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ABSTRACT
With the current explosion of data, retrieving and integrating information
from various sources is a critical problem. Work in multidatabase systems
has begun to address this problem, but it has primarily focused on methods
for communicating between databases and requires signi�cant e�ort for each
new database added to the system. This paper describes a more general
approach that exploits a semantic model of a problem domain to integrate
the information from various information sources. The information sources
handled include both databases and knowledge bases, and other information
sources (e.g., programs) could potentially be incorporated into the system.
This paper describes how both the domain and the information sources are
modeled, shows how a query at the domain level is mapped into a set of
queries to individual information sources, and presents algorithms for auto-
matically improving the e�ciency of queries using knowledge about both the
domain and the information sources. This work is implemented in a system
called SIMS and has been tested in a transportation planning domain using
nine Oracle databases and a Loom knowledge base.

Keywords: Information server, multidatabases, planning, query reformula-
tion, knowledge representation, SIMS

1 Introduction and Related Work

Most tasks performed by users of complex information systems involve interaction

with multiple information sources.1 Examples can be found in the areas of analysis

�The research reported here was supported by Rome Laboratory of the Air Force Systems

Command and the Defense Advanced Research Projects Agency under contract no. F30602-91-C-

0081. Views and conclusions contained in this report are the authors' and should not be interpreted

as representing the o�cial opinion or policy of DARPA, RL, the U.S. Government, or any person

or agency connected with them.
1By the term information source we refer to any system from which information can be ob-

tained. SIMS currently deals with Oracle databases and Loom knowledge bases.
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(e.g., of intelligence data or logistics forecasting) and in resource planning and

brie�ng applications. Retrieval of desired information dispersed among multiple

sources requires general familiarity with their contents and structure, with their

query languages, with their location on existing networks, and more. The user must

break down a given retrieval task into a sequence of actual queries to information

sources, and must handle the temporary storing and possible transformation of

intermediate results | all this while satisfying constraints on reliability of the results

and the cost of the retrieval process. With a large number of information sources, it

is di�cult to �nd individuals who possess the required knowledge, and automation

becomes a necessity.

SIMS2 accepts queries in the form of a description of a class of objects about

which information is desired. This description is composed of statements in the

Loom knowledge representation language (Section 1.1.1). The user is not presumed

to know how information is distributed over the data- and knowledge bases to which

SIMS has access | but he/she is assumed to be familiar with the application do-

main, and to use standard terminology to compose the Loom query. The interface

enables the user to inspect the domain model as an aid to composing queries. SIMS

proceeds to reformulate the user's query as a collection of more elementary state-

ments that refer to data stored in available information sources. SIMS then creates a

plan for retrieving the desired information, establishing the order and content of the

various plan steps/subqueries. Using knowledge about the contents and structure of

information sources, SIMS reformulates the plan to minimize its expected execution

time. The resulting plan is then executed by performing local data manipulation

and/or passing subqueries to the LIM system (Section 1.1.2), which generates the

�nal translation into database queries in the appropriate language(s). A graphi-

cal user interface enables the user to inspect the plan in its various stages and to

supervise its execution.

The SIMS project applies a variety of techniques and systems from Arti�cial

Intelligence to build an intelligent interface to information sources. SIMS builds on

the following ideas:

Knowledge Representation/Modeling, which is used to describe the domain about

which information is stored in the information sources, as well the structure and

contents of the information sources themselves. The domain model is a declarative

description of the objects and activities possible in the application domain as viewed

by a typical user. The model of each information source indicates the data-model

used, query language, network location, size estimates, update frequency, etc., and

describes the contents of its �elds in terms of the domain model. The user formu-

lates queries using terms from the application domain, without needing to know

anything about speci�c information sources. SIMS' models of di�erent information

sources are completely independent, greatly easing the process of incorporating new

information sources into the system.

Planning/Search, which is used to construct a sequence of queries to individual

information sources that will satisfy the user's query. A planner is used in an initial

reformulation step that selects the information sources to be used in answering

a query. It is also used to order the queries to the individual information sources,

2
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select the location for processing the intermediate data, and determine which queries

can be executed in parallel.

Reformulation/Learning. SIMS considers alternative information sources and

queries to them to retrieve the desired information. This search for more e�cient

query formulations is guided by the detailed semantics provided by the application

domain model. Additional knowledge about the contents of the information sources

may be learned from the databases and used to reformulate the queries.

An initial prototype incorporating many features of the SIMS approach has

been built and applied to the domain of transportation planning | organizing the

movement of personnel and materiel from one geographic location to another using

available transportation facilities and vehicles [2]. An earlier prototype was applied

to information needed for daily Naval brie�ngs given in Hawaii about the status

of the Paci�c Fleet [1]. The system currently has access to nine Oracle databases

and a Loom knowledge base with information about ships, ports, locations, relevant

activities, etc. SIMS is controlled via a graphical user interface. It is written in

Common Lisp and uses CLIM for its graphics.

There has been some work on the problem of accessing information distributed

over multiple sources both in the AI-oriented database community and in the more

traditional database community. Work in heterogeneous distributed databases in-

cludes the MULTIBASE, MERMAID, NDMS, IISS, IMDAS, ADDS, PRECI* and

MRDSM systems. A survey and comparison of these can be found in [24]. Of

these systems, only the �rst four attempt to support total integration of all infor-

mation sources in the sense that SIMS provides. SIMS is distinguished from work

in this community in that a complete semantic model of the application domain is

created in a state-of-the-art knowledge representation language with powerful rea-

soning facilities. The model provides a collection of terms with which to describe

the contents of (i.e., to create semantic models of) available information sources

| and these include knowledge bases in addition to databases. Furthermore, a

sophisticated planning mechanism is used at run-time in order to determine the po-

tentially very complex relationship between the collection of information requested

by the user and the data available from the various sources. In contrast to pre-

vious work, the domain model in SIMS is neither speci�c to a particular group of

information sources, nor is there necessarily a direct mapping from the concepts in

the model to the objects in the information sources. Our approach thus provides a

much more exible and easily extensible interface to a possibly changing collection

of information sources.

The AI-oriented database community has done work on various aspects of using

a knowledge base to integrate a variety of information sources. The Carnot project

[9] integrates heterogeneous databases using a set of articulation axioms that de-

scribe how to map between SQL queries and domain concepts. Carnot uses the Cyc

knowledge base [16] to build the articulation axioms, but after the axioms are built

the domain model is no longer used or needed. In contrast, the domain model in

SIMS is an integral part of the system, and allows SIMS to both combine information

stored in the knowledge base and to reformulate queries. Illarramendi et al. [3, 13]

present an approach to automatically integrating knowledge-base models from indi-

vidual relational database schemas. In SIMS, the integration of the database models

is not automated, although the translation of the individual database schemas into
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knowledge-base models is automated by the LIM system, which is used by SIMS.

Elements of the approach described in that work can be applied to further au-

tomating the process of database modeling in SIMS. Finally, Papazoglou et al. [22]

present a framework for intelligent information systems where, like SIMS, an explicit

knowledge model is an integral part of an intelligent information agent.

Some additional related research has been performed by those working on se-

mantic and object-oriented data models, e.g., [8, 12, 26]. Since they are interested

in constructing a single DBMS, however, they take an almost diametrically opposed

view of the problem from that of SIMS. While SIMS attempts to preserve its inde-

pendence from the data models of the constituent data- and knowledge-bases, using

a planner to bridge this gap at query time, they attempt to closely integrate the

given data model into their DBMS.

