect Scan-Chain

Faults Simulation

Stuck-At

Setup

Script

Path-Delay

Setup

Script

ATPG

Test

Patterns

Test

Reports

Export to ATPG

 Final

Blade DfT

Netlist
SPF File

Blade

Netlist

Figure 5.4 – Detailed proposed Blade DfT flow.

5.2 Case Studies

This Section presents the two case studies used to evaluate this work. Sec-
tion 5.2.1 describes the XTEA crypto core, and Sections 5.2.2 describes the Plasma mi-
croprocessor.

5.2.1 XTEA

The Extended Tiny Encryption Algorithm (XTEA) is cryptocore design derived from
the Tiny Encryption Algorithm (TEA) [Kap08]. It has a key of 128 bits to encrypt or decrypt
data in blocks of 64 bits. The input is split into two blocks of 32 bits (y and z) and processed
by a permutation block (f) for N rounds, where N is an integer number. Figure 5.5 shows
the implementation of the XTEA used in this work. This version is based on the Speed
XTEA [Kap08], and has 32 rounds. Each round is split into two smaller combinational blocks
(HALFROUND 1 and HALFROUND 2), and between this split logic has a temporal barrier
(INNER ROUND).

81

XTEA uses a +/- block to perform a sum operation (in case of encryption function)
and subtraction (in case of decryption function). The cryptocore function is selected by the
signal mode. The block Keygen generates the subkey. The results of f and Keygen are
processed by a XOR gate as a reversible function. For encryption operation, z is applied to
the left side, y to the right side, and all +/- blocks are in addition mode. For decryption, the
opposite is applied. One round of XTEA computes a new value for y and z.

Keygen

f

XOR

+/-

sum

y/z

key

+/-
Δ

z/y

R

O

U

N

D

0

Keygen

f

XOR

+/-

key

sum

z/y

y/z

z/y

sum0 sum0

sum1 sum1

I

N

N

E

R

R

O

U

N

D

0

key key

z/y

y/z

sum

R

O

U

N

D

1

Keygen

f

XOR

+/-

+/-
Δ

R

O

U

N

D

30

Keygen

f

XOR

+/-

key

sum

z/y

y/z

z/y

sum0 sum0

sum1 sum1

I

N

N

E

R

R

O

U

N

D

30

key key

z/y

y/z

sum

R

O

U

N

D

31

key

sum

z/y

y/z

...

sum

y/z

key

z/y

clk

HALFROUND 1 HALFROUND 2 HALFROUND 1 HALFROUND 2

128

32

32

32

32

32

32

128

mode

Figure 5.5 – XTEA pipeline design. This design is based in the Speed XTEA version pre-
sented in [Kap08].

5.2.2 Plasma

Plasma1 is a 32-bit RISC microprocessor. It is composed by an interrupt controller,
a UART and an SRAM controller. The Plasma CPU executes all MIPS I user mode instruc-
tions except unaligned load and store operations. The CPU is implemented with a three
stage pipeline with an additional optional stage for memory read and writes, and supports
both Big or Little Endian mode. Figure 5.6 shows the block diagram of Plasma microproces-
sor.

5.3 General Results Setup

This Section presents the obtained results from the Blade DfT insertion. The test
flow is performed using a 28 nm library. The DC Compiler [SYN15a] synthesis tool from Syn-
opsys was used in the Blade flow [HTMH+15]. For this reason, the DFT Compiler [SYN15b]
was used to apply DfT at Blade flow. The test patterns for the fault models stuck-at and
path-delay and the DfT insertion were performed using the ATPG tool TetraMAX [SYN15b]
by Synopsys. Figure 5.7 shows a sample of the scan-chain generated by the Synopsys DFT

1https://opencores.org/project,plasma

82

Figure 5.6 – Plasma microprcessor block diagram.

Compiler tool. This sample shows an LSSD cell connected to a Clocked-LSSD cell in the Q-
Flop component, forming the Blade scan-chain. The following Sections describe the results
for silicon area overhead (Section 5.4.1) and ATPG (Section 5.4.2 and Section 5.4.3). The
XTEA and Plasma where synthesized targeting 454MHz.

clk_p1_REG1256_S1

cluster1_qFlop_0/filter1
...ter1_qFlop_0/qflop1

C28SOI_SD_TLSSDSL_X1

METASTABILITY_FILTER
CLOCKED_LSSD

D

CLKA

G

CLKB

SI
D

GN

D

GN

A

B

I

L1

L2

Q

QBAR

L2

CLK

p__test_scb__

D

p__test_sca__

test_si

sclk

n2151

mclk

cluster1_celement_OR_0_out

cluster1_qFlop_0/CLK

cluster1_qFlop_0/test_so

Figure 5.7 – Schematic sample of the scan chain. This Figure was extracted from DC Com-
piler tool by Synopsys.

5.4 XTEA Evaluation

This Section presents the results analyses for the XTEA case study. Section 5.4.1
shows the area overhead results, and Sections 5.4.2 and 5.4.3 show the ATPG results.

83

5.4.1 Silicon Area Results

This Section analyses the area overhead results for the XTEA Blade version design,
shown in Table 5.1. The rows of the table show the number of cells used in the synthesis and
the silicon area of these cells. The columns of the table represent the version of the XTEA
design (synchronous, synchronous with DfT, retiming, retiming with DfT, Blade and Blade
with DfT) and the overheads (Blade over synchronous, Blade over retiming, synchronous
with DfT over synchronous, retiming with DfT over retiming, Blade with Dft over Blade, Blade
with Dft over Synchronous with DfT and retiming with DfT over Blade with DfT). Table 5.3
details the area for the extra components required for DfT and Blade conversion and they
percentage of the total area of Blade with DfT.

The Blade version of XTEA presents an area overhead of 13.78% (as shown in row
7 and column 6 of Table 5.1) when compared to the synchronous version. This overhead is
generated by the addition of the Blade components like the controllers and EDLs. The test
overhead of the Blade is 112.16% (as shown in row 11 and column 6 of Table 5.1), while
the test overhead for the synchronous version is 0.63% (as shown in row 9 and column 6
of Table 5.1). These results are obtained dividing the total area value of the version with
DfT over the total area value of the version without DfT. The low overhead presented by the
synchronous version is explained because of the area overhead a Muxed-D when compared
to a flip-flop is small, once the MUX component adds a small area to the cell. The high over-
head presented by the Blade version is explained because each flip-flop of the synchronous
version is replaced by two latches when converted to the Blade version, which means the
number of sequential cells is duplicated. Besides, when a latch is replaced by an LSSD,
the sequential area is increased about two times, once a single LSSD is composed by two
latches, as shown in Figure 2.7, at page 34.

Besides, the proportion of combinational cells over sequential cells in the XTEA
influences this overhead. Table 5.2 shows the cell proportions of the XTEA synchronous
version and XTEA Blade version. The XTEA Blade version has 31,205 combinational cells
(as shown in row 5 and column 1 of Table 5.1) and 15,644 sequential cells (as shown in row
5 and column 2 of Table 5.1), which means a proportion of 1.99. The synchronous version
has 23,681 combinational cells (as shown in row 1 and column 1 of Table 5.1) and 6,238
sequential cells (as shown in row 1 and column 2 of Table 5.1), which means a proportion of
3.79, bigger than the Blade version. Thus, the bigger is this proportion, the lower is the test
overhead, once the test circuitry is mainly applied to the sequential elements. Designs with
fewer register elements can present a lower test overhead, as shown in Section 5.6.1.

Another reason that contributes to the high overhead can be the retiming technique
applied to the Blade flow. As described in Section 2.3.3, the retiming technique can add
new registers at the design to balance the path delays. In the XTEA case, the retiming adds

84

3168 extra memory elements. Thus, the Blade version can presents more than two times
sequential cells when compared with the synchronous version due the retiming process.

Thus, the main contribution for test overhead is the flip-flop replacement by latches
plus the retiming, which increases the number of sequential elements, increasing the length
of the scan chain. The Blade component has a small contribution to the area overhead. To
demonstrate it the results for the synthesis after retiming and after retiming with DfT were
extracted. The design after the retiming optimization, without DfT insertion, has an area of
59,832.87µm2 (as shown in row 3 and column 6 of Table 5.1), while the Blade has an area
of 64,695.58µm2 (as shown in row 5 and column 6 of Table 5.1). Thus, the Blade version
without DfT has an overhead of 8.13% (as shown in row 8 and column 6 of Table 5.1) when
compared with retiming version. The design after the retiming optimization and with DfT
insertion has an area of 131,182.87µm2 (as shown in row 4 and column 6 of Table 5.1),
while the Blade version with DfT was 137,260.11µm2 (as shown in row 6 and column 6 of
Table 5.1). Thus, the Blade version with DfT has an overhead of 4,63% (as shown in row 13
and column 6 of Table 5.1).

Table 5.1 – Synthesis results for the XTEA design regarding the flop-based synchronous
version, flop-based synchronous version with DfT, Blade version and Blade version with DfT.

1 2 3 4 5 6
Comb.
Cells

Seq.
Cells

Total
Cells

Comb.
Area (µm2)

Seq.
Area (µm2)

Total
Cell Area (µm2)

1 Synchronous 23,681 6,238 29,919 33,444.09 23,414.96 56,859.04

2 Synchronous
With DfT 30,305 6,231 36,536 31,825.14 25,392.13 57,217.27

3 Retiming 31,086 15,644 46,730 34,829.32 25,003.54 59,832.87

4 Retiming
with DfT 32,545 15,644 48,189 34,190.07 96,992.80 131,182.87

5 Blade 31,205 15,644 48,743 39,692.04 25,003.55 64,695.58

6 Blade
With DfT 31,205 15,756 48,743 39,499.62 97,760.49 137,260.11

7 Blade/
Synchronous 31.77% 150.79% 62.92% 18.68% 6.78% 13.78%

8 Blade/
Retiming 0.38% 0.00% 4.31% 13.96% 0.00% 8.13%

9 Synchronous with DfT/
Synchronous 27.97% -0.11% 22.12% -4.84% 8.44% 0.63%

10 Retiming with DfT/
Retiming 4.69% 0.00% 3.12% -1.84% 287.92% 119.25%

11 Blade with DfT/
Blade 0.00% 0.72% 0.00% -0.48% 290.99% 112.16%

12 Blade with DfT/
Synchronous with DfT 2.97% 152.86% 33.41% 24.11% 285.00% 139.89%

13 Blade with DfT/
Retiming with DfT -4.12% 0.72% 1.15% 15.53% 0.79% 4.63%

85

Table 5.2 – Cell proportion of the XTEA synchronous version and XTEA Blade version.

