
IBM’s PIQUANT II in TREC2005

Jennifer Chu-Carroll† Krzysztof Czuba* Pablo Duboue† John Prager†

† IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
 {jencc, duboue, jprager}@us.ibm.com
* Google Inc.,1440 Broadway, 21st Floor, New York, NY 10018, USA

 kczuba@google.com

Introduction
This year, the PIQUANT II system we used in the TREC QA track is an improved
version over the reengineered system we used in last year's entry [Chu-Carroll et al.,
2005]. Our system adopts a multi-agent approach to question answering. In this
framework, a question is submitted to multiple agents, each adopting a different question
answering strategy and/or consults a different information source to produce a set of
answers, which are then combined using a voting scheme to determine the overall
system's answer(s) to the question. In our 2005 system, we have made improvements
along several dimensions, by improving the performance of select answering agents, by
developing two new agents, and finally, by improving our answer resolution algorithm
for combining answers from individual agents. In this paper, we describe these
improvements and their impact on the factoid, list, and other subtasks in the main task.

PIQUANT II System Overview
As described in [Chu-Carroll et al., 2005], PIQUANT II is built on a modular and
extensible architecture that supports component plug-and-play, distributed client-server
deployment, and supports well-defined APIs for typical QA system components. Figure
1 shows how PIQUANT II was configured for the TREC 2005 factoid and list subtasks.

Answering Agents

Figure 1 PIQUANT II as Configured for TREC 2005 Factoid & List Questions

The question pre-processing component takes a question, which may contain referring
expressions or ellipses, and a target as input, and performs any transformation needed to
produce a self-contained question. This question is then sent to five answering agents in
parallel. Of the five answering agents employed by our TREC 2005 system, the
statistical query agent and the KSP agent, which answers questions from structured
knowledge sources, remain unchanged from previous year’s system. We improved the
performance of the predictive annotation agent and increased the coverage of the pattern-
based agent. Furthermore, we developed a web agent that utilizes the web as an
information source and a constraint agent based on, and in run IBM05C3PD used instead
of, the predictive annotation agent and employs an automatic answer verification process
to improve accuracy. The answers returned by each of the five agents are combined
using a machine-learned voting scheme in our answer resolution module. Finally, the
answer justification component attempts to locate a passage in a reference corpus to
justify an answer found from an alternative source (such as in our structured database for
the KSP agent or on the web for the web agent).

Figure 2 PIQUANT II as Configured for TREC 2005 Other Questions

Answer
Resolution

QA-by-Dossier Agent

Profile Agent

Answering Agents

Question
Pre-processing

Target

Nuggets

Statistical Query Agent

KSP Agent

Web Agent

Pattern Based Agent

Question
Pre-processing

Answer
Resolution

Answer
Resolution

Answer
Justification

Predictive Annotation Agent/
Constraint Agent

Answers

Figure 2 shows PIQUANT II as it was configured for answering questions in the “other”
subtask. In addition to improving the two agents we developed for this subtask in 2004,
which were each used in one of the two runs we submitted last year, we developed an
answer resolution component to combine the nuggets returned by both agents to produce
a combined nugget list.

PIQUANT II Components for Factoid/List Questions

Question Preprocessor
The goal of the question preprocessor in the factoid and list question setting is to resolve
referring expressions and ellipses against the question target to produce a self-contained
natural language question for subsequent processing. In general, we eliminate anaphors
and introduce the target so that a better search engine query could be formulated. Our
assumption was that anaphors in a question always refer to the target and not to an
answer to a previous question in a sequence. This has been borne out in the question set
in which only a handful of anaphors could be interpreted as referring to an answer.

Anaphors were replaced with the target string in a way that attempted to keep the
resulting question grammatical. In the case of the ambiguous pronoun "her", we relied on
a deep syntactic parser, ESG [McCord, 1989], to identify it as a possessive or accusative.
We replaced an occurrence of a possessive pronoun with "X's" where X is the target. All
other pronominal anaphors were replaced with the target.

Based on the sample event targets that were available as training data, we implemented a
restriction on the maximum length of targets that could replace anaphors. Another
restriction was on the capitalization within a target to prevent targets like "The return of
Hong Kong to China" from getting embedded in questions.

Answering Agents
In this section, we discuss enhancements we made to the predictive annotation agent as
well as describe a newly developed agent, the constraint agent.