The remainder of this paper is structured as follows. The rest of this section

is devoted to overviews, �rst of the technological infrastructure used by SIMS,

and then of the operation of the SIMS system itself. Section 2 follows with a

description of the modeling that provides SIMS with the knowledge needed to plan

data retrieval. A full description of SIMS' planning and reformulation components

is provided in Sections 3, 4, and 5. SIMS' user-interface is described in Section 6.

The paper ends with a brief summary and directions for future work, Section 7.

1.1 Technological Infrastructure

This subsection is provided for readers who may not be familiar with the systems

underlying SIMS. A general understanding of Loom, LIM, and planners like Prodigy

is assumed in the rest of this paper.

1.1.1 Loom

Loom serves as the knowledge representation system SIMS uses to describe the

domain model and the contents of the information sources, as well as serving as an

information source in its own right. It provides both a language and an environment

for constructing intelligent applications. Loom combines features of both frame-

based and semantic network languages, and provides some reasoning facilities. As

a knowledge representation language it is a descendent of the KL-ONE [4] system.

The heart of Loom is a powerful knowledge representation system, which is

used to provide deductive support for the declarative portion of the Loom language.

Declarative knowledge in Loom consists of de�nitions, rules, facts, and default rules.

A deductive engine called a classi�er utilizes forward-chaining, semantic uni�cation

and object-oriented truth maintenance technologies in order to compile the declar-

ative knowledge into a network designed to e�ciently support on-line deductive

query processing. For a detailed description of Loom see [17, 18].

To illustrate both Loom and the form of SIMS' queries, consider Figure 1, which

contains a simple semantic query to SIMS. This query requests the value of the depth

of the San Diego port. The three subclauses of the query specify, respectively, that

the variable ?port describes a member of the model class port, that the relation

port.name holds between the value of ?port and the string SAN-DIEGO, and that

the relation port.depth holds between the value of ?port and the value of the
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(db-retrieve (?depth)

(:and (port ?port)

(port.name ?port "SAN-DIEGO")

(port.depth ?port ?depth)))

Figure 1: Example SIMS/Loom Query

variable ?depth. The semantic query speci�es that the value of the variable ?depth

be returned. A query to SIMS need not necessarily correspond to a single database

query, since there may not exist one database that contains all the information

requested.

1.1.2 LIM

In Loom the members of a class (e.g., the possible values of the variable ?port

in the expression in Figure 1) are instances in the knowledge base. In the case of

large-sized realistic domains it is preferable not to de�ne all objects of the domain

as knowledge base instances. Instead, databases provide more e�cient structures

for organizing large numbers of such objects, and DBMSs are more e�cient than

AI languages for manipulating them.

The Loom Interface Module (LIM) [19] is being developed by researchers at Para-

max Systems Corp. to mediate between Loom and databases. LIM reads an external

database's schema and uses it to build a Loom representation of the database. The

Loom user can then treat classes whose instances are stored in a database as though

they contained \real" Loom instances. Given a Loom query for information in that

class, LIM automatically generates a query in the appropriate database query lan-

guage to the database that contains the information, and returns the results as

though they were Loom instances. However, LIM focuses primarily on the issues

involved in mapping a semantic query to a single database. After SIMS has planned

a query and formed subqueries, each grounded in a single database, it hands the

subqueries to LIM for the actual data retrieval. SIMS handles direct queries to the

Loom knowledge base on its own.

1.1.3 Prodigy

The two problems of selecting information sources and ordering queries can be

easily cast as planning problems. SIMS uses Prodigy [6, 21], a means-ends analysis

planner, to solve both these problems. Prodigy has an expressive operator and

control language and has been linked to Loom, so that it can use the Loom domain

model as its model of the world. SIMS formulates the selection of information

sources and the ordering of queries as planning problems and hands them o� to

Prodigy.

A problem is speci�ed in Prodigy by giving the system a set of operators that

de�ne the legal operations on a problem and an initial state description that de�nes

the current state of the world. The system is then given a goal, which in this case

is the query to be answered, and Prodigy generates a sequence of operators that

transforms the initial state into a state in which the goal is satis�ed.
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Figure 2: SIMS Overview Diagram.

Prodigy is used for solving the planning problems in SIMS for two main rea-

sons. First, it provides an expressive language for both de�ning the problem and

constructing a set of rules to control the search. Second, it provides a natural frame-

work for planning the operations and monitoring the execution of those operations.

In the case of failures, the failure points are easily identi�ed and the system can

return to the planner to select an alternative plan for retrieving the data.

1.2 Overview of SIMS

SIMS addresses several problems that arise when one tries to provide a user famil-

iar only with the general domain with access to a system composed of numerous

separate data- and knowledge-bases.

Speci�cally, SIMS deals with the following:

� Determining which information sources contain the data relevant to the

knowledge-base classes used in formulating a given query.

� For those classes mentioned in the query which appear to have no match-

ing information source, determining if any knowledge encoded in the domain

model (such as relationship to other classes) permits reformulation in a way

that will enable suitable information sources to be identi�ed.

� Creating a plan, a sequence of subqueries and other forms of data-

manipulation that when executed will yield the desired information.

� Using knowledge about databases to optimize the plan.

� In general, providing a uniform way to describe information sources to the

system, so that data in them is accessible.
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(retrieve (?name)

(:and (rail port ?port)

(port.refrig ?port ?refrig)

(> ?refrig 0)

(port.geocode ?port ?geocode)

(port.name ?port ?name)

(geoloc ?geoloc)

(geoloc.country name ?geoloc "Germany")

(geoloc.geocode ?geoloc ?geocode)))

Figure 3: Example SIMS Query.

A visual representation of the components of SIMS is provided in Figure 2.3

An initial Loom query of the kind SIMS handles is shown in Figure 3. The �rst

clause, (rail port ?port), is a concept expression that constrains the variable

?port to a set of port objects in the knowledge base. The Loom class rail port

(standing for sea ports with rail facilities) need not necessarily correspond to the

contents of a speci�c �eld in some single information source. If it does not, the

planner will have to �nd some combination of subqueries that will obtain all nec-

essary objects. This case is discussed further later. The second clause is a relation

expression that states that the port.refrig relation holds between �llers of the

variables ?refrig and ?port. This clause will bring about the retrieval of possible

�llers of ?refrig | refrigeration facilities in a relevant port. The third clause is a

constraint: a \>" relation on the number of refrigeration facilities, requiring it to

be a positive integer. The entire query requests the names of all ports with rail fa-

cilities and refrigeration facilities whose geographic code designation indicates that

they are in Germany.

A fragment of the model describing some of the hierarchy of concepts relevant to

this query is presented in Figure 5. In this �gure, the circles denote concepts in the

knowledge base, the upward arrows indicate is-a links, and the other arrows indicate

relations between concepts. So, for example, the Port concept has two subconcepts,

Sea Port and Air Port, and Sea Port has a subconcept Rail Port, seaports with a

railway capability. Shaded concepts represent those that can be retrieved directly

from some database.