Synchronous
Version

Blade
Version

Combinational Cells 23,681 31,205
Sequential Cells 6,238 15,644

Proportion
(combinational/sequential) 3.79 1.99

Table 5.3 – Area detailing of extra components used in test insertion and Blade conversion.
Number
of cells

Total area
(µm2)

Percentage of the total area
of Blade with DfT

LSSD 15,644 96,992.80 70.66%
Transition Detector 1,324 2,592.92 1.89%

Q-Flop 112 767.69 0.56%
Metastability Filter 112 164.51 0.12%

Controller 3 68.22 0.05%
C-element 446 1,460.97 1.06%

Total 17,641 102,047.10 74.35%

5.4.2 Stuck-At Fault Model Results

Table 5.4 shows the stuck-at fault model results extracted from the ATPG tool for the
XTEA synchronous version and the XTEA Blade version. The Blade version scan chain has
more than two times the length of the synchronous version, once each flip-flop is replaced by
two latches plus the extra latches included by the retiming, and an LSSD replaces each latch.
Besides, the number of collapsed faults in the Blade version is bigger than the synchronous
version, which explains the additional test patterns. These facts partially explain the number
of patterns and the number of cycles.

The XTEA Blade version has a smaller fault coverage than the synchronous ver-
sion. It occurs due to some Blade points that are not covered by the scan chain, as the inputs
of ORs gates connected to the Q-Flop, C-elements and the Blade controller. Table 5.5 shows
the undetected faults in the Blade. Internal undetected faults include internal nodes add the
blade, as handshake protocol wires. The C-elements are the main contributor to the unde-
tected faults, being 74.42% of the total undetected faults. It suggests that the C-Element
should be included in the scan chain, like the latches and Q-Flops.

5.4.2.1 Stuck-At Fault Model Results Without Q-Flop

Turning the Q-Flop a scannable element enables the test of critical parts of the
design, such as the metastability filters and their surrounding logic. However, the testable

86

Table 5.4 – ATPG stuck-at fault model results for XTEA synchronous version and XTEA
Blade version.

Synchronous With DfT Blade With DfT

Fault coverage (%) 100 98.17
Number of total faults 299,300 484,482

Number of collapsed faults 47,151 135,137
Number of scan cells 6,231 15,756

Number of patterns 127 204
Number of cycles 797,825 3,230,594

Table 5.5 – Details of the XTEA Blade undetected faults.
Total detected faults 484,482

Total undetected faults 11,013
C-elements undetected faults 8,196

Q-Flop undetected faults 1,344
Controller undetected faults 548

OR tree undetected faults 434
Internal undetected faults 925

Q-Flop does not improve the fault coverage of the design. Table 5.6 shows that the testable
Q-Flop has an improvement of 0.15% in the fault coverage. Table 5.7 shows that the addition
of the Q-Flop in the scan chain has a small reduction in the number of undetected faults in
the controller and the own Q-Flop. It occurs because the number of Q-Flops in the design
is small when compared with the others memory elements, as demonstrated in Table 5.1
at page 84. Table 5.7 also shows that, whatever the Q-Flop is at the scan chain or not,
the C-element is the main contributor to the total number of undetected faults, which still
suggest that is necessary to allow testability to C-elements. Another reason for the Q-Flop
low coverage is the lack of an observation point between the controller and the at own Q-
Flop. It possibly means that the controller should also be scannable.

Table 5.6 – Comparison of the ATPG results for stuck-at fault model between the Blade with
and without scannable Q-Flop (Clocked-LSSD).

Blade With DfT
With Q-Flop

Blade With DfT
Without Q-Flop Change (%)

Fault coverage (%) 98.17 98.02 0.15
Number of total faults 484,482 483,880 0.12

Number of collapsed faults 135,137 135,748 -0.45
Number of scan cells 15,756 15,644 0.72

Number of patterns 204 183 11.48
Number of cycles 3,230,594 2,863,404 12.82

87

Table 5.7 – Comparison of the undetected faults between the Blade with and without
scannable Q-Flop (Clocked-LSSD). The column % represents the percentage of the faults
detected with the Q-Flop in the scan chain.

With Q-Flop Without Q-Flop %

Total detected faults 484,482 483,880 -0.12
Total undetected faults 11,013 11,294 2.49

C-elements undetected faults 8,196 8,196 0
Q-Flop undetected faults 1,344 1,568 14.29

Controller undetected faults 548 605 9.42
ORtree Internal undetected faults 434 434 0

5.4.3 Path-Delay Fault Model Results

Table 5.8 shows the path-delay fault model results extracted from the ATPG tool for
the XTEA synchronous version and XTEA Blade version. This result covers 1000 combi-
national paths for both XTEA versions. The Blade version has an improvement in the fault
coverage for path-delay faults. Besides, the LSSD reaches a better fault coverage with fewer
patterns and fewer clock cycles. Two points can explain this result: i) The retiming process
reduces the design combination paths, once they are balanced during this process. The
number of combinational paths increases, but these paths are smaller than the synchronous
version reducing the complexity of the test; ii) The increase in the number of elements in the
scan chain, which is more than twice when compared with the synchronous version. With
more scan elements more observability and controllability, increasing the fault coverage.

Table 5.8 – ATPG path-delay fault model results for XTEA synchronous version and XTEA
Blade version.

Sync. XTEA w/ DfT Blade XTEA w/ DfT

Fault coverage (%) 51.02 89.37
Number of total faults 1,000 1,000

Number of collapsed faults 71 12
Number of scan cells 6,231 15,756

Number of patterns 326 61
Number of cycles 2,032,614 977,180

5.5 Optimized XTEA For Normalized Throughput Evaluation

Note that when a synchronous circuit is converted to the Blade template, the ap-
plication throughput can increase twice due the Blade features, as the Blade 2-phase hand-

88

shake protocol. Table 5.9 shows the throughput result for the XTEA synchronous version
and Blade version. These results were extracted from the final netlists generated by the
logic synthesis. The simulation also uses the Standard Delay Format (SDF) to perform the
simulation with the logic gates delay. The synchronous version has a clock period of 2.20 ns,
and the Blade request signal transits every 0.55 ns, which is one-quarter of the synchronous
period.

The Blade version presents a throughput 105.51% greater than the synchronous
version. As mentioned before, one reason for this result is the Blade 2-phase handshake
protocol, once the circuit processes the combinational logic at the high and low levels of the
Blade request signal, while the synchronous version works only in the rising edge of the clock
signal. Another reason is the partitioning of combinational logic by the retiming process,
once it can reduce the combinational logic paths of the design, as shown in Section 2.3.3 at
page 33. Also, the use of latches as sequential elements increase the circuit performance
due to its characteristics, as described in Section 2.3.

Table 5.9 – Throughput results for XTEA synchronous version and XTEA Blade version.

Synchronous Blade Blade/Synchronous (%)

Throughput (MB/s) 3,636.36 7,473.09 105.51

With the presented results, it seems that to perform a fair comparison between a
synchronous circuit and a Blade circuit, the synchronous one must have the double of the
frequency, to achieve similar throughput of the Blade. Thus, a new version of the XTEA was
generated with the double of the frequency presented in Section 5.3, which is 908MHz, with
the goal to normalize the results by the throughput. Section 5.5.1 presents the new results
for area overhead, and Section 5.5.2 shows the new results for ATPG.

5.5.1 Normalized Silicon Area Results

This Section analyses the area overhead results for the XTEA Blade version design
over the normalized synchronous version of XTEA, shown in Table 5.10. The rows of the
table show the number of cells used in the synthesis and the silicon area of these cells. The
columns of the table represent the version of the XTEA design and the overheads.

The new results show that the normalized synchronous version has a similar area
when compared to the Blade version, which means that a synchronous circuit needs a similar
area to achieve a similar throughput like Blade. Table 5.10 shows that the Blade has an
overhead of 0.31% (shown in row 5 and column 6). The Blade with DfT over synchronous
with DfT reduced from 139.89% (as shown in the row 12 and column 6 of Table 5.1 at

89

page 84) to 102.33%, once the synchronous DfT overhead increase with the new targeted
synthesis frequency.

Table 5.10 – Synthesis results for the XTEA normalized design regarding the flop-based
synchronous version, flop-based synchronous version with DfT, Blade version and Blade
version with DfT.

1 2 3 4 5 6
Comb.
cells

Seq.
Cells

Total
Cells

Comb.
Area

Seq.
Area

Total
Cell Area

1 Synchronous 45,398 6,240 51,638 41,058.50 23,436.17 64,494.68

2 Synchronous
With DfT 48,976 6,239 55,215 42,399.19 25,442.06 67,841.26

3 Blade 31,205 15,644 48,743 39,692.04 25,003.55 64,695.58

4 Blade
With DfT 31,205 15,756 48,743 39,499.62 97,760.49 137,260.11

5 Blade/
Synchronous -31.26% 150.71% -5.61% -3.33% 6.69% 0.31%

6 Synchronous with DfT/
Synchronous 7.88% -0.02% 6.93% 3.27% 8.56% 5.19%

7 Blade with DfT/
Blade 0.00% 0.72% 0.00% -0.48% 290.99% 112.16%

8 Blade with DfT/
Synchronous with DfT -36.29% 152.54% -11.72% -6.84% 284.25% 102.33%

5.5.2 Normalized ATPG Results

Table 5.11 shows the stuck-at fault model results extracted from the ATPG tool for
the normalized XTEA synchronous version and the XTEA Blade version. Even with the
increase of area in the synchronous version, the Blade version still has more fault points
that the synchronous one, keeping the number of patterns and clock cycles higher than the
Synchronous version.

Table 5.11 – ATPG stuck-at fault model results for XTEA normalized synchronous version
and Plasma Blade version.

