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Introduction 
This year, the PIQUANT II system we used in the TREC QA track is an improved 
version over the reengineered system we used in last year's entry [Chu-Carroll et al., 
2005]. Our system adopts a multi-agent approach to question answering. In this 
framework, a question is submitted to multiple agents, each adopting a different question 
answering strategy and/or consults a different information source to produce a set of 
answers, which are then combined using a voting scheme to determine the overall 
system's answer(s) to the question. In our 2005 system, we have made improvements 
along several dimensions, by improving the performance of select answering agents, by 
developing two new agents, and finally, by improving our answer resolution algorithm 
for combining answers from individual agents. In this paper, we describe these 
improvements and their impact on the factoid, list, and other subtasks in the main task.  

PIQUANT II System Overview 
As described in [Chu-Carroll et al., 2005], PIQUANT II is built on a modular and 
extensible architecture that supports component plug-and-play, distributed client-server 
deployment, and supports well-defined APIs for typical QA system components.  Figure 
1 shows how PIQUANT II was configured for the TREC 2005 factoid and list subtasks.   
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Figure 1  PIQUANT II as Configured for TREC 2005 Factoid & List Questions 

The question pre-processing component takes a question, which may contain referring 
expressions or ellipses, and a target as input, and performs any transformation needed to 
produce a self-contained question.  This question is then sent to five answering agents in 
parallel.  Of the five answering agents employed by our TREC 2005 system, the 
statistical query agent and the KSP agent, which answers questions from structured 
knowledge sources, remain unchanged from previous year’s system.  We improved the 
performance of the predictive annotation agent and increased the coverage of the pattern-
based agent. Furthermore, we developed a web agent that utilizes the web as an 
information source and a constraint agent based on, and in run IBM05C3PD used instead 
of, the predictive annotation agent and employs an automatic answer verification process 
to improve accuracy.  The answers returned by each of the five agents are combined 
using a machine-learned voting scheme in our answer resolution module.  Finally, the 
answer justification component attempts to locate a passage in a reference corpus to 
justify an answer found from an alternative source (such as in our structured database for 
the KSP agent or on the web for the web agent). 

Figure 2  PIQUANT II as Configured for TREC 2005 Other Questions 
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Figure 2 shows PIQUANT II as it was configured for answering questions in the “other” 
subtask.  In addition to improving the two agents we developed for this subtask in 2004, 
which were each used in one of the two runs we submitted last year, we developed an 
answer resolution component to combine the nuggets returned by both agents to produce 
a combined nugget list. 

PIQUANT II Components for Factoid/List Questions 

Question Preprocessor 
The goal of the question preprocessor in the factoid and list question setting is to resolve 
referring expressions and ellipses against the question target to produce a self-contained 
natural language question for subsequent processing.  In general, we eliminate anaphors 
and introduce the target so that a better search engine query could be formulated. Our 
assumption was that anaphors in a question always refer to the target and not to an 
answer to a previous question in a sequence. This has been borne out in the question set 
in which only a handful of anaphors could be interpreted as referring to an answer.  
 
Anaphors were replaced with the target string in a way that attempted to keep the 
resulting question grammatical. In the case of the ambiguous pronoun "her", we relied on 
a deep syntactic parser, ESG [McCord, 1989], to identify it as a possessive or accusative. 
We replaced an occurrence of a possessive pronoun with "X's" where X is the target. All 
other pronominal anaphors were replaced with the target.  
 
Based on the sample event targets that were available as training data, we implemented a 
restriction on the maximum length of targets that could replace anaphors. Another 
restriction was on the capitalization within a target to prevent targets like "The return of 
Hong Kong to China" from getting embedded in questions. 