If the information about rail ports and geographic locations were stored directly

in the Loom knowledge base, then Loom could be used directly to answer this

query. But, as the �gure indicates, that is note the case. SIMS uses Loom to

semantically model a domain about which data is stored in multiple information

sources, and the information required to answer this query will be retrieved from

the appropriate sources, with the help of LIM where necessary. Thus, if all the

referenced information were stored in one database, this query could be passed

directly to LIM as is. But that is not the case either.

Data pertaining to this query is spread over two databases | one containing

information about ports and the other containing information about geographic

locations. The system is handed the query shown in Figure 3 and it must �rst de-

3Work on the links back from the Execution component to Information Source Selection and

Access Planning will not be discussed in this paper.
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termine which information sources to access. Then it formulates a set of subqueries

that can be executed directly by either LIM or Loom to derive the desired result.

SIMS can use LIM to return intermediate results, which can then be processed

further in Loom. As we will see, the execution of the example query will require

three subqueries. One to each of the databases and one to combine the intermediate

results obtained from them. The processes described in overview here are discussed

in more depth in the remaining sections of the paper.

The very �rst step in processing a query is to determine where the requested

data resides. For instance, inspecting the model fragment in Figure 5 reveals that

rail port does not have a directly corresponding database (a shaded concept).

However, the model relation port.rail can be used to distinguish it from other

ports. Speci�cally, it can identify the desired ports from among those in sea port,

which does have a corresponding database. This and other reformulations of this

nature are described further in Section 3.

The next step in processing the query is to produce a plan to implement the

required retrieval. By this we mean that SIMS must produce a plan consisting

of data-retrieval and data-manipulation speci�cations, with an associated partial

ordering of the speci�ed actions. The data-retrieval steps of the plan must be

grounded in speci�c information sources, i.e., all data one step requests must be

contained in a single information source. Any data-manipulation steps of the plan

are performed using the Loom reasoning facilities. The plan produced takes the

form of a lattice of plan steps.

The steps in a plan are partially ordered based on the structure of the query.

This ordering is determined by the fact that some steps make use of data that is

obtained by other steps, and thus must logically be considered after them. For

example, a plan step may compare two items of data according to some measure. If

the data are obtained from two di�erent information sources, then the comparison

must come later than the retrievals of the data items.

Next, the plan produced as above is inspected and, when appropriate, data-

retrieval steps that are grounded in the same information source are grouped |

eventually their execution will result in a single query. We therefore call this process

subquery formation. The result of this grouping process is a new graph in which

each node ultimately corresponds either to a query to some information source, or

to internal manipulation by SIMS of data so acquired. The processes involved in

subquery formation is described in Section 4.

After a plan for the query has been obtained, the system reformulates the query

plan into a less expensive yet semantically equivalent plan. The reformulation

is based on logical inference from content knowledge about each of the queried

databases. The cost reduction from the reformulated plan is due to the reduction

in the amount of the intermediate data and the re�nement of each subquery. This

reformulation process is described in Section 5.

First, however, we discuss our approach to modeling.
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2 Domain and Information Source Models

SIMS must reason about data and other knowledge stored in a variety of locations

and formats. It is imperative that SIMS have available detailed descriptions of the

various information sources to which it has access. This is not merely an artifact of

the SIMS approach | no system can retrieve requested information if it does not

have knowledge about where the information in question may be stored and how to

go about accessing it.

In SIMS a model of each information sources is created to describe it to the

system. In addition, a domain model is constructed to describe objects and actions

that are of signi�cance in the performance of tasks in the application domain.4 The

domain model's collection of terms forms the \vocabulary" used to characterize the

contents of an information sources.

It is important to note that the models of di�erent information sources are

independent of each other. This greatly simpli�es the task of modeling, and at the

same time enables new components to be added to SIMS without the need for any

recompilation process. The planner simply makes use of the new information as

appropriate.

2.1 Modeling Information Sources

For each information source, SIMS' model must include every fact that can inuence

decisions concerning when and whether to utilize it.

� In order to decide whether a query to LIM is necessary or whether process-

ing can be performed locally, the model speci�es if the source is a database

or a Loom knowledge base (the two types of information sources currently

supported);

� In order to decide whether to expend e�ort reformulating plans and whether

to be concerned with the cost of transmitting intermediate data, the model

describes the size of databases and tables, and their location;

� In order to help further with decisions concerning reformulation, the model

de�nes key columns in the database, if such exist; and, �nally,

� In order to enable SIMS to determine in which information source desired

information resides, the model describes the content of the information source.

In fact, most of the modeling e�ort done for SIMS goes to describing the content

of databases. These models are used by both LIM and SIMS, for their own respective

purposes (cf. [19] for LIM's work on database modeling). Simply put, the model

of a database must describe precisely what type of information is stored in it.

To do so we choose a key column (or columns) in each table and create a Loom

class corresponding to it | the class from which items in that column are drawn.

Every other column in the table is viewed as corresponding to a Loom relation |

4In fact, all the knowledge described here is stored by SIMS in a single model de�ned in a

uniform way. It is thus only for purposes of exposition that we describe di�erent parts of the

model as \separate" models.
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Figure 4: A Model of a Database Table Embedded in the Domain Model.

one describing the relationship between the key item and the one in that column.

Figures 4 provides a simple illustration of content modeling.

2.2 Modeling the Domain

SIMS deals with a single \application domain", i.e., with organizing the retrieval of

information relevant to some coherent collection of tasks. Currently, the application

domain we have selected is the military transportation planning domain | tasks

involving the movement of personnel and materiel from one location to another

using aircraft, ships, trucks, etc.

SIMS' model of the application domain includes a hierarchical terminological

knowledge base with nodes representing all objects, actions, and states possible in

the domain. In addition, it includes indications of all relationships possible between

nodes in the model. For example, there is a node in the model representing the class

of ports and a node representing the class of geographic location codes. There is

a relation speci�ed between ports and geoloc codes with a notation indicating

that each of the former has precisely one of the latter.

The Loom knowledge representation language is used to describe SIMS' domain

model. Statements in Loom are used to express more elaborate relationships among

model entities, such as that rail-ports are sea-ports which have a rail terminal as

well (cf. Figure 5).5

The entities included in the domain model are not meant to correspond to any

objects described in any particular database. The domain model is intended to be a

description of the application domain from the point of view of someone who needs

to perform real-world tasks in that domain and/or to obtain information about

it. However, the domain model is used, e�ectively, as the language with which to

describe the contents of a database to SIMS. This is done by including relations |

5We have chosen simple examples for use in this paper. Loom supports far more powerful

statements. For a full description see [17, 18].
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hierarchical (is-a) or others | to precisely describe every aspect of the contents of

the database in terms of the domain model (cf. Section 2.1). In order to submit a

query to SIMS, the user composes a Loom statement, using terms and relations in

the domain model to describe the precise class of objects that are of interest. If the

user happens to be familiarwith particular databases and their representation, those

concepts and relations may be used as well. But such knowledge is not required.

SIMS is designed precisely to allow users to query it without such speci�c knowledge

of the data's structure and distribution.

The task of accurately relating a database (and other information source) model

must be engaged in for every database and knowledge base that SIMS is to be

capable of utilizing. SIMS includes a graphical interface that simpli�es this process

(Section 6).

The modeling work that is a prerequisite for SIMS to be able to access in-

formation sources is a substantial e�ort, the importance of which cannot be over-

emphasized. The extent to which SIMS can �nd information and the accuracy of its

retrievals are completely dependent on it. The scalability of the modeling process

in SIMS is discussed next.