Synchronous With DfT Blade With DfT

Fault Coverage (%) 99.99 98.17
Number of total faults 393,570 484,482

Number of collapsed faults 47,549 135,137
Number of scan cells 6,239 15,756

Number of patterns 296 204
Number of cycles 1,853,578 3,230,594

Table 5.12 shows the path-delay fault model results extracted from the ATPG tool for
the normalized XTEA synchronous version and XTEA Blade version. This result also covers

90

1000 combinational paths for both XTEA versions. The test coverage for the synchronous
XTEA increase from 51.02% (as shown in Table 5.8 at page 87) to 55.43%. This increase
can be explained due to the new logical paths that the synthesis with a bigger frequency
produces. The new synthesis process can be divided the logic paths or created more parallel
logical paths, fragmenting the logic in small parts, reducing the test complexity. Also, the new
synchronous version has fewer patterns and spend fewer clock cycles, when compared to
the numbers presented in Table 5.8.

Table 5.12 – ATPG path-delay fault model results for XTEA normalized synchronous version
and XTEA Blade version.

Synchronous With DfT Blade With DfT

Fault Coverage (%) 55.43 89.37
Number of total faults 1,000 1,000

Number of collapsed faults 208 12
Number of scan cells 6,239 15,756

Number of patterns 181 61
Number of cycles 1,136,225 977,180

5.6 Optimized Plasma For Normalized Throughput Evaluation

This Section presents the results analyses for the Plasma case study. For the
Plasma case study, only the normalized results were generated, once it ensures a fair com-
parison between the synchronous and the Blade versions. The normalized synchronous
version has a frequency of 908MHz. Section 5.6.1 shows the normalized area overhead
results, and Section 5.6.2 shows the ATPG results.

5.6.1 Normalized Silicon Area Results

This Section analyses the area overhead results for the Plasma Blade version de-
sign over the normalized synchronous version of Plasma, shown in Table 5.13. The rows of
the table show the number of cells used in the synthesis and the silicon area of these cells.
The columns of the table represent the version of the XTEA design and the overheads.

As in the XTEA, the normalized Plasma synchronous version has a similar area
when compared to Blade version. For this case, the overhead is 5.11% between the Blade
template and the synchronous Plasma (row 5 and column 6), which means that the Blade
conversion has a higher area impact in the Plasma whem compared to the XTEA.

91

For the Plasma, the Blade DfT overhead is smaller when compared to the XTEA
case study. The Blade version of Plasma with DfT has an area overhead of 50.57% (row
7 and column 6). It occurs because the proportion of combinational cells over sequential
cells influences the test overhead, as described in Section 5.4.1. The Plasma synchronous
version has 4,262 combinational cells and 529 sequential cells, which means a proportion
of 8.05. The Plasma Blade version has 3,603 combinational cells and 1,615 sequential
cells, which means a proportion of 2.23. This proportion is higher than the XTEA proportion
presented is Section 5.4.1. Thus, the Plasma test overhead can be smaller than the XTEA,
once Plasma has less sequential cells when compared to the number of combinational cells.

Table 5.13 – Synthesis results for the Plasma normalized design regarding the flop-based
synchronous version, flop-based synchronous version with DfT, Blade version and Blade
version with DfT.

1 2 3 4 5 6
Comb.
Cells

Seq.
Cells

Total
Cells

Comb.
Area

Seq.
Area

Total
Cell Area

1 Synchronous 4,262 529 4,792 6,941.87 7,258.48 14,200.35

2 Synchronous
With DfT 4,234 529 4,764 6,882.96 7,605.60 14,488.56

3 Blade 3,603 1,615 5,504 7,067.86 7,858.56 14,926.43

4 Blade
With DfT 3,603 1,615 5,504 7,076.51 15,398.92 22,475.44

5 Blade/
Synchronous -15.46 205.29 14.86 1.81 8.27 5.11

6 Synchronous with DfT/
Synchronous -0.66 0.00 -0.58 -0.85 4.78 2.03

7 Blade with DfT/
Blade 0.00 0.00 0.00 0.12 95.95 50.57

8 Blade with DfT/
Synchronous with DfT -14.90 205.29 15.53 2.81 102.47 55.13

5.6.2 Normalized ATPG Results

Table 5.14 shows the stuck-at fault model results extracted from the ATPG tool for
the normalized Plasma synchronous version and the Plasma Blade version. The fault cov-
erage of both versions is very similar, which means that the not testable Blade components
have a small influence on the test process when compared to the XTEA study case. As in
the XTEA results, the Blade version has more logical paths than the synchronous version,
which explains the greater number of patterns and clock cycles.

Table 5.15 shows the path-delay fault model results extracted from the ATPG tool
for the normalized Plasma synchronous version and Plasma Blade version. As the XTEA,
this result covers 1000 combinational paths for both versions. The Blade version has an
improvement in the fault coverage for path-delay faults, which also occurs in the XTEA. The

92

Table 5.14 – ATPG stuck-at fault model results for Plasma normalized synchronous version
and Plasma Blade version.

Synchronous With DfT Blade With DfT

Fault Coverage (%) 96.49 96.04
Number of total faults 38,078 53,830

Number of collapsed faults 5,967 14,920
Number of scan cells 529 1,619

Number of patterns 677 1,027
Number of cycles 360,019 1,667,414

reasons for this better fault coverage for path-delay fault model in the Blade template was
discussed in Section 5.4.3 at page 5.4.3, and also are considered to the Plasma study case.

Table 5.15 – ATPG path-delay fault model results for Plasma normalized synchronous ver-
sion and Plasma Blade version.

Synchronous With DfT Blade With DfT

Fault Coverage (%) 48.00 99.00
Number of total faults 1,000 1,000

Number of collapsed faults 52 0
Number of scan cells 529 1,619

Number of patterns 363 73
Number of cycles 194,389 1,667,414

93

6. CONCLUSION

The original Blade version [HTMH+15] does not address test issues in its imple-
mentation, and its synthesis flow does not support DfT insertion. The lack of testability
in the Blade template reduces its fabrication yield, compromising its manufacturability. By
enabling manufacturing test, it might improve Blade’s manufacturing viability.

Even though the DfT is fully automated, the proposed approach presents an area
overhead of 112.16% for the XTEA circuit and 50.57% for Plasma. This overhead is caused
by the LSSD cell, once it presents an area 4.21 times bigger than the standard latch cell.
Besides, the Blade flow replaces each flip-flop by two latches, plus the extra latches added
by the retiming technique. Thus, as each latch in the circuit is replaced by an LSSD cell, the
area overhead for sequential elements increases more than twice.

Section 1.1 presented the main hypothesis of this work which is to check if it is
viable to perform structural test approach based on the scan on Blade. The main motivation
to insert test circuitry is to ease the manufacturing test and increase the yield. However,
the obtained DfT area overhead of more than 100% reduces the viability of the method
because of the more silicon area for the circuit, less circuits in the wafer, leading to lower
yield, which was one of the primary motivations for DfT. Therefore, based on the collected
results, it is questionable whether adding DfT to Blade, with its current flow could actually
lead to increased yield.

Unfortunately, the source of this overhead cannot be completely assessed only
with the work presented in this document, because all our results are a direct function of the
case study circuit employed and the Blade design flow. As we discussed in Section 5.4.1,
the major contributor for this overhead is the LSSD. Therefore, for a different case study, with
deeper logic paths and a smaller sequential and combinational logic ratio, these overheads
may be substantially diluted. Plasma has a a smaller sequential and combinational logic
ratio than the XTEA and presents a smaller DfT area overhead. Even though, this area
overhead is still considered excessive for DfT purposes. Furthermore, the Blade design flow
has limited support to timing constraints, limiting the optimization after transformation from
synchronous to Blade and during scan insertion.

In summary, these overhead results show that DfT insertion in Blade needs more
study, in order to find a generic solution that increases testability with a smaller area over-
head. Nevertheless, the work presented in this document is a step forward towards that
goal, as it presents an automated solution for DfT. Accordingly, all environments proposed
and presented here can be used for further research and development in DfT flows for Blade.
The following Sections describe the contributions to the state of the art (Section 6.1), the cur-
rent limitations and the future works (Section 6.2).

94

6.1 Contributions

This work presents a test cell library to latch-based or mixed designs which consists
of LSSD cells and a Clocked-LSSD cell. The proposed library was implemented using the
28 nm technology [STM12] and has a Liberty file compatible with commercial synthesis tools.

Besides, this work presents a methodology to allow testability at the Q-Flop com-
ponent. The methodology shows a way to turn testable the Q-Flop, splitting its component
into two cells: a standard flip-flop and a metastability filter. The proposed methodology
covers the logic synthesis step and the physical synthesis step. A similar approach was
implemented with the original TD, splitting it into a latch and transition detector cell.

Another contribution of this work is an optimization for the Clocked-LSSD cell. In-
stead of the conventional use of three latches to implement its functionality, the proposed
implementation uses two latches to implement the same behavior. The proposed optimiza-
tion presents area and power reductions when compared to the conventional Clocked-LSSD.

All these contributions were used to implement another contribution of this work,
the DfT flow to the Blade template. The synthesis flow of the Blade now has a DfT step,
where scannable elements replace all the latches and all Q-Flops. The ATPG results show
a fault coverage of 98.17% to stuck-at fault model and 89.37% to path-delay fault model for
the XTEA, and a fault coverage of 96.04% to stuck-at fault model and 99.00% to path-delay
fault model for the Plasma.

6.2 Current Limitations and Future Work

The current Blade version does not allow logic synthesis optimization after the
Blade insertion. This is a limitation inherited from the original Blade flow [HTMH+15], and
can compromise the timing constraints of the circuit, making it fail. Thus, is not possible to
make an optimization after the DfT insertion as in standard logic synthesis flow. May it is
possible to bypass this limitation adding more timing constraints in the circuit parts that must
be preserved.

Also, the Blade flow does not address physical synthesis. To perform physical syn-
thesis in Blade, it is necessary the layout of the specific Blade cells, as the C-elements and
Transition Detectors. In the Q-Flop case, is necessary only a layout of the Metastability Fil-
ter, once the flip-flop layouts are present in the 28 nm technology, as the others conventional
cells (latches, ANDs, ORS, etc.). In the test cells cases, it is necessary a layout implementa-
tion for each LSSD version and the Clocked-LSSD. These limitations imply some error in the
area, performance, and power results. However, this error was minimized using the strategy
described in Section 4.4.2. Table 6.1 resumes the implementation level of each cell. All

95

the Verilog files are implemented using UDP, except for TD cell, once it needs a buffer to
implement its behavior.