Predictive Annotation Agent

Analyzed
Passage Question

Figure 3 Retrieval Component with Feedback Loops

For the most part, the question analysis and answer selection components of our
predictive annotation agent remain unchanged from our 2004 system. The key
improvements we made were in the document/passage retrieval stage in the following
two aspects. First, our earlier system treats the document retrieval and passage ranking
processes as a one-stage process. A single query is given to this retrieval component and
this query is both used to retrieve relevant documents using the JuruXML search engine
[Carmel et al., 2003] and to identify the most relevant 1-3 sentence passages from these
documents. In our new retrieval architecture, which is shown in Figure 3, we separated
the document retrieval stage from the passage ranking stage and allowed for different
queries to be considered for each of the two processes so that certain query terms which
may be present to set the context of the document, but which may not be repeated in all
1-3 sentence windows, can be taken into account in the document retrieval stage but not
in passage ranking. Second, in our new architecture, we introduced feedback loops
[Pasca and Harabagiu, 2001] to allow the system to initially target high precision queries
and gradually relax the queries should they prove to be overly constrained.

Constraint Agent
The constraint agent is an extension of the work first presented in [Prager et al, 2004] and
is the first time we employed it in any of our TREC runs. We used the constraint agent,
which invokes the predictive annotation agent recursively only on factoid questions,
although in principle it could be used on any type. Simply put, it operates by generating
a candidate answer set in the usual way, then inverts the question and substitutes each
candidate answer in turn, and examining if the inverted answer matches a term in the
original question. This can be illustrated by means of an example.

Question 110.2 was (substituting the target) “When was the club Lions Club International
founded”? The internally generated initial candidate answer set was, in order of
preference, “1997, 1917, …”. The constraint agent automatically generated the inverted
question “What club was founded in X?”, and substituted in turn the values in the initial
candidate answer list for X. These new inverted questions are then submitted again to the
predictive annotation agent and the top answer for “What club was founded in 1917?”

Document
Engine

Passage
Engine

Query
Document

Query Passages

Query
Relaxation

Query
Relaxation

was indeed the Lions Club International, thus providing confirming evidence for 1917.
On the other hand, the answer for “What club was founded in 1997?” was another entity,
thus refuting the answer 1997. The recomputed score for 1917 was higher than the
recomputed score for 1997, so the former was returned.

The algorithm used for determining whether and how to adjust the original candidate list
consists applying a decision tree to the confidences of the answers in the forward and
inverted directions. The parameters and thresholds used in the decision tree were
determined by machine learning over training data. The particular implementation of the
constraint agent we used for TREC just looked at the top two candidate answers.

Answer Resolution Component
In our TREC 2004 system, we adopted an answer resolution strategy that combines
answers returned by each answering agent using an equal a priori probability. In 2005,
we developed a new answer resolution component that uses a linear combination of the
agent’s a priori weight based on its prior performance and the confidence score the agent
assigned to an answer. In addition, through experimentation with parameter training
based on questions with different answer types, we found that for our set of five agents
and their respective performance, adopting a different set of a priori weights for questions
seeking dates as answers is beneficial.

PIQUANT II Components for “Other” Questions
QA-by-Dossier Agent
The QA-by-Dossier agent is built on the observation that some of the interesting
properties of a target entity can be predicted by simply knowing the type of the entity.
For example, knowing the target is a person, then occupation, birth and death dates and
other life-cycle information are probably going to be at the very least “okay”, if not
“vital”. Thus by preparing a number of subquestions (such as “When was X born?”,
“Where is Y headquartered?”) keyed on type we could call our QA system recursively
and generate information nuggets to return. We understood this strategy would not
necessarily capture surprising or unexpected information nuggets, but we hoped that our
profile agent, using a collocation plus idf-based approach, would cover those cases.

In 2004 the QA-byDossier agent did not work terribly well, primarily because the
information on the assessors nugget lists was very heterogeneous, and did not seem to
follow any consistent usage model (such as preparing an obituary or encyclopedia article,
on which our questions were based). For 2005 we hoped that after discussions of these
issues both by us and others [Chu-Carroll et al., 2004, Hildebrandt et al., 2004], the
nugget lists would be more consistent, so we continued this approach, but tried to expand
the nugget net by using a broader and deeper set of questions.

In TREC 2004 we simply classified the target as Person, Organization or Thing, with a
small number (3-12) of corresponding questions. For 2005 we classified the target into
one of 20 entity categories, including subtypes of the former three (e.g. Inventor, Athlete,
Entertainer, Writer) and orthogonal ones (e.g. Place, Religion). Questions were

generated by hand for each of the categories. These were arranged in a hierarchy, so that
Inventor had Inventor-specific questions (“What did X invent?”), but also inherited from
Person (“Where was X born?”). In an attempt to capture the surprising facts, we asked
questions like “What crime did X commit?”, again keyed on type (Person in this case),
relying on the fact that if that person was not a criminal, the QA system will return either
no answer or an answer with very low confidence (and thus will not be chosen for output
by the QA-by-Dossier agent).