Answering Agents 
In this section, we discuss enhancements we made to the predictive annotation agent as 
well as describe a newly developed agent, the constraint agent. 
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Figure 3  Retrieval Component with Feedback Loops 

 
For the most part, the question analysis and answer selection components of our 
predictive annotation agent remain unchanged from our 2004 system.  The key 
improvements we made were in the document/passage retrieval stage in the following 
two aspects.  First, our earlier system treats the document retrieval and passage ranking 
processes as a one-stage process.  A single query is given to this retrieval component and 
this query is both used to retrieve relevant documents using the JuruXML search engine 
[Carmel et al., 2003] and to identify the most relevant 1-3 sentence passages from these 
documents.  In our new retrieval architecture, which is shown in Figure 3, we separated 
the document retrieval stage from the passage ranking stage and allowed for different 
queries to be considered for each of the two processes so that certain query terms which 
may be present to set the context of the document, but which may not be repeated in all 
1-3 sentence windows, can be taken into account in the document retrieval stage but not 
in passage ranking.   Second, in our new architecture, we introduced feedback loops 
[Pasca and Harabagiu, 2001] to allow the system to initially target high precision queries 
and gradually relax the queries should they prove to be overly constrained.  

Constraint Agent 
The constraint agent is an extension of the work first presented in [Prager et al, 2004] and 
is the first time we employed it in any of our TREC runs.  We used the constraint agent, 
which invokes the predictive annotation agent recursively only on factoid questions, 
although in principle it could be used on any type.  Simply put, it operates by generating 
a candidate answer set in the usual way, then inverts the question and substitutes each 
candidate answer in turn, and examining if the inverted answer matches a term in the 
original question.  This can be illustrated by means of an example. 
 
Question 110.2 was (substituting the target) “When was the club Lions Club International 
founded”?  The internally generated initial candidate answer set was, in order of 
preference, “1997, 1917, …”.  The constraint agent automatically generated the inverted 
question “What club was founded in X?”, and substituted in turn the values in the initial 
candidate answer list for X.  These new inverted questions are then submitted again to the 
predictive annotation agent and the top answer for “What club was founded in 1917?” 
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was indeed the Lions Club International, thus providing confirming evidence for 1917.  
On the other hand, the answer for “What club was founded in 1997?” was another entity, 
thus refuting the answer 1997.  The recomputed score for 1917 was higher than the 
recomputed score for 1997, so the former was returned. 
 
The algorithm used for determining whether and how to adjust the original candidate list 
consists applying a decision tree to the confidences of the answers in the forward and 
inverted directions.  The parameters and thresholds used in the decision tree were 
determined by machine learning over training data.  The particular implementation of the 
constraint agent we used for TREC just looked at the top two candidate answers. 

Answer Resolution Component  
In our TREC 2004 system, we adopted an answer resolution strategy that combines 
answers returned by each answering agent using an equal a priori probability.  In 2005, 
we developed a new answer resolution component that uses a linear combination of the 
agent’s a priori weight based on its prior performance and the confidence score the agent 
assigned to an answer.  In addition, through experimentation with parameter training 
based on questions with different answer types, we found that for our set of five agents 
and their respective performance, adopting a different set of a priori weights for questions 
seeking dates as answers is beneficial. 

PIQUANT II Components for  “Other” Questions 
QA-by-Dossier Agent 
The QA-by-Dossier agent is built on the observation that some of the interesting 
properties of a target entity can be predicted by simply knowing the type of the entity.  
For example, knowing the target is a person, then occupation, birth and death dates and 
other life-cycle information are probably going to be at the very least “okay”, if not 
“vital”.  Thus by preparing a number of subquestions (such as “When was X born?”, 
“Where is Y headquartered?”) keyed on type we could call our QA system recursively 
and generate information nuggets to return.  We understood this strategy would not 
necessarily capture surprising or unexpected information nuggets, but we hoped that our 
profile agent, using a collocation plus idf-based approach, would cover those cases. 
 
In 2004 the QA-byDossier agent did not work terribly well, primarily because the 
information on the assessors nugget lists was very heterogeneous, and did not seem to 
follow any consistent usage model (such as preparing an obituary or encyclopedia article, 
on which our questions were based).  For 2005 we hoped that after discussions of these 
issues both by us and others [Chu-Carroll et al., 2004, Hildebrandt et al., 2004], the 
nugget lists would be more consistent, so we continued this approach, but tried to expand 
the nugget net by using a broader and deeper set of questions. 
 