Table 6.1 – Implemented levels of the proposed cells.

Spice Liberty Verilog Layout

LSSD Yes Yes Yes No
TD Yes Yes Yes No

Metastability Filter Yes Yes Yes No
Clocked-LSSD Yes Yes Yes No

Another limitation is the improvement of the fault coverage. A set of experiments
shows that the LSSD is the main contributor to the reached fault coverage for stuck-at fault
model presented in Section 5.4.2. The addition of the Q-Flop in the scan chain has a small
improvement in the fault coverage. It occurs because the number of Q-Flops in the design
is small when compared with the others memory elements, as demonstrated in Table 5.1 at
page 84.

Table 5.7 at page 87 shows that the C-element is the main contributor to the total
number of undetected faults. 74,42% of the total undetected faults are related to the C-
elements. Thus, it is necessary to replace the C-elements to C-elements scan version. The
work [tBP05] shows some approaches to allow scan insertion in the C-elements. This work
can consider integrating the scannable C-element at the Blade DfT flow. Another possibility
to improve the testability of Blade is to study the Blade controller to find some way to improve
its testability.

Another issue is the high overhead caused by the LSSD. An alternative to reduce
is the use of the L2* cell presented at Section 2.4.3. An estimate shows that the L2* area
is similar to the Clocked-LSSD area, using the same method presented in Section 4.4.2
to estimate the test cell area, which is 6.8 µm2. Unlike the LSSD, L2* cell replaces each
pair of Latches in the design. For the XTEA design using as L2* cell in the DfT insertion, the
number of LSSDs is reduced from 15,644 to 7,822. Thus, the sequential area will be reduced
from 97,760.49µm2 to about 54,754µm2, an overhead reduction of 44%. However, the L2*
insertion is not supported by the DfT tools. Thus, it is necessary a method to automate the
L2* DfT insertion and ATPG.

Another idea to reduce the area overhead of LSSD is to use an approach similar to
presented in [ATA15] and use a pulsed clock to make the latch behave like a flip-flop. Thus,
its possible to perform the test operation using a single latch, as occurs in the Scan Razor
Flip-flop showed at Figure 3.6 at page 55.

Moreover, Blade deals better with specific kinds of circuit, such as pipelined de-
signs, due to the limitations mentioned before. That justifies the use of few study cases
to evaluate this work, once their implementations are complex and require time. Besides,
the synthesis flow designed for Blade was done targeting the Plasma microprocessor, and

96

requires modifications to support others designs. Hence, others study cases will be imple-
mented and integrated into the Blade DfT flow.

97

REFERENCES

[ABF94] Abramovici, M.; Breuer, M. A.; Friedman, A. D. “Digital Systems Testing And
Testable Design”. Wiley-IEEE Press, 1994, 1 ed., 653p.

[ATA15] Anastasiou, A.; Tsiatouhas, Y.; Arapoyanni, A. “On the reuse of existing
error tolerance circuitry for low power scan testing”. In: IEEE International
Symposium on Circuits and Systems (ISCAS), 2015, pp. 1578–1581.

[BA02] Bushnell, M. L.; Agrawal, V. D. “Essentials of Electronic Testing for Digital,
Memory, and Mixed-Signal VLSI Circuit”. Springer Science & Business Media,
2002, 1 ed., 690p.

[BCC+14] Beer, S.; Cannizzaro, M.; Cortadella, J.; Ginosar, R.; Lavagno, L. “Metastability
in better-than-worst-case designs”. In: IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), 2014, pp. 101–102.

[BMS+02] Bailey, B.; Metayer, A.; Svrcek, B.; Tendolkar, N.; Wolf, E.; Fiene, E.;
Alexander, M.; Woltenberg, R.; Raina, R. “Test methodology for motorola’s
high performance e500 core based on PowerPC instruction set architecture”.
In: IEEE International Test Conference (ITC), 2002, pp. 574–583.

[BOF10] Beerel, P.; Ozdag, R.; Ferretti, M. “A Designer’s Guide to Asynchronous VLSI”.
Cambridge University Press, 2010, 1 ed., 352p.

[BTK+09] Bowman, K. A.; Tschanz, J. W.; Kim, N. S.; Lee, J. C.; Wilkerson, C. B.; Lu, S.-
L. L.; Karnik, T.; De, V. K. “Energy-efficient and metastability-immune resilient
circuits for dynamic variation tolerance”, IEEE Journal of Solid-State Circuits,
vol. 44–1, 2009, pp. 49–63.

[Cad11] Cadence. “Known Problems and Solutions in Encounter® RTL Compiler,
Version 10.1”. 2011.

[CBC+15] Cannizzaro, M.; Beer, S.; Cortadella, J.; Ginosar, R.; Lavagno, L. “Saferazor:
Metastability-robust adaptive clocking in resilient circuits”, IEEE Transactions
on Circuits and Systems, vol. 62–9, 2015, pp. 2238–2247.

[CKLS06] Cortadella, J.; Kondratyev, A.; Lavagno, L.; Sotiriou, C. P. “Desynchronization:
Synthesis of asynchronous circuits from synchronous specifications”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 25–10, 2006, pp. 1904–1921.

98

[CVG07] Chelcea, T.; Venkataramani, G.; Goldstein, S. C. “Area optimizations for dual-
rail circuits using relative-timing analysis”. In: IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC), 2007, pp. 117–128.

[DKM05] Drake, A. J.; KleinOsowski, A.; Martin, A. K. “A self-correcting soft error
tolerant flop-flop”. In: NASA Symposium on VLSI Design, 2005, pp. 4–5.

[DPH+12] Dillen, S. J.; Priore, D.; Horiuchi, A. K.; Naffziger, S. D.; et al.. “Design
and implementation of soft-edge flip-flops for x86-64 AMD microprocessor
modules”. In: IEEE Custom Integrated Circuits Conference (CICC), 2012, pp.
1–4.

[DTP+09] Das, S.; Tokunaga, C.; Pant, S.; Ma, W.-H.; Kalaiselvan, S.; Lai, K.; Bull, D. M.;
Blaauw, D. T. “RazorII: In situ error detection and correction for PVT and SER
tolerance”, IEEE Journal of Solid-State Circuits, vol. 44–1, 2009, pp. 32–48.

[EBE05] Efthymiou, A.; Bainbridge, J.; Edwards, D. “Test pattern generation and partial-
scan methodology for an asynchronous SoC interconnect”, IEEE Transactions
on Very Large Scale Integration Systems (TVLSI), vol. 13–12, 2005, pp. 1384–
1393.

[EKD+03] Ernst, D.; Kim, N. S.; Das, S.; Pant, S.; Rao, R.; Pham, T.; Ziesler, C.; Blaauw,
D.; Austin, T.; Flautner, K.; et al.. “Razor: A low-power pipeline based on
circuit-level timing speculation”. In: IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2003, pp. 7–18.

[EPS06] Elakkumanan, P.; Prasad, K.; Sridhar, R. “Time redundancy based scan
flip-flop reuse to reduce SER of combinational logic”. In: IEEE International
Symposium on Quality Electronic Design (ISQED), 2006, pp. 6–pp.

[EW77] Eichelberger, E. B.; Williams, T. W. “A logic design structure for LSI testability”.
In: Design Automation Conference (DAC), 1977, pp. 462–468.

[FFK+13] Fojtik, M.; Fick, D.; Kim, Y.; Pinckney, N.; Harris, D. M.; Blaauw, D.;
Sylvester, D. “Bubble razor: Eliminating timing margins in an ARM cortex-M3
processor in 45 nm CMOS using architecturally independent error detection
and correction”, IEEE Journal of Solid-State Circuits, vol. 48–1, 2013, pp. 66–
81.

[FTK08] Floros, A.; Tsiatouhas, Y.; Kavousianos, X. “The time dilation scan architecture
for timing error detection and correction”. In: IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), 2008, pp. 569–574.

[Gin11] Ginosar, R. “Metastability and synchronizers: A tutorial”, IEEE Design & Test
of Computers, vol. 28–5, 2011, pp. 23–35.

99

[Har00] Harris, D. “Skew-Tolerant Circuit Design”. Morgan Kaufmann, 2000, 1 ed.,
300p.

[HBB+05] Haring, R. A.; Bellofatto, R.; Bright, A. A.; Crumley, P.; Dombrowa, M. B.;
Douskey, S. M.; Ellavsky, M. R.; Gopalsamy, B.; Hoenicke, D.; Liebsch, T. A.;
et al.. “Blue gene/l compute chip: Control, test, and bring-up infrastructure”,
IBM Journal of Research and Development, vol. 49–2.3, 2005, pp. 289–301.

[HGJX13] Han, Q.; Guo, J.; Jone, W.-B.; Xu, Q. “Path delay testing in resilient system”. In:
IEEE International Midwest Symposium on Circuits and Systems (MWSCAS),
2013, pp. 645–648.

[HTMH+15] Hand, D.; Trevisan Moreira, M.; Huang, H.-H.; Chen, D.; Butzke, F.; Li, Z.;
Gibiluka, M.; Breuer, M.; Vilar Calazans, N.; Beerel, P. “Blade - a timing
violation resilient asynchronous template”. In: IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC), 2015, pp. 21–28.

[JMKA17] Juracy, L. R.; Moreira, M. T.; Kuentzer, F. A.; Amory, A. M. “Optimized design
of an LSSD scan cell”, IEEE Transactions on Very Large Scale Integration
Systems (TVLSI), vol. 25–2, 2017, pp. 765–768.

[JOC07] Jagirdar, A.; Oliveira, R.; Chakraborty, T. J. “Efficient flip-flop designs for
SET/SEU mitigation with tolerance to crosstalk induced signal delays”. In:
IEEE Silicon Errors Logic System Effects (SELSE), 2007, pp. 1–6.

[Kap08] Kaps, J.-P. “Chai-tea, cryptographic hardware implementations of XTEA.” In:
International Conference on Cryptology in India (INDOCRYPT), 2008, pp.
363–375.

[KDF+04] Kuppuswamy, R.; DesRosier, P.; Feltham, D.; Sheikh, R.; Thadikaran, P.
“Full hold-scan systems in microprocessors: Cost/benefit analysis.”, Intel
Technology Journal, vol. 8–1, 2004, pp. 69–78.