2.3 Scalability and Expandability

SIMS' dependence on models of the domain and the information sources it utilizes

requires that the question of its scalability be addressed. Separate issues arise when

considering the application domain model and the information resource models.

2.3.1 Expanding the Application Domain Model

A considerable e�ort must be expended to model the application domain before any

use of SIMS is possible. Although this task's extent should not be minimized, it is

a relatively tractable one no di�erent than that engaged in in many other areas of

arti�cial intelligence. In fact, it has more clearly de�ned limits, since full utility is

possible from the moment that enough of the model has been built to cover data

objects described in desired databases. Any model building beyond that point only

increases the expressivity of the query language and adds to the user's convenience,

but it still provides access to the same data.

It is reasonable to anticipate that the domain model will have to be incremen-

tally enlarged to accommodate new data sources as they are added to the system.

However, since SIMS is designed to handle one domain at a time, it can safely be

assumed that this modeling e�ort will gradually reach closure.

2.3.2 Adding Information Source Models

Additional modeling will have to be engaged in for every new information source

added to SIMS. While this need will remain constant as the system grows, the SIMS

approach greatly limits the required e�ort compared to what it potentially might

be. Obviously, no approach to this problem can avoid modeling information sources,

since without a complete description of the content of a database or knowledge base

it is simply impossible to intelligently decide whether or not to attempt to retrieve

desired information from it. However, SIMS allows one to model a new information
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source independently of any that are already incorporated into the system. There

is no need to try to anticipate interactions or overlaps between di�erent information

sources, to decide how joins over databases will be performed, etc., since all such

decisions are made at run time by the SIMS planner.

To further simplify any modeling that does have to be performed, the SIMS

project includes an ongoing e�ort to develop modeling aids, among them a graphical

Loom knowledge base builder (see Section 6).

3 Selecting Information Sources

The �rst step in answering a query expressed in the terms of the domain model is

to select the appropriate information sources. This is done by mapping from the

concepts in the domain model to the concepts in the database models that cor-

respond directly to database information. If the user requests information about

ports and there is a database concept that contains ports, then the mapping is

straightforward. However, in many cases there will not be a direct mapping. In-

stead, the original domain-model query must be reformulated in terms of concepts

that correspond to database concepts.

Consider the fragment of the knowledge base shown in Figure 5, which covers

the knowledge relevant to the example query in Figure 3. The concepts Sea Port,

Air Port, and Geoloc have subconcepts shown in by the shaded circles that corre-

spond to concepts whose instances can be retrieved directly from some database.

Thus, the afsc database contains information about both seaports and airports

and the pacf database contains information about only seaports. Thus, if the user

asks for seaports, then it must be translated into one of the database concepts |

AFSC Sea Port or PACF Sea Port. If the user asks for rail-ports, then it must �rst

be translated into a request for sea ports by augmenting the original query with a

constraint that each port must have a railroad capability.

In addition to retrieving data from the databases, data can also be stored in and

retrieved from the Loom knowledge base. This knowledge base is simply treated

as another information source. However, the Loom KB has the added advantage
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that information from database queries can be cached in it and the model can be

updated to indicate what information has been stored in Loom.

In this section, we describe the set of problem reformulation operations6 that are

implemented in SIMS and the reformulation process used to transform a user's query

into one that can be used to retrieve data. We also describe how this reformulation

mechanism supports the catching and retrieval of data in Loom.

3.1 Reformulation Operations

In order to select the information sources for answering a query, SIMS applies a

set of reformulation operators to transform the domain-level concepts into concepts

that can be retrieved directly from databases. The system uses four operators:

Select-Database, Generalize-Concept, Specialize-Concept, and Partition-Concept.

These reformulation operators are described next.

3.1.1 Select Database

The Select-Database reformulation operator maps a domain-level concept directly

to a database-level concept. In many cases this will simply be a direct mapping

from a concept such as Sea Port to a concept that corresponds to the seaports in

a particular database. There may be multiple databases that contain the same

information, in which case the domain-level concept can be reformulated into any

one of the database concepts. In Figure 5, Sea Port can be transformed into either

AFSC Sea Port or PACF Sea Port. The following example shows how a simple

query would be reformulated using AFSC Sea Port. In general, the choice is made

so as to minimize the number of queries to di�erent databases.7

Input Query:

(retrieve (?name)

(:and (sea port ?port)

(port.name ?port ?name)))

Reformulated Query

(retrieve (?name)

(:and (afsc sea port ?port)

(afsc port.name ?port ?name)))

3.1.2 Generalize Concept

The Generalize-Concept operator uses knowledge about the relationship between

a class and a superclass to reformulate a requested concept in terms of a more

general concept. In order to preserve the semantics of the original request, one or

more additional constraints may need to be added to the query in order to avoid

6These are to be distinguished from query-plan reformulation operations, which are described

in Section 5.
7Currently we assume the databases contain consistent information, so the choice of databases

only e�ects the e�ciency of the query and not the accuracy.
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retrieving extraneous data. For example, a request for rail ports can be replaced

with a request for seaports with the additional constraint that the seaports have

a rail capability (i.e. (port.rail ?port "Y")). This is illustrated in the following

example.

Input Query:

(retrieve (?name)

(:and (rail port ?port)

(port.name ?port ?name)))

Reformulated Query

(retrieve (?name)

(:and (sea port ?port)

(port.name ?port ?name)

(port.rail ?port "Y")))

3.1.3 Specialize Concept

The Specialize-Concept reformulation operator attempts to replace a given concept

with a more speci�c concept. This is done by checking the constraints on the query

to see if there is an appropriate specialization of the requested concept that would

satisfy it. Identifying a specialization of a concept is implemented by building a set

of Loom expressions representing each concept and then using the Loom classi�er

to �nd any specializations of the concept expression.

For example, consider the hierarchy fragment shown in Figure 5 again. Given

the query shown below, which requests the ports with a depth greater than 25, the

Loom classi�er uses the fact that only seaports have a relation that corresponds to

port.depth. Therefore, only seaports could possible satisfy the query, and in the

original request ports can be replaced with seaports. There are several databases

that correspond to seaports, so the requested information can now be retrieved.

Input Query:

(retrieve (?name)

(:and (port ?port)

(port.name ?port ?name)

(port.depth ?port ?depth)

(> ?depth 25)))

Reformulated Query

(retrieve (?name)

(:and (sea port ?port)

(port.name ?port ?name)

(port.depth ?port ?depth)

(> ?depth 25)))

14



3.1.4 Partition Concept

The Partition-Concept operator uses knowledge about set coverings (a set of con-

cepts that include all of the instances of another concept) to specialize a concept.

This information is used to replace a requested concept with a set of concepts that

cover it. For example, given the knowledge that the Port is covered by Sea Port

and Air Port, a request for ports can be satis�ed by retrieving and combining these

two subconcepts. This is illustrated in the example below.

Input Query:

(retrieve (?name)

(:and (port ?port)

(port.name ?port ?name)))

Reformulated Query

(retrieve (?name)

(:or (:and (sea port ?port)

(port.name ?port ?name))

(:and (air port ?port)

(port.name ?port ?name))))

3.2 The Reformulation Process

Reformulation is performed by treating the reformulation operators as a set of

planning operators and then using a planning system to search for a reformulation of

the given set of concepts. The initial clauses of the query are divided into references

to individual concepts and their associated constraints. The planner then searches

for a way to map each of these concepts with their associated constraints into

database concepts.