Profile Agent
The profile agent extracts relevant information in a three-stage process. In the first stage,
short passages about the target are extracted from the reference corpus. In the second
stage, entities that are strongly associated with the target are identified from within these
passages. In the third stage, a subset of the extracted passages is chosen to convey the
relationship between the selected entities and the target.
In our 2004 system, in the entity selection phase, the extracted passages are processed by
the ESG parser and all common nouns are identified and normalized. Those nouns that
occurred more frequently than expected based on their idf value are selected as candidate
entities. In our 2005 system, we improved upon this entity selection process by
considering not just co-occurrence information of nouns, but all concepts in the passages
and weighing those concepts that are syntactically related to the target more strongly than
others.

System Performance and Analysis
We submitted three runs to the TREC 2005 QA track, whose results as scored by the
NIST assessors are shown in Table 1. The first run, IBM05C3PD employed five
answering agents for factoid and list questions as shown in Figure 1, with the constraint
agent selected to represent the constraint/predictive annotation agent alternatives. When
combining agent answers, the answer resolution component assigned different a priori
weights to agents based on answer types, and in answering the “other” questions, both the
QA-by-Dossier agent and the profile agent were employed. In runs IBM05L1P and
IBM05L3P, the predictive annotation agent was used instead of the constraint agent in
both runs, and only the profile agent was used for the “other” questions.

Run Factoid List Other Overall
IBM05C3PD .323 .131 .206 .246
IBM05L1P .323 .131 .192 .242
IBM05L3P .326 .131 .192 .244

Table 1 Assessed Scores for Submitted Runs

As our results show, the impact of the different system configurations on our overall
score is minimal. The largest difference is in the addition of the QA-by-Dossier agent in
our first run, affecting 5 out of 65 questions1 and increasing our F-score from 0.192 to
0.206. Note that some of the output of the agent was redundant with that of the profile

1 We have discovered after TREC that a bug in the expected input for the QA-by-Dossier agent resulted in
decreased impact of the agent on our TREC results.

agent and some were precluded in scoring because the same question was asked, albeit
with different words, in the factoid section. The QA-by-Dossier agent performance also
suffered because we had no subquestions for the Event type target, which turned out to be
quite prevalent.

Across the factoid questions, the constraint agent materially changed only 12 answers,
but of these only two went from “Wrong” to “Right” or “Inexact”, and two went the other
way. Follow-up experimentation has shown that the constraint agent works better when
the scores associated with candidate answers are close to confidences or probabilities of
being correct. However, in our system development prior to TREC the only
consideration put on the scores was that the better answer should have a higher score,
rather than represent confidence in the absolute sense, which appears to be necessary for
the constraint mechanism to be effective. We are currently addressing this issue to
improve the performance of the constraint agent.

Summary
In this paper, we described our PIQUANT II system as configured in the TREC 2005 QA
runs. Our efforts this year focused on algorithmic improvements of individual answering
agents as well as development of new agents employing different question answering
strategies. Our resulting system ranked 3rd out of 30 participating systems in the TREC
QA main task.

Acknowledgments
This work was supposed in part by the Disruptive Technology Office (DTO)’s Advanced
Question Answering for Intelligence (AQUAINT) program under contract number
H98230-04-C-1577.

References

D. Carmel, Y. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer, 2003. Searching XML
documents via XML fragments. Proceedings of SIGIR 2003, pp. 151-158.

J. Chu-Carroll, K. Czuba, J. Prager, A. Ittycheriah, and S. Blair-Goldensohn, 2005.
IBM’s PIQUANT II in TREC 2004. Proceedings of TREC2004.

W. Hildebrandt, B. Katz, and J. Lin. Answering definition questions with multiple
knowledge sources. Proceedings of HLT/NAACL 2004.

M. McCord, 1989. Slot grammar: A system for simpler construction of practical natural
language grammars. Natural Language and Logic, pp.118--145.

M. Pasca and S. Harabagiu, 2001. High Performance Question/Answering. Proceedings
of SIGIR 2001, pp. 366-374.

J. Prager, J. Chu-Carroll, and K. Czuba, 2004. Question answering using constraint
satisfaction: QA-by-Dossier-with-Constraints. Proceedings of ACL 2004, pp. 575-582.

	Introduction
	PIQUANT II System Overview
	PIQUANT II Components for Factoid/List Questions
	Question Preprocessor
	Answering Agents
	Predictive Annotation Agent
	Constraint Agent
	Answer Resolution Component

	PIQUANT II Components for “Other” Questions
	QA-by-Dossier Agent
	Profile Agent

	System Performance and Analysis
	Summary
	Acknowledgments
	References