[KKF+14] Kwon, I.; Kim, S.; Fick, D.; Kim, M.; Chen, Y.-P.; Sylvester, D. “Razor-lite: a
light-weight register for error detection by observing virtual supply rails”, IEEE
Journal of Solid-State Circuits, vol. 49–9, 2014, pp. 2054–2066.

[Kue18] Kuentzer, F. A. “More than a timing resilient template: A case study on
reliability-oriented improvements on blade”, Ph.D. Thesis, Pontifical Catholic
University of Rio Grande do Sul, 2018, 94p.

[MM07] Mullins, R.; Moore, S. “Demystifying data-driven and pausible clocking
schemes”. In: IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC), 2007, pp. 175–185.

100

[MSZ+05] Mitra, S.; Seifert, N.; Zhang, M.; Shi, Q.; Kim, K. S. “Robust system design with
built-in soft-error resilience”, IEEE Computer, vol. 38–2, 2005, pp. 43–52.

[MZ00] Mourad, S.; Zorian, Y. “Principles of testing electronic systems”. John Wiley &
Sons, 2000, 1 ed., 420p.

[NS15] Nowick, S. M.; Singh, M. “Asynchronous design - part 1: Overview and recent
advances”, IEEE Design Test, vol. 32–3, June 2015, pp. 5–18.

[NW97] Needham, R. M.; Wheeler, D. J. “TEA extensions”, Report, Cambridge
University, Cambridge, UK, 1997.

[PAG+99] Pyron, C.; Alexander, M.; Golab, J.; Joos, G.; Long, B.; Molyneaux, R.; Raina,
R.; Tendolkar, N. “DFT advances in the motorola’s MPC7400, a PowerPC TM
G4 microprocessor”. In: IEEE International Test Conference (ITC), 1999, pp.
137–146.

[PtBdWM10] Peeters, A.; te Beest, F.; de Wit, M.; Mallon, W. “Click elements: An
implementation style for data-driven compilation”. In: IEEE Symposium on
Asynchronous Circuits and Systems (ASYNC), 2010, pp. 3–14.

[RCN03] Rabaey, J. M.; Chandrakasan, A.; Nikolic, B. “Digital Integrated Circuits”.
Pearson, 2003, 2 ed., 761p.

[RMCF88] Rosenberger, F. U.; Molnar, C. E.; Chaney, T. J.; Fang, T.-P. “Q-
modules: Internally clocked delay-insensitive modules”, IEEE Transactions on
Computers, vol. 37–9, 1988, pp. 1005–1018.

[Sav86] Savir, J. “The bidirectional double latch (BDDL)”, IEEE Transactions on
Computers, –1, 1986, pp. 65–66.

[Sav97a] Savir, J. “Reduced latch count shift registers”, Journal of Electronic Testing,
vol. 11–2, 1997, pp. 183–185.

[Sav97b] Savir, J. “Scan latch design for delay test”. In: IEEE Test Conference
International (ITC), 1997, pp. 446–453.

[SF01] Sparso, J.; Furber, S. “Principles of Asynchronous Circuit Design: A Systems
Perspective”. Springer Publishing Company, Incorporated, 2001, 1 ed., 337p.

[SN07] Singh, M.; Nowick, S. “MOUSETRAP: High-speed transition-signaling
asynchronous pipelines”, IEEE Transactions on Very Large Scale Integration
Systems (TVLSI), vol. 15–6, 2007, pp. 684–698.

[SP11] Shin, Y.; Paik, S. “Pulsed-latch circuits: A new dimension in ASIC design”,
IEEE Design & Test of Computers, vol. 6–28, 2011, pp. 50–57.

101

[Spa01] Sparso, J. “Asynchronous circuit design - A tutorial”. Kluwer Academic
Publishers, 2001, 1 ed., 152p.

[SS03] Sheth, A. M.; Savir, J. “Single-clock, single-latch, scan design”, IEEE
Transactions on Instrumentation and Measurement, vol. 52–5, 2003, pp.
1455–1457.

[STM12] STMicroelectronics. “C28SOI_SC_12_CORE_LR Databook: 12 track
Standard Cell Library comprising commonly used booleans and sequential
cells”, 2012.

[Sut89] Sutherland, I. E. “Micropipelines”, Communications of the ACM, vol. 32–6,
Jun 1989, pp. 720–738.

[SYN14] SYNOPSYS. “IC Compiler User Guide, Version J-2014.09-SP1,”. 2014.

[SYN15a] SYNOPSYS. “Design Compiler® User Guide, Version K-2015.06”. 2015.

[SYN15b] SYNOPSYS. “DFT Compiler, DFTMAX™, and DFTMAX™ Ultra User Guide,
Version K-2015.06”. 2015.

[tBP05] te Beest, F.; Peeters, A. “A multiplexer based test method for self-timed
circuits”. In: IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC), 2005, pp. 166–175.

[TBW+09] Tschanz, J.; Bowman, K.; Wilkerson, C.; Lu, S.-L.; Karnik, T. “Resilient circuits:
enabling energy-efficient performance and reliability”. In: ACM International
Conference on Computer-Aided Design (ICCAD), 2009, pp. 71–73.

[VFT+14] Valadimas, S.; Floros, A.; Tsiatouhas, Y.; Arapoyanni, A.; Kavousianos, X.
“The time dilation technique for timing error tolerance”, IEEE Transactions on
Computers, vol. 63–5, 2014, pp. 1277–1286.

[WKP+02] Warnock, J. D.; Keaty, J. M.; Petrovick, J.; Clabes, J. G.; Kircher, C. J.; Krauter,
B. L.; Restle, P. J.; Zoric, B. A.; Anderson, C. J. “The circuit and physical design
of the POWER4 microprocessor”, IBM Journal of Research and Development,
vol. 46–1, 2002, pp. 27–51.

[WWW06] Wang, L.-T.; Wu, C.-W.; Wen, X. “VLSI Test Principles and Architectures”.
Morgan Kaufmann, 2006, 1 ed., 808p.

[YK04] Yoshikawa, K.; Kanamaru, K. “Timing optimization by replacing flip-flops to
latches”. In: Asia and South Pacific Design Automation Conference (ASP-
DAC), 2004, pp. 186–191.

102

[Yur95] Yurash, S. A. “Dual latch clocked LSSD and method”. US Patent 5,463,338,
Oct 31 1995.

[ZM01] Zyuban, V.; Meltzer, D. “Clocking strategies and scannable latches for low
power appliacations”. In: ACM International Symposium on Low Power
Electronics and Design (ISLPED), 2001, pp. 346–351.

[ZUC01] Zarrineh, K.; Upadhyaya, S. J.; Chickermane, V. “System-on-chip testability
using LSSD scan structures”, IEEE Design & Test of Computers, vol. 18–3,
2001, pp. 83–97.

103

APPENDIX A – LSSD DESIGN AND IMPLEMENTATION

This appendix shows the design and the implementation of the LSSD cells used in
the Blade DfT flow. As mentioned before, four types of LSSD were implemented:

• An active low LSSD;

• An active high LSSD;

• An active low LSSD with active low reset;

• An active high LSSD with active low reset.

Figure A.1 shows the transistor diagram of an active high LSSD without reset. The
values highlighted in blue represent the transistor sizing, and it is implemented using 36
transistors. Figure A.2 shows the transistor diagram of an active high LSSD with reset.
The values highlighted in blue represent the transistor sizing, and it is implemented using
40 transistors. The reset function is implemented using a pull-up network. The active low
version of the LSSDs uses the same transistor architecture. However, the enable signal C is
connected to PMOS transistors, while the signal nC is connected to NMOS transistors.

C

A

nC

nA

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=700n

L=30n

W=360n

L=30n

W=100n

L=30n

W=100n

L=30n

nB

VDD

W=100n

L=30n

W=100n

L=30n
B

VDD

nB

W=700n

L=30n

W=360n

L=30n

nA

VDD

nC

VDD

VDD

VDD

VDD

VDD

VDD

L2

D

C

I

A

B

L1

L2

nB

nC

nA

C

A

B

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

Figure A.1 – LSSD using 28 nm technology node.

Figure A.3 shows the validation of the LSSD behavior in a waveform. This waveform
was captured from Spice simulation. In the normal operation, the values at the input D are
copied to the output L1 when C is high. In test mode, the values at the input I are copied to
the output L1 when A is high and the values at L1 are copied to L2 output when B is high.

104

C

A

nC

nA

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=700n

L=30n

W=360n

L=30n

W=100n

L=30n

W=100n

L=30n

nB

VDD

W=100n

L=30n

W=100n

L=30n
B

VDD

nB

W=700n

L=30n

W=360n

L=30n

nA

VDD

nC

VDD

VDD

VDD

VDD

VDD

VDD

L2

D

C

I

A

B

L1

L2

nB

nC

nA

C

A

B

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=350n

L=30n

W=180n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=100n

L=30n

W=350n

L=30n

W=180n

L=30n

VDD

R

W=350n

L=30n

VDD

W=180n

L=30n

Figure A.2 – LSSD using 28 nm technology node with reset.

C

D

L1

A

B

I

L2

Normal Operation Test Operation

Figure A.3 – LSSD using 28 nm technology waveform.

The characterization was performed using the Liberate by Cadence. In the charac-
terization process, some delay arcs must be defined to ensure the correct liberty generation.
The first step is to define the arcs to characterize setup times. Figure A.4 shows the setup
time definition between the arcs D → C, I → A, and I → B.

105

D => C
def ine_arc −vector {RRXFFRX} −pin D − re la ted_pin C −type setup −probe L1 SD_TLSSDSL_X1
def ine_arc −vector {FRXFFFX} −pin D − re la ted_pin C −type setup −probe L1 SD_TLSSDSL_X1

I => A
def ine_arc −vector {XFRRFRX} −pin I − re la ted_pin A −type setup −probe L1 SD_TLSSDSL_X1
def ine_arc −vector {XFFRFFX} −pin I − re la ted_pin A −type setup −probe L1 SD_TLSSDSL_X1

I => B
def ine_arc −vector {XXRRRXR} −pin I − re la ted_pin B −probe L1 −type setup SD_TLSSDSL_X1
def ine_arc −vector {XXFRRXF} −pin I − re la ted_pin B −probe L1 −type setup SD_TLSSDSL_X1

Figure A.4 – LSSD using 28 nm technology setup characterization time arcs definition.