For example, consider the query shown below. It is �rst decomposed into two

separate expressions { one about ports and the other about geolocs. Then the refor-

mulation operators are used to �nd mappings to database concepts. Any remaining

clauses (e.g., comparisons across concepts) are dealt with when a plan for accessing

the data is generated.

(retrieve (?name)

(:and (rail port ?port)

(port.refrig ?port ?refrig)

(> ?refrig 0)

(port.geocode ?port ?geocode)

(port.name ?port ?name)

(geoloc ?geoloc)

(geoloc.country name ?geoloc "Germany")

(geoloc.geocode ?geoloc ?geocode)))

Using the reformulation operators described previously, the planner determines

that the Geoloc concept expression can be mapped directly to a database and the

Rail Port concept expression needs to be reformulated. It can be reformulated into
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a Sea Port concept expression, as described in Section 3.1.2, by adding a constraint.

The resulting plan for reformulating the initial query is shown below.

generalize-concept rail port (:and sea port (filled-by port.rail "Y"))

select-database sea port afsc sea port

select-database geoloc geo geoloc

The �nal step is to take this plan and execute it. This is a straightforward

process of applying the transformations in the query plan in the order listed. The

resulting query is as follows.

(retrieve (?name)

(:and (afsc sea port ?port)

(afsc port.rail ?port "Y")

(afsc port.refrig ?port ?refrig)

(> ?refrig 0)

(afsc port.geocode ?port ?geocode)

(afsc port.name ?port ?name)

(geo geoloc ?geoloc)

(geo geoloc.country name ?geoloc "Germany")

(geo geoloc.geocode ?geoloc ?geocode)))

3.3 Caching Retrieved Data

Data that is required frequently or is very expensive to retrieve can be cached in the

Loom knowledge base and retrieved directly from Loom. An elegant feature of using

Loom to model the domain is that caching the data �ts nicely into this framework.

The data is currently brought into Loom to perform the local processing, so caching

is simply a matter of retaining the data and recording what data has been retrieved.

To cache retrieved data into Loom requires formulating a description of the data.

This can be extracted from the initial query since queries are expressed in Loom

in the �rst place. The description de�nes a new subconcept and it is placed in the

appropriate place in the concept hierarchy. The data then become instances of this

concept and can be accessed by retrieving all the instances of it.

Once the data is stored, it can be retrieved using the specialization operator

that was described above. When the user poses the same query, the system can

reformulate that query into the newly stored one and when the stored query is used,

the cached data is retrieved directly from Loom.

4 Access Planning

The planning process described in this section �nds an ordering of the database

accesses and data comparisons by analyzing the dependency structure of the con-

straints on the query. It then generalizes the plan to remove any unnecessary order-

ing constraints in order to maximize the plan's potential parallelism. The complete

database access plan is converted back into a partially ordered set of grounded

subqueries that can be handed to LIM or executed directly in Loom. The �rst
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(and (concept afsc sea port ?port)

(relation port.refrig ?port ?refrig)

(relation port.geocode ?port ?geocode)

(relation port.name ?port ?name)))

(comparison > ?refrig 0)

(concept geoloc ?geoloc)

(relation geoloc.country name ?geoloc "Germany")

(relation geoloc.geocode ?geoloc ?geocode))

Figure 6: Goal Statement for the Planner

subsection below describes how the initial access plan is generated, and the second

subsection describes how the plan is converted into the appropriate subqueries.

4.1 Generating an Access Plan

Since some of the databases are quite large, there can be a signi�cant di�erence in

e�ciency between di�erent possible plans for a query. Therefore, we would like to

�nd subqueries that can be implemented as e�ciently as possible. To do this the

planner must take into account the cost of accessing the di�erent databases, the

cost of retrieving intermediate results, and the cost of combining these intermediate

results to produce the �nal results. In addition, since the databases are distributed

over di�erent machines or even di�erent sites, we would like to take advantage of

potential parallelism and generate subqueries that can be issued concurrently.

A central task of the planner is to determine the ordering of the various accesses

to databases. In the course of executing this task it also selects the databases from

which to extract information. The ordering is determined by analyzing which steps

in the plan for the query are generating values for variables and which steps are

�ltering the possible values. If one step depends on information produced in another

step, then they must be done in the correct order. The Prodigy system, described

in Section 1.1.3 is used to form the subqueries and order them. The problem is cast

as a set of Prodigy operators, where the original semantic query constitutes the goal

that is to be achieved by the planner.

In a straightforward process, the reformulated example query described in the

last section is mapped by Prodigy into the goal for the planner shown in Figure 6.

(Note that the language being used is no longer Loom.) Each subclause of the

query is annotated with additional information indicating whether it is a concept,

relation, or comparison subclause.

The set of operators used by the planner is shown in Figure 7. The �rst operator,

retrieve-concept simply maps a concept to the database used to retrieve the

desired information. The next three operators, generate-values, filter-values,

and compare-values, determine the constraints on the order of the accesses to

the individual databases. The remaining operators, begin-query and end-query,

delimit the operations performed on an individual database.

As an illustration, the retrieve-concept operator is shown in Figure 8. This

operator speci�es a set of preconditions that must be true in order to apply the

operator. In this case the preconditions are that information about the concept is
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Operator Purpose

Retrieve-Concept Retrieves information from a particular database.

Generate-Values Uses a given relation to generate values for a given variable.

Filter-Values Uses a given relation to �lter values for a given variable.

Compare-Values Performs a comparison between two sets of values.

Begin-Query Indicates the beginning of a query to one of the databases.

End-Query Indicates the end of a query.

Figure 7: Operators for Planning a Query

(retrieve-concept

(params (<pred> <object> <db>))

(preconds (and (database-concpt <pred> <db>)

(open-db <db>)))

(effects ((add (concpt <pred> <object>))

(add (available <object> <db>)))))

Figure 8: Operator for Retrieving a Concept from a Database

directly available from some database and that this database has been opened. If

the database has not been opened for retrieval, then the planner would create the

subgoal of doing so and insert a begin-query operation. The retrieve-concept

operator has two e�ects. The �rst speci�es that the information for this concept

is now available, and the second speci�es in which database the information is

available.

The system generates a plan to achieve the goal in Figure 6 by selecting operators

to achieve each of the goal conditions. If the preconditions of a selected operator

do not hold, then the system must recursively achieve each of the preconditions.

Once the system has achieved all of the goal conditions, it will have a plan for

retrieving the information to satisfy the initial query. The resulting plan speci�es

which databases are to be used to satisfy the query as well as any constraints on

the order in which the information is retrieved.

Prodigy initially produces a totally ordered plan for retrieving information. This

plan is then converted into a partially ordered set of plan steps free of unnecessary

ordering constraints. Each of an operator's preconditions in the database access

plan explicitly states the conditions on which that operator depends. We use the

algorithm of Veloso [27] to convert the totally ordered plan into a partially ordered

plan from the de�nitions of the operators. This algorithm is polynomial in the

length of the plan. The resulting partially ordered plan is shown in Figure 9.
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Figure 10: Final SIMS Plan for Example Query

4.2 Subquery Formation

The second step in the query planning process is to formulate the actual subqueries

which will be passed on to LIM and eventually translated into database queries.