In TREC 2004 we simply classified the target as Person, Organization or Thing, with a 
small number (3-12) of corresponding questions.  For 2005 we classified the target into 
one of 20 entity categories, including subtypes of the former three (e.g. Inventor, Athlete, 
Entertainer, Writer) and orthogonal ones (e.g. Place, Religion).  Questions were 



generated by hand for each of the categories.  These were arranged in a hierarchy, so that 
Inventor had Inventor-specific questions (“What did X invent?”), but also inherited from 
Person (“Where was X born?”).  In an attempt to capture the surprising facts, we asked 
questions like “What crime did X commit?”, again keyed on type (Person in this case), 
relying on the fact that if that person was not a criminal, the QA system will return either 
no answer or an answer with very low confidence (and thus will not be chosen for output 
by the QA-by-Dossier agent). 

Profile Agent 
The profile agent extracts relevant information in a three-stage process.  In the first stage, 
short passages about the target are extracted from the reference corpus.  In the second 
stage, entities that are strongly associated with the target are identified from within these 
passages. In the third stage, a subset of the extracted passages is chosen to convey the 
relationship between the selected entities and the target.   
In our 2004 system, in the entity selection phase, the extracted passages are processed by 
the ESG parser and all common nouns are identified and normalized.  Those nouns that 
occurred more frequently than expected based on their idf value are selected as candidate 
entities.  In our 2005 system, we improved upon this entity selection process by 
considering not just co-occurrence information of nouns, but all concepts in the passages 
and weighing those concepts that are syntactically related to the target more strongly than 
others.  

System Performance and Analysis 
We submitted three runs to the TREC 2005 QA track, whose results as scored by the 
NIST assessors are shown in Table 1.  The first run, IBM05C3PD employed five 
answering agents for factoid and list questions as shown in Figure 1, with the constraint 
agent selected to represent the constraint/predictive annotation agent alternatives.  When 
combining agent answers, the answer resolution component assigned different a priori 
weights to agents based on answer types, and in answering the “other” questions, both the 
QA-by-Dossier agent and the profile agent were employed.  In runs IBM05L1P and 
IBM05L3P, the predictive annotation agent was used instead of the constraint agent in 
both runs, and only the profile agent was used for the “other” questions. 
 
Run Factoid List Other Overall 
IBM05C3PD .323 .131 .206 .246 
IBM05L1P .323 .131 .192 .242 
IBM05L3P .326 .131 .192 .244 

Table 1  Assessed Scores for Submitted Runs 

As our results show, the impact of the different system configurations on our overall 
score is minimal.  The largest difference is in the addition of the QA-by-Dossier agent in 
our first run, affecting 5 out of 65 questions1 and increasing our F-score from 0.192 to 
0.206.  Note that some of the output of the agent was redundant with that of the profile 

                                                 
1 We have discovered after TREC that a bug in the expected input for the QA-by-Dossier agent resulted in 
decreased impact of the agent on our TREC results. 



agent and some were precluded in scoring because the same question was asked, albeit 
with different words, in the factoid section.  The QA-by-Dossier agent performance also 
suffered because we had no subquestions for the Event type target, which turned out to be 
quite prevalent.   
 
Across the factoid questions, the constraint agent materially changed only 12 answers, 
but of these only two went from “Wrong” to “Right” or “Inexact”, and two went the other 
way.  Follow-up experimentation has shown that the constraint agent works better when 
the scores associated with candidate answers are close to confidences or probabilities of 
being correct.  However, in our system development prior to TREC the only 
consideration put on the scores was that the better answer should have a higher score, 
rather than represent confidence in the absolute sense, which appears to be necessary for 
the constraint mechanism to be effective.  We are currently addressing this issue to 
improve the performance of the constraint agent. 
 

Summary 
In this paper, we described our PIQUANT II system as configured in the TREC 2005 QA 
runs.  Our efforts this year focused on algorithmic improvements of individual answering 
agents as well as development of new agents employing different question answering 
strategies.  Our resulting system ranked 3rd out of 30 participating systems in the TREC 
QA main task. 
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