The second step defines the time arcs between the inputs and the outputs to define
the arcs delays. Figure A.5 shows the arc definitions to C → L1, A → L1, B → L2, D → L1,
I → L1, D → L2 and I → L2.

C => L1
def ine_arc −vector {RRXFFRX} − re la ted_pin C −pin L1 SD_TLSSDSL_X1
def ine_arc −vector {FRXFFFX} − re la ted_pin C −pin L1 SD_TLSSDSL_X1

D => L1
def ine_arc −vector {RRXFFRX} − re la ted_pin D −pin L1 SD_TLSSDSL_X1
def ine_arc −vector {FRXFFFX} − re la ted_pin D −pin L1 SD_TLSSDSL_X1

A => L1
def ine_arc −vector {XFRRFRX} − re la ted_pin A −pin L1 SD_TLSSDSL_X1
def ine_arc −vector {XFFRFFX} − re la ted_pin A −pin L1 SD_TLSSDSL_X1

I => L1
def ine_arc −vector {XFRRFRX} − re la ted_pin I −pin L1 SD_TLSSDSL_X1
def ine_arc −vector {XFFRFFX} − re la ted_pin I −pin L1 SD_TLSSDSL_X1

B => L2
def ine_arc −vector {XXXXRXR} − re la ted_pin B −pin L2 SD_TLSSDSL_X1
def ine_arc −vector {XXXXRXF} − re la ted_pin B −pin L2 SD_TLSSDSL_X1

D => L2
def ine_arc −vector {RRXXXXR} − re la ted_pin D −pin L2 SD_TLSSDSL_X1
def ine_arc −vector {FRXXXXF} − re la ted_pin D −pin L2 SD_TLSSDSL_X1

I => L2
def ine_arc −vector {XXRXXXR} − re la ted_pin I −pin L2 SD_TLSSDSL_X1
def ine_arc −vector {XXFXXXF} − re la ted_pin I −pin L2 SD_TLSSDSL_X1

Figure A.5 – LSSD using 28 nm technology delay characterization time arcs definition.

Both setup arcs definitions and delay arc definitions use vectors to define the inputs
and outputs values needed to stimulate the required arc. The "R" vectors mean a transition
of the zero value to one, the "F" means a transition of one to zero and the "X" means a don’t
care value. Thus, its possible to generate a correct file to the LSSD cells.

However, the Liberate does not identify the LSSD as a test cell, and can not rec-
ognize the cell function. Some manual modifications are needed to allow the synthesis tool
recognize the LSSD as a test cell. First, it is required to add the function test_cell in the file
to notify the synthesis tool that the cell is a test cell. Second, is required a statetable function
to allow the tool recognize the LSSD function, once the LSSD has a not common function
as latches and flip-flops. Finally, it is necessary to add in the output pins the internal nodes

106

correspondents to the state table. Thus, the synthesis tool can recognize the LSSD liberty
file and use it to insert DfT. Figure A.6 shows this modification in a sample of a liberty code.

library (LSSD) {
...
statetable("C D A B I ", " L1 L2 ") {

table : "L - L - - : - - : N -,\
H L/H L - - : - - : L/H -,\
L - H - L/H : - - : L/H -,\
H - H - - : - - : X -,\
- - - L - : - - : - N,\
- - - H - : L/H - : - L/H";

}
test_cell() {

pin(C) {
direction : input;

}
pin(D) {

direction : input;
}
pin(L1) {

direction : output;
function : "IQ";

}
pin(A) {

direction : input;
signal_type : "test_scan_clock_a";

}
pin(I) {

direction : input;
signal_type : "test_scan_in";

}
pin(B) {

direction : input;
signal_type : "test_scan_clock_b";

}
pin(L2) {

direction : output;
signal_type : "test_scan_out";

}
latch (IQ,IQN) {

data_in : "D";
enable : "C";

}
}
pin (L1) {

direction : output;
internal_node : "L1";

...
pin (L2) {

direction : output;
internal_node : "L2";

...
}

Figure A.6 – LSSD liberty code sample presenting the manual modification necessary to the
synthesis tool recognize the LSSD function. The statetable and the test_cell functions are
added manually after the characterization.

107

APPENDIX B – TRANSITION DETECTOR CODES

This Sections details the Spice code, the Verilog code, and shows a sample of the
liberty file. Figure B.1 shows the Verilog code to the TD cell. As the TD cell has a delay ele-
ment (Dl2), the Verilog code was described using the cells of the 28 nm technology library, an
XOR gate (C12T28SOI_LR_XOR2X8_P0) and a buffer (C12T28SOI_LR_BFX8_P0). For
ATPG process, the internal nodes of the Verilog are removed in the fault analyses, once this
component must be considered a single cell. Figure B.2 presents a sample of the liberty
file. This liberty file was characterized as detailed in Section A. Figure B.3 shows the Spice
description for the TD cell. The buffer Dl2 was designed with successive simulations to find
the correct length in terms of inverters.

module BLADE_TD (D, X) ;
input D;
output X;
wire INTERNAL1 ;
C12T28SOI_LR_BFX8_P0 buf1 (.A(D) , . Z (INTERNAL1)) ;
C12T28SOI_LR_XOR2X8_P0 xor1 (.A(INTERNAL1) , .B(D) , . Z (X)) ;

endmodule

Figure B.1 – Verilog code to Transition Detector cell.

...
cell (TD) {

area : 1.1312;
cell_leakage_power : 262.149;
pg_pin (gnd) {

pg_type : primary_ground;
voltage_name : "gnd";

}
pg_pin (vdd) {

pg_type : primary_power;
voltage_name : "vdd";

}
leakage_power () {

value : 0;
when : "(D * X)";
related_pg_pin : gnd;

}
leakage_power () {

value : 308.767;
when : "(D * X)";
related_pg_pin : vdd;

}
..

pin (X) {
direction : output;

..
pin (D) {

direction : input;

Figure B.2 – Transition Detector liberty code sample.

108

.SUBCKT TD D X gnd vdd
* * * * * * * * * * * * * * * * * * *
* * * * * * * * Dl2 * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* Bu f fe r
M27 o5 D vdd vdd p f e t w=1.2u l =0.03u
M28 o5 D gnd gnd n f e t w=0.5u l =0.03u

M41 o6 o5 vdd vdd p f e t w=1.2u l =0.03u
M42 o6 o5 gnd gnd n f e t w=0.5u l =0.03u

M43 o6 o5 vdd vdd p f e t w=1.2u l =0.03u
M44 o6 o5 gnd gnd n f e t w=0.5u l =0.03u

M45 o7 o6 vdd vdd p f e t w=1.2u l =0.03u
M46 o7 o6 gnd gnd n f e t w=0.5u l =0.03u

M47 o8 o7 vdd vdd p f e t w=1.2u l =0.03u
M48 o8 o7 gnd gnd n f e t w=0.5u l =0.03u

M49 o9 o8 vdd vdd p f e t w=1.2u l =0.03u
M50 o9 o8 gnd gnd n f e t w=0.5u l =0.03u

M51 o10 o9 vdd vdd p f e t w=1.2u l =0.03u
M52 o10 o9 gnd gnd n f e t w=0.5u l =0.03u

M53 o11 o10 vdd vdd p f e t w=1.2u l =0.03u
M54 o11 o10 gnd gnd n f e t w=0.5u l =0.03u

M55 o12 o11 vdd vdd p f e t w=1.2u l =0.03u
M56 o12 o11 gnd gnd n f e t w=0.5u l =0.03u

M57 o13 o12 vdd vdd p f e t w=1.2u l =0.03u
M58 o13 o12 gnd gnd n f e t w=0.5u l =0.03u

M59 o14 o13 vdd vdd p f e t w=1.2u l =0.03u
M60 o14 o13 gnd gnd n f e t w=0.5u l =0.03u

M61 o15 o14 vdd vdd p f e t w=1.2u l =0.03u
M62 o15 o14 gnd gnd n f e t w=0.5u l =0.03u

M63 o16 o15 vdd vdd p f e t w=1.2u l =0.03u
M64 o16 o15 gnd gnd n f e t w=0.5u l =0.03u

M65 o17 o16 vdd vdd p f e t w=1.2u l =0.03u
M66 o17 o16 gnd gnd n f e t w=0.5u l =0.03u

M29 oN o17 vdd vdd p f e t w=1.2u l =0.03u
M30 oN o17 gnd gnd n f e t w=0.5u l =0.03u

* * * * * * * * * * * * * * * * * * *
* * * * * * * * * X * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
*nD
M19 nD D vdd vdd p f e t w=21.6u l =0.03u
M20 nD D gnd gnd n f e t w=9.6u l =0.03u

*noN
M31 noN oN vdd vdd p f e t w=21.6u l =0.03u
M32 noN oN gnd gnd n f e t w=9.6u l =0.03u

*XOR1
M33 xor1 noN vdd vdd p f e t w=21.6u l =0.03u
M34 xor2 oN vdd vdd p f e t w=21.6u l =0.03u
M35 X D xor1 vdd p f e t w=21.6u l =0.03u
M36 X nD xor2 vdd p f e t w=21.6u l =0.03u
M37 X oN xor3 gnd n f e t w=9.6u l =0.03u
M38 X noN xor4 gnd n f e t w=9.6u l =0.03u
M39 xor3 D gnd gnd n f e t w=9.6u l =0.03u
M40 xor4 nD gnd gnd n f e t w=9.6u l =0.03u

.ENDS

Figure B.3 – Spice code to Transition Detector cell.

109

APPENDIX C – METASTABILITY FILTER CODES

This Sections details the Spice code, the Verilog code, and shows a sample of the
liberty file. Figure C.1 shows the Verilog UDP code to the Metastability cell. Figure C.2
presents a sample of the liberty file. This liberty file was characterized as detailed in Sec-
tion A. Figure C.3 shows the Spice description for the Metastability Filter cell.

pr imi t ive q _ f i l t e r (G0, R0, R1) ;
output G0;
input R0, R1 ;
table
/ / A B :Q+1
0 0 : 0 ;
0 1 : 0 ;
1 0 : 0 ;
1 1 : 1 ;
endtable
endprimitive

pr imi t ive q b a r _ f i l t e r (G1, R0, R1) ;
output G1;
input R0, R1 ;
table
/ / A B :Q+1
0 0 : 0 ;
0 1 : 0 ;
1 0 : 1 ;
1 1 : 0 ;
endtable
endprimitive

module METASTABILITY_FILTER (Q, QBAR, GN, D) ;
input GN, D;
output Q, QBAR;
q _ f i l t e r i 1 (Q, GN, D) ;
q b a r _ f i l t e r i 2 (QBAR, GN, D) ;
specify
(GN => Q) = (0 .01 ,0 .01) ;
(GN => QBAR) = (0 .01 ,0 .01) ;
(D => Q) = (0 .01 ,0 .01) ;
(D => QBAR) = (0 .01 ,0 .01) ;
endspecify
endmodule

Figure C.1 – Verilog User Defined Primitives code to Metastability Filter cell.