Since LIM takes care of such details, we do not need to worry about the access

languages of the individual databases, their locations, etc. Instead, we only need

to formulate Loom queries that refer to information in one database. LIM and the

DBMSs for the individual databases are responsible for selecting the appropriate

access paths and locally optimizing the query within that database (we discuss

global optimization in the next section).

The subqueries are formed by grouping together steps of the original plan.

This is a relatively straightforward process that is aided by the presence of

begin-query/end-query steps in the plan graph. The grouping is done by combin-

ing nodes in the plan partial order, to produce a �nal partial order on the subqueries.

The subqueries for the example problem are shown in Figure 10. It shows that to

implement the original query, three operations are necessary. The �rst two are ac-

cesses to separate databases that can be done in parallel. The third operation is a

comparison in Loom on the results from these two subqueries. This last step cannot

begin until the other two are complete.

5 Query-Plan Reformulation

Constructing a plan for retrieving information is only part of the problem. An

important consideration in mapping the initial query into a set of subqueries is

the total time that it will take to execute all of the subqueries. One approach

to reducing this cost is to search for reformulations of the query access plan that

reduce it. Database management systems (DBMSs) often perform syntactic query

reformulation [14]. We leave that task to the respective DBMS then, and focus

instead on more global semantic query reformulation [7, 15]. The idea is to transform

the query resulting from the planning process into a semantically equivalent one that

can be executed more e�ciently.
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Consider the planned query illustrated in Figure 10. The �nal step in this

query, comparing two geographic location codes ?geocode and ?geocode2, could

be quite costly since the cost of comparison is proportional to the square of the

potentially large number of intermediate data items. Moreover, the comparison is

performed in Loom, which is not as highly optimized as state-of-the-art DBMSs.

There are a variety of ways in which this query could be reformulated to reduce or

eliminate the cost of this last step. For example, knowledge about the contents in the

databases could be used to augment the earlier subqueries, so that less intermediate

information would be generated. Or, knowledge about the domain could be used to

transform a subquery into an equivalent one that can be more e�ciently executed.

Our approach to this problem di�ers from other related work on semantic query

reformulation in an important respect that we do not rely on explicit heuristics of

the database implementation to guide search for reformulations in the combinato-

rially large space of the potential reformulated subqueries. Instead, our algorithm

considers all possible reformulations by �ring all applicable rules and collecting can-

didate constraints in an inferred set. And then we select the most e�cient set of

the constraints from the inferred set to form the reformulated subqueries. This

algorithm is not only more exible and e�cient, but the results of the rule �ring

turn out to be the useful information for extending subquery reformulation to the

reformulation of the entire query plan. Most of other related work only reformulates

single database queries.

Below we describe the principle behind the semantic reformulation, what knowl-

edge is used for performing the reformulation, and the reformulation algorithms for

subqueries and query plans.

5.1 Reformulation of Subqueries

The subquery reformulation problem is analogous to the problem of semantic query

optimization for single database queries in previous work. The goal of query refor-

mulation is to use reformulation to search for the least expensive query from the

space of semantically equivalent queries to the original one. Two queries are de�ned

to be semantically equivalent[25] if they return identical answers given the same con-

tents of the database. The alternative de�nition of semantic equivalence[15] requires

that the queries return identical answers given any contents of the database, but

this de�nition would limit us to using only semantic integrity constraints which are

often not available. The use of the less restrictive de�nition of semantic integrity

requires that the system updates the learned knowledge as the databases change.

The reformulation from one query to another is by logical inference us-

ing database abstractions, the abstracted knowledge of the contents of relevant

databases. The database abstractions describe the databases in terms of the set

of closed formulas of �rst-order logic. These formulas describe the database in the

sense that they are true with regard to all instances in the database. We de�ne two

classes of formulas: range information, which are propositions that assert the value

range of database attributes; and rules, which are implications with an arbitrary

number of range propositions on the antecedent side and one range proposition on

the consequent side. Figure 11 shows a small set of the database abstractions. In

all formulas the variables are implicitly universally quanti�ed.
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Range Information:

1:(geo geoloc.country name2("France" "Taiwan" "Japan" "Italy" "Germany"))

2:(afsc port.geocode 2 ("BSRL" "HNTS" "FGTW" "VXTY" "WPKZ" "XJCS"))

3:(0 � afsc port.refrig storage � 1000)

Rules:

1:(geo geoloc.country name = "Germany") =) (geo geoloc.country code = "FRG")

2:(geo geoloc.country code = "FRG") =) (geo geoloc.country name = "Germany")

3:(geo geoloc.country code = "FRG")=)(47.15 � geo geoloc.latitude � 54.74)

4:(afsc port.rail = "Y" ) =) (afsc port.geocode 2 ("BSRL" "HNTS" "FGTW"))

5:(6.42 � geo geoloc.longitude � 15.00) ^

(47.15 � geo geoloc.latitude � 54.74)

=) (geo geoloc.country code = "FRG")

Figure 11: Example of Database Abstractions

SUBQ1:

(retrieve (?geoloc ?geocode2)

(:and (geo geoloc?geoloc)

(geo geoloc.geocode ?geoloc ?geocode2)

(geo geoloc.country name ?geoloc "Germany")))

SUBQ2:

(retrieve (?geoloc ?geocode2)

(:and (geo geoloc?geoloc)

(geo geoloc.geocode ?geoloc ?geocode2)

(geo geoloc.country code ?geoloc "FRG")))

SUBQ3:

(retrieve (?geoloc ?geocode2)

(:and (geo geoloc?geoloc)

(geo geoloc.geocode ?geoloc ?geocode2)

(geo geoloc.country code ?geoloc "FRG")

(geo geoloc.latitude ?geoloc ?latitude)

(?latitude >= 47.15) (?latitude <= 54.74)))

Figure 12: Equivalent Subqueries

The �rst two rules in Figure 11 state that for all instances, the value of its

attribute country name is "Germany" if and only if the value of its attribute coun-

try code is "FRG". With these two rules, we can reformulate the subquery SUBQ1

in Figure 12 to the equivalent subquery SUBQ2 by replacing the constraint on

geo geoloc.country name with the constraint on geo geoloc.country code. We

can inversely reformulate SUBQ2 to SUBQ1 with the same rules. Given a subquery

Q, let C1; . . . ; Ck be the set of range and interaction constraints in Q, the following

reformulation operators return a semantically equivalent query:

� Range Re�nement: A range-information proposition states that the values

of an attribute A are within some range Rd. If a range constraint of A in Q

constrains the values of A in some range Ri, then we can re�ne this range

constraint by replacing the constraining range Ri with Ri \Rd.
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SUBQ-REFORMULATION(Subquery, DB-Knowledge, Cost-Model)

1.refine range constraints, if Subquery refuted, return Nil;

2.for all applicable rules A ! B in DB-Knowledge:

if Subquery refuted, return NIL;

else add B to Inferred-Set, add (B,A) to Dependency-List;

3.for all B in Inferred-Set in the order of their cost:

if B is not indexed and 9 (B,A) in Dependency-List

delete B from Subquery, delete (B,A) from Dependency-List;

replace all (C,B) in dependency list with (C,A);

4.return (reformulated Subquery, Inferred-Set)

END.