110

...
cell (METASTABILITY_FILTER) {

area : 0;
cell_leakage_power : 7.94166;
pg_pin (gnd) {

pg_type : primary_ground;
voltage_name : "gnd";

}
pg_pin (vdd) {

pg_type : primary_power;
voltage_name : "vdd";

}
leakage_power () {

value : 0;
when : "(GN * D * Q * Qbar)";
related_pg_pin : gnd;

}
leakage_power () {

value : 10.44;
when : "(GN * D * Q * Qbar)";
related_pg_pin : vdd;

}
...

pin (Q) {
direction : output;

...
pin (Qbar) {

direction : output;
...

pin (D) {
direction : input;

...
pin (GN) {

direction : input;

Figure C.2 – Metastability Filter liberty code sample.

.SUBCKT METASTABILITY_FILTER GN D Q Qbar gnd vdd
* * * * * * * * * * * * * * * * * * *
* * * * * * * * INV * * * * * * * *
* * * * * * * * * * * * * * * * * * *
M07 Dn D vdd vdd p f e t w=0.70u l =0.03u
M08 Dn D gnd gnd n f e t w=0.36u l =0.03u
* * * * * * * * * * * * * * * * * * *
* * * * * * * *NAND0* * * * * *
* * * * * * * * * * * * * * * * * * *
M23 vdd D n1 vdd p f e t w=0.70u l =0.03u
M24 vdd GN n1 vdd p f e t w=0.70u l =0.03u
M25 n1 D n2 gnd n f e t w=0.36u l =0.03u
M26 n2 GN gnd gnd n f e t w=0.36u l =0.03u
* * * * * * * * * * * * * * * * * * *
* * * * * * * *NAND1* * * * * *
* * * * * * * * * * * * * * * * * * *
M29 vdd Dn n3 vdd p f e t w=0.70u l =0.03u
M30 vdd GN n3 vdd p f e t w=0.70u l =0.03u
M31 n3 Dn n4 gnd n f e t w=0.36u l =0.03u
M32 n4 GN gnd gnd n f e t w=0.36u l =0.03u
* * * * * * * * * * * * * * * * * * *
* * * * * * FILTER * * * * * * *
* * * * * * * * * * * * * * * * * * *
*Q1
M35 Qbar n3 n1 vdd p f e t w=0.70u l =0.03u
M36 Qbar n3 gnd gnd n f e t w=0.36u l =0.03u
*Q0
M37 Q n1 n3 vdd p f e t w=0.70u l =0.03u
M38 Q n1 gnd gnd n f e t w=0.36u l =0.03u
.ENDS

Figure C.3 – Spice code for Metastability Filter cell.

111

APPENDIX D – PROPOSED CLOCKED-LSSD CODES AND SCRIPTS

This Sections details the Spice code, the Verilog code, and shows a sample of
the liberty file. Figure D.1 shows the Verilog UDP code to the proposed Clocked-LSSD.
Figure D.2 presents a sample of the liberty file. This liberty file was characterized as de-
tailed in Section A. Also, liberty needs the same manual modification detailed in Section A.
Figure D.3 shows the Spice description for the proposed Clocked-LSSD cell. The character-
ization process was performed using the Liberate by Cadence. The characterization steps
are described in Section A. Figure D.4 shows the timing arcs of the Clocked-LSSD.

pr imi t ive udp_double_latch (L2 , D1, C1, D2, C2) ;
output L2 ;
input D1, C1, D2, C2 ;
reg L2 ;
table
/ / D1 C1 D2 C2 : L2 : +L2 ;

? 0 ? 0 : ? : − ;
0 1 ? 0 : ? : 0 ;
1 1 ? 0 : ? : 1 ;
? 0 0 1 : ? : 0 ;
? 0 1 1 : ? : 1 ;

endtable
endprimitive

pr imi t ive udp_latch (Q, D, C) ;
output Q;
input D, C;
reg Q;
table
/ / D C : L2 : +L2 ;

? 0 : ? : − ;
0 1 : ? : 0 ;
1 1 : ? : 1 ;

endtable
endprimitive

module S_CLOCKED_LSSD (L2 , D, GN, A, B, I) ;
input D, GN, A, B, I ;
output L2 ;
udp_latch (D_ in te rna l , D, GN) ;

udp_latch (I _ i n t e r n a l , I , A) ;
udp_double_latch (L2 , D_ in te rna l , GN, I _ i n t e r n a l , B) ;

endmodule

Figure D.1 – Verilog User Defined Primitives code to Clocked-LSSD cell.

112

...
cell (CLOCKED_LSSD) {

area : 7;
cell_leakage_power : 6.57219;
pg_pin (gnd) {

pg_type : primary_ground;
voltage_name : "gnd";

}
pg_pin (vdd) {

pg_type : primary_power;
voltage_name : "vdd";

}
...

test_cell() {
pin(D,GN) {

direction : input;
}
pin(A) {

direction : input;
signal_type : "test_scan_clock_a";

}
pin(B) {

direction : input;
signal_type : "test_scan_clock_b";

}
pin(I) {

direction : input;
signal_type : "test_scan_in";

}
pin(L2) {

direction : output;
function : "IQ";
signal_type : "test_scan_out";

}
ff ("IQ","IQN") {
next_state : "D";
clocked_on : "GN";
}

}
statetable ("GN D A B I", "MQ L2") {

table : " R H/L L L - : - - : H/L H/L,\
~R - - H - : H/L - : - H/L,\
~R - - L - : - - : - N,\
R - H - - : - - : X X,\
R - - H - : - - : X X,\

~R - H - H/L : - - : H/L -,\
~R - L - - : - - : N -";

}
pin (MQ) {

direction : internal;
internal_node : "MQ";

}

pin (L2) {
direction : output;

..
pin (A) {

clock : true;
direction : input;

...
pin (B) {

clock : true;
direction : input;

...
pin (D) {

direction : input;
...

pin (GN) {
clock : true;
direction : input;

...
pin (I) {

direction : input;
...

Figure D.2 – Proposed Clocked-LSSD liberty code sample.

113

.SUBCKT CLOCKED_LSSD GN A B D I L2 gnd vdd
* * * * * * * * * * * * * *
DOUBLE LATCH
* * * * * * * * * * * * * *
*nGN
M01 nGN GN vdd vdd p f e t w=0.35u l =0.03u
M02 nGN GN gnd gnd n f e t w=0.18u l =0.03u

*nA
M03 nA A vdd vdd p f e t w=0.35u l =0.03u
M04 nA A gnd gnd n f e t w=0.18u l =0.03u

*X0
M05 i 0 D vdd vdd p f e t w=0.35u l =0.03u
M41 x0 A i 0 vdd p f e t w=0.35u l =0.03u
M06 i 1 GN x0 vdd p f e t w=0.35u l =0.03u
M07 i 1 nGN x1 gnd n f e t w=0.18u l =0.03u
M42 x1 nA i 2 vdd n f e t w=0.35u l =0.03u
M08 i 2 D gnd gnd n f e t w=0.18u l =0.03u

*X1
M09 i 3 I vdd vdd p f e t w=0.35u l =0.03u
M10 i 1 nA i 3 vdd p f e t w=0.35u l =0.03u
M11 i 1 A i 4 gnd n f e t w=0.18u l =0.03u
M12 i 4 I gnd gnd n f e t w=0.18u l =0.03u

*X3
M13 i 5 i 1 vdd vdd p f e t w=0.1u l =0.03u
M14 i 5 i 1 gnd gnd n f e t w=0.1u l =0.03u

*X2
M15 i 6 nGN vdd vdd p f e t w=0.1u l =0.03u
M16 i 7 A i 6 vdd p f e t w=0.1u l =0.03u
M17 i 1 i 5 i 7 vdd p f e t w=0.1u l =0.03u
M18 i 1 i 5 i 8 gnd n f e t w=0.1u l =0.03u
M19 i 8 GN i 9 gnd n f e t w=0.1u l =0.03u
M20 i 9 nA gnd gnd n f e t w=0.1u l =0.03u

*X4
M21 DL i 1 vdd vdd p f e t w=0.70u l =0.03u
M22 DL i 1 gnd gnd n f e t w=0.36u l =0.03u

* * * * * * * * * * * * * * *
SPECIAL LATCH
* * * * * * * * * * * * * * *
*nB
M23 nB B vdd vdd p f e t w=0.35u l =0.03u
M24 nB B gnd gnd n f e t w=0.18u l =0.03u

*X5
M25 i10 nGN vdd vdd p f e t w=0.35u l =0.03u
M26 i10 nB vdd vdd p f e t w=0.35u l =0.03u
M27 i12 DL i10 vdd p f e t w=0.35u l =0.03u
M28 i12 DL i13 gnd n f e t w=0.18u l =0.03u
M29 i13 GN gnd gnd n f e t w=0.18u l =0.03u
M30 i13 B gnd gnd n f e t w=0.18u l =0.03u

*X6
M31 i15 i12 vdd vdd p f e t w=0.1u l =0.03u
M32 i15 i12 gnd gnd n f e t w=0.1u l =0.03u

*X7
M33 i16 GN vdd vdd p f e t w=0.1u l =0.03u
M34 i17 B i16 vdd p f e t w=0.1u l =0.03u
M35 i12 i15 i17 vdd p f e t w=0.1u l =0.03u
M36 i12 i15 i18 gnd n f e t w=0.1u l =0.03u
M37 i18 nGN i19 gnd n f e t w=0.1u l =0.03u
M38 i19 nB gnd gnd n f e t w=0.1u l =0.03u

*X8
M39 L2 i12 vdd vdd p f e t w=0.70u l =0.03u
M40 L2 i12 gnd gnd n f e t w=0.36u l =0.03u
.ENDS

Figure D.3 – Spice code for the proposed Clocked-LSSD cell.

114

Def ine delay arcs

D => GN
def ine_arc −vec to r {RXXRXF} −pin D −r e l a t ed_p in GN −type setup −probe L2 CLOCKED_LSSD
def ine_arc −vec to r {FXXRXF} −pin D −r e l a t ed_p in GN −type setup −probe L2 CLOCKED_LSSD

GN => L2
def ine_arc −vec to r {RFFFXF} −r e l a t ed_p in GN −pin L2 CLOCKED_LSSD
def ine_arc −vec to r {RXXRXR} −r e l a t ed_p in GN −p in L2 CLOCKED_LSSD

D => L2
def ine_arc −vec to r {RFFFXF} −r e l a t ed_p in D −pin L2 CLOCKED_LSSD

A => L2
def ine_arc −vec to r {FRRXRR} −r e l a t ed_p in A −pin L2 CLOCKED_LSSD
def ine_arc −vec to r {FRRXFF} −r e l a t ed_p in A −pin L2 CLOCKED_LSSD

B => L2
def ine_arc −vec to r {FRRXRR} −r e l a t ed_p in B −pin L2 CLOCKED_LSSD
def ine_arc −vec to r {FRRXFF} −r e l a t ed_p in B −pin L2 CLOCKED_LSSD

I => L2
def ine_arc −vec to r {FRFXRR} −r e l a t ed_p in I −pin L2 CLOCKED_LSSD

Figure D.4 – Proposed Clocked-LSSD liberty code sample.

115

APPENDIX E – DFT AUTOMATION SCRIPTS

This Section describes the scripts used to automate the DfT insertion in the Blade
synthesis flow. Tool Command Language (TCL) scripts were generated to automate the DfT
insertion and the ATPG tool. The DfT scripts configure the test protocol, define the test pins
and insert the scan-chain. Design Compiler, DFT Compiler and TetraMAX ATPG tools by
Synopsys were used to perform DfT insertion and validation.

First, are created the test signals necessary to perform the test using the LSSD
cells. Figure E.1 shows the declaration of the system clocks (clk,clkbar and clk3), test
clocks (mclk and sclk), input and output signals (scan_in and scan_out) and test enable
signal (scan_mode). Also, the created signals are connected to the respective nets and
pins.

set c lk_1 " c l k "
set c lk_2 " c l kba r "
set c lk_3 " c lk3 "
set clk_a_name " mclk "
set clk_b_name " sc l k "
set scan_in_name " scan_in "
set scan_out_name " scan_out "
set scan_mode_name " scan_mode "

c rea te_por t $clk_1 −dir i n
c rea te_por t $clk_2 −dir i n
c rea te_por t $clk_3 −dir i n
c rea te_por t $clk_a_name −dir i n
c rea te_por t $clk_b_name −dir i n
c rea te_por t $scan_in_name −dir i n
c rea te_por t $scan_out_name −dir out
c rea te_por t $scan_mode_name −dir i n
create_net $clk_1
create_net $clk_2
create_net $clk_3
create_net $scan_mode_name

connect_net $clk_1 $clk_1
connect_net $clk_2 $clk_2
connect_net $clk_3 $clk_3
connect_net $scan_mode_name $scan_mode_name
connect_net $clk_2 c l u s t e r 1 _ c t r l / c lk_scan
connect_net $clk_1 c l u s t e r 2 _ c t r l / c lk_scan
connect_net $clk_3 c l u s t e r 3 _ c t r l / c lk_scan

Figure E.1 – DfT insertion signals declaration.

The next step is to declare the test protocol. Figure E.2 shows the configuration
of the test protocol style (in this case, LSSD) and definition of the test interface. Each test
signal has a function and characteristics as value and wave phase. The same process
occurs to Q-Flop component and its respective signals, as shown in Figure E.3. To finish the
test insertion process, the final netlist and the Standard Test Interface Language Procedure
File (SPF) are generated. These files are necessary to perform the ATPG analyses. The
netlist contains the gate level circuit description and the SPF contains the pins and their
configuration.

116

Set t e s t p ro toco l s t y l e
se t_scan_con f igu ra t ion −sty le lssd
s e t _ d f t _ c o n f i g u r a t i o n − f i x_c lock enable − f i x_ rese t enable − f i x_se t enable

Declare the Test i n t e r f a c e s igna l s
set rst_name " r s t "

s e t _ d f t _ s i g n a l −view spec −type MasterClock −port $clk_1
s e t _ d f t _ s i g n a l −view spec −type MasterClock −port $clk_2
s e t _ d f t _ s i g n a l −view spec −type MasterClock −port $clk_3
s e t _ d f t _ s i g n a l −view spec −type ScanMasterClock −port $clk_a_name
s e t _ d f t _ s i g n a l −view spec −type ScanSlaveClock −port $clk_b_name
s e t _ d f t _ s i g n a l −view spec −type ScanDataIn −port $scan_in_name
s e t _ d f t _ s i g n a l −view spec −type ScanDataOut −port $scan_out_name
s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type MasterClock −port $clk_1 − t iming {40 30}
s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type SlaveClock −port $clk_2 − t iming {70 60}
s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type SlaveClock −port $clk_3 − t iming {70 60}
s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type ScanMasterClock −port $clk_a_name − t iming {30 40}
s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type ScanSlaveClock −port $clk_b_name − t iming {60 70}
s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type Reset −port $rst_name −act ive_sta te 0
s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type Constant −port $scan_mode_name −act ive_sta te 1

Create t e s t p ro t oco l
c r e a t e _ t e s t _ p r o t o c o l

Figure E.2 – DfT insertion test protocol declaration.

set clk_s_name " clk_samp "

c rea te_por t $clk_s_name −dir i n
create_net $clk_s_name

connect_net $clk_s_name $clk_s_name
connect_net $clk_s_name c l u s t e r 1 _ c t r l / sample_scan
connect_net $clk_s_name c l u s t e r 2 _ c t r l / sample_scan
connect_net $clk_s_name c l u s t e r 3 _ c t r l / sample_scan

s e t _ d f t _ s i g n a l −view spec −type MasterClock −port $clk_s_name
s e t _ d f t _ s i g n a l −view e x i s t i n g _ d f t −type MasterClock

−port $clk_s_name − t iming {45 55}

Figure E.3 – DfT insertion using Q-Flop test setup insertion.

The stuck-at fault model ATPG script analyses the netlist generated in the synthesis
to add faults, check for DfT violations, determine the test input vectors, perform the design
simulation to validate the test patterns, and report the obtained fault coverage. The delay
fault model ATPG script works similarly, but it reads an input file containing the paths that
must be tested. Figure E.4 shows the netlist, the behavior description of the cells and the
SPF loading. For stuck-at simulation, it is necessary to set the ATPG tool with the stuck-
at fault model option and initialize the fault list, as shown in Figure E.5. As mentioned in
Section B, the internal fault of the TD Verilog description must be removed of the fault list.
Figure E.6 shows the commands used to remove these internal faults from fault list.

For delay path simulation, first, it is necessary to read a file with the paths of the
circuit. This file was generated using the Synopsys PrimeTime static timing analysis tool.
After the file generation, the process is the same that the stuck-at simulation, as shown in
Figure E.7. After setting the ATPG parameters, the simulation is started and its possible to
estimate the fault coverage for both fault models.

117

Read design
r e a d _ n e t l i s t . . / . . / . . / blade_$ {DESING } / bd_conversion / d f t _ou tpu t s / $ {DESING} . v

Read l i b s
r e a d _ n e t l i s t / so f t64 / des ign−k i ts / stm /28 nm−cmos28fdsoi_24 / C28SOI_SC_12_CORE_LR@2.0@20130411.0 /

behaviour / v e r i l o g / C28SOI_SC_12_CORE_LR.v − l i b r a r y
r e a d _ n e t l i s t / so f t64 / des ign−k i ts / stm /28 nm−cmos28fdsoi_24 / C28SOI_SC_12_CLK_LR@2.1@20130621.0 /

behaviour / v e r i l o g / C28SOI_SC_12_CLK_LR.v − l i b r a r y
r e a d _ n e t l i s t . . / . . / . . / common/ b l a d e _ l i b . v − l i b r a r y
r e a d _ n e t l i s t . . / . . / . . / common/ l s s d . v − l i b r a r y
r e a d _ n e t l i s t . . / . . / . . / common/CLOCKED_LSSD.v − l i b r a r y
r e a d _ n e t l i s t . . / . . / . . / common/ METASTABILITY_FILTER.v − l i b r a r y

Bu i ld atpg design
run_bui ld_model $ {DESING}

Spec i fy the s t i l f i l e − def ine scan chains
set_drc . . / . . / . . / blade_$ {DESING } / bd_conversion / d f t _ou tpu t s / $ {DESING} . s p f
run_drc

Figure E.4 – ATPG tool initialization commands.

i n i t i a l i z e f a u l t l i s t − add a l l poss ib le f a u l t s i n t ATPG design
model

s e t _ f a u l t s −model s tuck
add_ fau l t s −all

Figure E.5 – Specifying the stuck-at fault model simulation for the ATPG process.

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_48__m_Q_reg_TD / xor1 / Z

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_48__m_Q_reg_TD / xor1 / Z

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_49__m_Q_reg_TD / xor1 / Z

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_50__m_Q_reg_TD / xor1 / Z

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_48__m_Q_reg_TD / buf1 / Z

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_48__m_Q_reg_TD / buf1 /A

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_48__m_Q_reg_TD / xor1 /A

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_48__m_Q_reg_TD / buf1 / Z

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_48__m_Q_reg_TD / buf1 /A

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_48__m_Q_reg_TD / xor1 /A

remove_faul ts
xtea_pipel ine_i_dec_kernel_ i_0_inner_round_stage_inst_data_f lop_data_reg_48__m_Q_reg_TD / xor1 /B

. . .

Figure E.6 – ATPG commands to remove the internal faults of the Transition Detector cell.

Read paths
add_delay_paths " . / t im ing200wi thoutmob. rp t "

I n i t i a l i z e f a u l t l i s t − add a l l poss ib le f a u l t s i n t ATPG design
model

s e t _ f a u l t s −model path_delay
add_ fau l t s −all

Figure E.7 – Specifying the path-delay fault model simulation for the ATPG process.