Figure 13: Subquery Reformulation Algorithm

� Constraint Addition: Given a rule A ! B, if a subset of constraints in Q

implies A, then we can add constraint B to Q.

� Constraint Deletion: Given a rule A ! B, if a subset of constraints in Q

implies A and B implies Ci, then we can delete Ci from Q.

� Subquery Refutation: Given a rule A ! B, if a subset of constraints in

Q implies A, and in the query there exists a range constraint Ci such that B

implies :Ci, then we can assert that Q will return NIL.

Replacing constraints is treated as a combination of addition and deletion. Note

that these reformulation operators do not always lead to more e�cient versions of

the subquery. Knowledge about the access cost of attributes is required to guide

the search. For example, suppose the only database index is placed on the at-

tribute geo geoloc.country name. In that case reformulating SUBQ2 to SUBQ1

will reduce the cost from O(n) to O(k), where n is the size of the database and k

is the amount of data retrieved. However, if either geo geoloc.country name and

geo geoloc.country code are not indexed, then we will prefer the lower cost short

string attribute geo geoloc.country code. In this case, reformulating SUBQ1 to

SUBQ2 becomes more reasonable. Figure 13 shows our subquery reformulation

algorithm. We explain the algorithm below by showing how SUBQ-REFORMULATION

reformulates the subquery SUBQ1, the lower query in the query plan in Figure 10.

There are three input arguments to the algorithm: the subquery to be reformu-

lated, the database abstractions, and the cost model. The �rst step in the algo-

rithm is to re�ne the range constraints. The only range constraint in SUBQ1 is on

geo geoloc.country name, and its constrained value Germany is within the range

of possible values (see the �rst formula of range information), so this constraint

remains unchanged.

The second step is to match all applicable rules from the set of database

abstractions using the reformulation operators de�ned above. The �rst rule

in Figure 11 is matched and �red for SUBQ1 and we get an additional

constraint (geo geoloc.country code ?geoloc "FRG"), which is added to the

Inferred-Set. Then the second and third rules are matched because of the ad-

ditional constraint on country code. The constraints geo geoloc.latitude and

geo geoloc.country name are added to the Inferred-Set.
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The third step is to select the constraints in the Inferred-Set to delete from

the subquery. The selection is based on the constraint's relative estimated execu-

tion cost which is computed by the type of the constraints (range constraint, or

interaction constraint), the type of the attribute's values (integer, string, and their

length), and whether they are indexed. The attribute geo geoloc.country name

is deleted because its long string type is the most expensive. The next most

expensive constraint is the one on attribute geo geoloc.country code. How-

ever, it should be preserved because the cause of its deletability (i.e., the con-

straint on geo geoloc.country name) was just deleted. Finally, the constraint on

geo geoloc.latitude is kept because it is an indexed attribute that will improve

the e�ciency of the subquery. The algorithm returns the reformulated subquery

SUBQ3 as shown in Figure 12, as well as the Inferred-Set, which will be used for

reformulating the succeeding subqueries in the query plan.

The worst case complexity of SUBQ-REFORMULATION is O(R2MN ), where M

is the maximum length of the antecedent of the rules, N is the greatest number

of constraints in the partially reformulated query, that is, the number of original

constraints plus the number of added constraints before �nal selection, R is the

size of DB-Knowledge. In the average case, the complexity is much smaller than

this worst case estimation. Because R2 �MN , R is the dominating factor in the

complexity and should be kept within a manageable size. This complexity analysis

assumes that the system matches database abstractions by linear search. Therefore,

a very large set of database abstractions could make the reformulation costly. To

avoid this problem, we plan to adopt a more sophisticated rule match algorithm,

such as the RETE algorithm[10], that will improve the algorithm's e�ciency.

5.2 Reformulation of Query Plans

We can reformulate every subquery in the query plan with the subquery reformu-

lation algorithm and improve their e�ciency. However, the most expensive aspect

of the multidatabase query is often processing intermediate data. In the example

query plan in Figure 10, the constraint on the �nal subqueries involves the variables

?geocode and ?geocode2 that are bound in the preceding subqueries. If we can re-

formulate these preceding subqueries so that they retrieve only those data instances

possibly satisfying the constraint (= ?geocode ?geocode2) in the �nal subquery,

the intermediate data will be reduced. This requires the query plan reformulation

algorithm to be able to propagate the constraints along the data ow paths in the

query plan. The query plan reformulation algorithm de�ned in Figure 14 achieves

this by updating the database abstractions and rearranging constraints. We explain

the algorithm below using the query plan in Figure 10.

The algorithm takes three input arguments: the query plan, the database

abstractions, and the cost model. This algorithm reformulates each subquery

in the partial order (i.e., the data ow order) speci�ed in the plan using

SUBQ-REFORMULATION. In addition, the database abstractions are updated with the

Inferred-Set returned from SUBQ-REFORMULATION to propagate the constraints to

later subqueries. In this example, the second formula of the initial range information

is replaced by (afsc port.geocode 2 ("BSRL" "HNTS" "FGTW")), the consequent

condition of the fourth rule. The algorithm uses this updated range information to
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Figure 15: Reformulated SIMS Plan for Example Query

reformulate the �nal subquery and reduces the possible values from six to three.

In addition, the constraint (afsc port.rail ?port "Y") in the upper subquery is

propagated along the data ow path to its succeeding subquery.

Now that the updated range information for ?geocode is available, the subquery

reformulation algorithm can infer from the constraint (= ?geocode ?geocode2) a

new constraint (member ?geocode2 ("BSRL" "HNTS" "FGTW")). In our example,

the variable is bound by (geo geoloc.geocode ?geoloc ?geocode2) in the lower

subquery in Figure 10. The algorithm will insert the new constraint on ?geocode2

in that subquery. In this way, the constraints (afsc port.rail ?port "Y") and

(= ?geocode ?geocode2) are propagated back along the data ow path to the

lower subquery. This process of new constraint insertion is referred to as constraint

rearrangement. The �nal reformulated query plan is shown in Figure 15.

This query plan is more e�cient than and returns the same answer as the original

one. In our example, the lower subquery is more e�cient because of the new con-

straint on the indexed attribute geo geoloc.latitude (by SUBQ-REFORMULATION).

The intermediate data items are reduced because of the new constraint on the at-

tribute geo geoloc.geocode. The logical rationale of this new constraint is derived

from the constraints in the other two subqueries: (afsc port.rail ?port "Y")

and (= ?geocode ?geocode2), and the fourth rule in the database abstractions.
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query 1 2 3 4 5 6 7 8 9 10

planning time (sec) 0.5 0.3 0.6 2.1 1.1 0.7 0.7 0.5 0.5 0.8

reformulation time 0.1 0.1 0.0 0.5 0.1 0.0 0.0 0.1 0.1 0.3

rules �red (times) 37 18 11 126 63 8 17 15 19 71

query exec. time w/oRa 0.3 8.2 0.6 12.3 11.3 2.0 251.0 401.8 255.8 258.8

query exec. time w/Rb 0.3 1.5 0.0 11.3 11.1 0.0 0.3 207.5 102.9 195.2

total elapsed time w/oR 0.8 8.5 1.2 14.4 12.4 2.7 251.7 402.3 256.3 259.6

total elapsed time w/R 0.9 1.9 0.6 13.9 12.3 0.7 1.0 208.1 103.5 196.3

intermediate data w/oR - - - 145 41 1 810 956 808 810

intermediate data w/R - - - 145 35 0 28 233 320 607

aw/oR = Without reformulation.
bw/R = With reformulation.

Table 1: Experimental Results

The complexity of QPLAN-REFORMULATION is O(SR2MN ), where S is the number

of subqueries in the query plan, and R2MN is the cost of SUBQ-REFORMULATION. In

actual queries, S is relatively small, so the dominating factor is still the cost of the

subquery reformulation R2
MN , in which the size of the database abstractions R is

the most important factor, as shown in section 5.1. Thus, with a manageable size

of the database abstractions, our algorithms are e�cient enough to be neglected in

the total cost of the multidatabase retrieval.

The earliest work in query reformulation was referred to as semantic query op-

timization and was applied to the single database query processing domain in a

system called QUIST[15]. In contrast with syntactic query optimization, which has

been widely studied in the database community, QUIST uses the rules of semantic

integrity constraint of the database as background knowledge to reformulate the

given query. However, QUIST and the following work[25, 7] use heuristics to select

the reformulation operators and rules to reformulate the query in a hill-climbing

manner. Our reformulation algorithm does not require heuristic control and is thus

more exible. Moreover, our algorithm utilizes the database abstractions to the

greatest possible extent, while hill-climbing only searches for the local optimum.

5.3 Experimental Results of Reformulation

Table 1 provides statistical data concerning the preliminary experimental results of

the query plan reformulation algorithm. In this experiment, the SIMS system is

connected with two remote Oracle databases. One of the databases consists of 16

tables, 56,078 instances, the other database consists of 14 tables, 5,728 instances.

The queries used were selected from the set of SQL queries constructed by the

original users of the databases. The �rst three queries are single database queries,

while the others are multidatabase queries. This initial results indicate that our

algorithm can reduce the total cost of the retrieval substantially. In most multi-

database queries, the amount of intermediate data is reduced signi�cantly. The

overheads of reformulation is included in the total execution time and is relatively

small compared to the cost of executing most queries.

The system used 267 database abstraction rules in this experiment. These rules

were prepared by compiling the databases. The compiling procedure summarizes

the range of each relation of the database by extracting the minimumand maximum
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Figure 16: Sample SIMS Interface Screen

values for numerical relations, or enumerating the possible values for string type re-

lations. If the number of possible values exceeds a threshold, this range information

is discarded. The rules were prepared by a semi-automatic learning algorithm sim-

ilar to the KID3[23]. This algorithm takes a user input condition A, and learns a

set of rules of the form A! B from the database. The algorithm retrieves the data

that satisfy the condition A, then compiles the data for the conclusions B.

We are now developing an automatic learning algorithm that is driven by ex-

ample queries. We plan to use inductive learning[5, 11, 20] to identify the costly

aspects of the example subqueries, propose candidate rules to learn, and then re�ne

the candidate rules to the desired operationality. Previous work that automatically

derives the content knowledge is proposed by Siegel[25]. Our approach di�ers from

theirs in that it is driven by the need for reformulation in the example instead of

by a �xed set of heuristics, and it is exible with regard to various database imple-

mentations. This is necessary in our case, since the databases integrated by SIMS

are usually heterogeneous.

6 The SIMS Interface

Our intention is that the user view SIMS as a black box that allows the user to

query multiple sources of information as if they were one single source. Given
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this scenario, an important issue is the ease with which the user can pose queries

to the system and receive an answer. Since the exact terms used in a model by

the developer will often di�er from those which a user may be familiar with, it is

very important that the developer's model be accessible to the user. We have thus

stressed the importance of providing an easy to use interface for posing queries, one

that allows the user convenient access to the model and help in construction of the

query.

At the same time it is important that the model be constructed accurately by

the developer. The model de�nes the application domain ontology, for both the

user and SIMS. Not only will the model builder need to be able to build a good

model of the domain, but he needs to be able to connect terms in the domain model

with the corresponding terms in the database model. In order to build a model

containing hundreds, possibly thousands of concepts, it is essential that the model

builder have tools to view the models. The model builder also needs tools to help

connect models fragments.

A common need for both users and model builders is a good way of viewing the

model. Given that SIMS models are Loom models, a subsumption-based hierarchy

of concepts, the logical visual representation to use is a graph. But a subsumption

hierarchy only shows part of the de�nition of a model, the is-a relations, to show

how a subconcept di�ers from its superconcept, it is usually necessary to show its

roles. Hence our graph shows not only the concepts but the roles of concepts and

their ranges.

SIMS does not dictate a single mode of interaction. We believe that the full range

of underlying user interface management modalities should be made available to the

user. Commands can be issued by mouse gestures applied to the desired objects,

through a menu, or by keyboard commands. The user interface management system

used by SIMS is CLIM 1.1, which is a high level presentation-based user interface

system.

6.1 The Query Interface

SIMS is accessed by the user through the query interface. Central to the ability to

pose a query is knowledge of the terms in which the domain is de�ned.

The SIMS query interface will provide the user aid in the following manner:

� A forms based query input facility.

� Access to the models via a graph of the domain and database models.

� The ability to specify terms of the query by clicking on nodes in the graph.

� Intelligent defaulting | automatic �lling in of appropriate variable names for

a sub-query.

6.2 The Model Building Interface

The domain model de�nes the ontology of the domain, i.e., all the terms and re-

lations that one can use to query the various information sources. It also de�nes
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the expressiveness of the domain, as well as how powerfully SIMS can be in refor-

mulating the queries. A domain model for a realistic application can easily contain

hundreds of concepts and relations, and depending on the complexity of the appli-

cation, can get out of hand very fast, especially if created using a text editor. At the

same time, many concepts are likely to be very similar, being no more than slightly

modi�ed copies of already existing subconcepts of some concepts and hence tedious

to enter. To ease the model building process, we provide the following tools:

� Two editors:

{ a form-based editor that is knowledgeable about the syntax of Loom

terms and allowable inputs.

{ a text based editor for direct manual entry/modi�cation of de�nitions.

� Interactive gesture-based editing, nodes can be modi�ed, added or deleted by

clicking the mouse on the relevant node.

� Graph navigation aids | panning, node hiding/unhiding and node centering.

7 Conclusions

This paper describes a system for e�ciently accessing and integrating information

from multiple information sources (e.g., databases and knowledge bases). The var-

ious information sources are integrated using the Loom knowledge representation

language. The system requires a model of the application domain and a model of

the contents of each of the information sources. Then, given a query, the system

generates and executes a plan for accessing the appropriate information sources.

Before executing a query, the system �rst reformulates the individual subqueries to

minimize the cost and the amount of intermediate data that is processed. Then the

subqueries are executed, exploiting any parallelism in the plan.

SIMS currently integrates information from data stored in nine Oracle databases

and information stored in a Loom knowledge base. The system uses the Loom Inter-

face Manager (LIM) to retrieve data from the Oracle databases and then processes

all the data in Loom. The plan for selecting and accessing the various information

sources is generated using the Prodigy planning system. The resulting plan is refor-

mulated using a set of special purpose algorithms for semantic query optimization

over multiple database queries.
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