
Query Processing in an Information Mediator�

Yigal Arens, Chin Chee, Chun-Nan Hsu,

Hoh In, and Craig A. Knoblock

Information Sciences Institute and

Department of Computer Science

University of Southern California

4676 Admiralty Way

Marina del Rey, CA 90292, USA

farens,chee,chunnan,hohin,knoblockg@isi.edu

Abstract

A critical problem in building an information mediator is how to translate a domain-level queries into

an e�cient query plan for accessing the required data. We have built a
exible and e�cient informa-

tion mediator, called SIMS. SIMS takes a domain-level query and dynamically selects the appropriate

information sources based on their content and availability, generates a query access plan that speci�es

the operations and their order for processing the data, and then performs semantic query reformulation

to minimize the overall execution time. This paper describes these three basic components of the query

processing in SIMS.

1 Introduction

SIMS [Arens et al., 1993] is an information retrieval system that provides an intelligent mediator between
information sources and humans users or applications programs. Queries are expressed in a uniform language,
independent of the distribution of information over sources, of the various query languages, the location of
sources, etc. SIMS determines which data sources to use, how to obtain the desired information, how and
where to temporarily store and manipulate data, and how to e�ciently retrieve information.

The core part of the mediator is the ability to intelligently retrieve and process data. Information
sources are constantly changing, new information becomes available, old information may be eliminated
or temporarily unavailable, and so on. Thus, SIMS dynamically selects an appropriate set of information
sources, generates a plan for processing the data, and then reformulates the plan to minimize the execution
cost. The basic SIMS architecture is shown in Figure 1 and the query processing components are shown by
the shaded rectangles.

This paper focuses on the query processing in SIMS. Before describing the query processing, Section 2
describes how the domain and information sources are modeled in SIMS. Section 3 describes the process of
selecting the information sources. Section 4 present the approach to generating a query plan for execution.
Section 5 describes the semantic query reformulation performed before execution. Section 6 reviews the most
closely related work. Section 7 concludes with a summary of the contributions and directions for future work.

�The research reported here was supported in part by Rome Laboratory of the Air Force Systems Command and the Defense

Advanced Research Projects Agency under contract no. F30602-91-C-0081, and in part by the National Science Foundation

under grant number IRI-9313993. Views and conclusions contained in this report are those of the authors and should not be

interpreted as representing the o�cial opinion or policy of NSF, DARPA, RL, the U.S. Government, or any person or agency

connected with them.

1

Execution

Learning

Domain Model

Database Models

Output User’s
 Query

 Data and
Knowledge
 Bases

Information
 Source
 Selection

 Query
 Access
Planning

 Semantic
 Query
Reformulation

Figure 1: The SIMS Architecture

2 Representing the Knowledge of a Mediator

A mediator contains a model of its domain of expertise, which provides the terminology for interacting
with the mediator, as well as models of all information sources that are available to it. Both the domain
and information source models are expressed in the Loom language. The domain model provides class
descriptions, subclass and superclass relationships, roles for each class, as well as other domain-speci�c
information. The information source models describe both the contents of the information sources and the
mapping between those models and the domain model.

2.1 Modeling the Domain

The SIMS mediator is specialized to a single \application domain" and provides access to the available infor-
mation sources within that domain. The largest application domain that we have to date is a transportation
planning domain, with information about the movement of personnel and materiel from one location to
another using aircraft, ships, trucks, etc.

The application domain models are de�ned using a hierarchical terminological knowledge base (Loom)
[MacGregor, 1988, MacGregor, 1990] with nodes representing each class of objects, and relations between
nodes that de�ne the relationships between the objects. For example, Figure 2 shows a fragment of the
domain model in the transportation planning domain. In this �gure, circles represent classes, the thick
arrows represent subclass relationships, and the thin arrows represent relations between classes.

The classes de�ned in the domain model do not necessarily correspond directly to the objects described
in any particular information source. The domain model is a high-level description of an application domain.
Queries expressed in terms of this domain model are reformulated by SIMS into the appropriate subqueries
to the various information sources. All of the information sources are de�ned using the terms in the domain
model in order to make this reformulation possible. The reformulation of the domain level queries is described
further in Section 3.

Queries to SIMS are expressed in terms of the general domain model, so there is no need to know or even
be aware of the terms or language used in the underlying information sources. Instead the system translates
the domain-level query into a set of queries to the underlying information sources. These information sources
may be databases, knowledge bases, or other application programs.

Figure 3 illustrates a query expressed in the Loom language. This query requests all seaports and

2

Port

Channel Geoloc
 Code

vehicle_type

Ship

max_draft

port_name

channel_of geoloc_
code

channel_depth

Seaport

Vehicle

range

geoloc_code

fuel_cap

Figure 2: Fragment of the Domain Model

(retrieve (?port name ?depth ?ship type ?draft)

(and (seaport ?port)

(port name ?port ?port name)

(channel of ?port ?channel)

(channel depth ?channel ?depth)

(ship ?ship)

(vehicle type ?ship ?ship type)

(range ?ship ?range)

(> ?range 10000)

(max draft ?ship ?draft)

(> ?depth ?draft)))

Figure 3: Example Loom query

corresponding ships with a range greater than 10,000 that can be accommodated within each port. The
�rst argument to the retrieve expression is the parameter list, which speci�es which parameters of the
query to return. The second argument is a description of the information to be retrieved. This description
is expressed as a conjunction of concept and relation expressions, where the concepts describe classes of
information, and the relations describe constraints on these classes. The �rst subclause of the query is
an example of a concept expression and speci�es that the variable ?port ranges over members of the class
seaport. The second subclause is an example of a relation expression and states that the relation port name

holds between the value of ?port and the variable ?port name. The query describes a class of seaports and
a class of ships, and requests all seaport and ship pairs where the depth of the port exceeds the draft of the
ship.

2.2 Modeling Information Sources

The critical part of the information source models is the description of the contents of the information
sources. This consists of both a description of the objects contained in the information source as well as the
relationship between these objects and the objects in the domain model. The mappings between the domain
model and the information source model are used for transforming a domain-level query into a set of queries
into actual information sources.

Figures 4 illustrates how an information source is modeled in Loom and how it is related to the domain
model. In the picture, the shaded circle represents the Seaports table in the geo database. All of the
concepts and relations in the information source model are mapped to concepts and relations in the domain
model. A mapping link between two concepts indicates that they represent the same class of information.
Thus, if the user requests all seaports, that information can be retrieved from the GEO database, which has
information about seaports.

3

Portport_name

geoloc_code

shore_cranes

floating_cranes

 (GEO)
Seaports

Seaport

indicates a mapping relation

seaports.port_nm

seaports.glc_cd

seaports.shore_cranes

seaports.floating_cranes

Figure 4: Relating an Information Source Model to a Domain Model

3 Information Source Selection

The �rst step in answering a query expressed in the terms of the domain model is to select the appropriate
information sources. This is done by transforming a query expressed in terms of the concepts in the domain
model into a query expressed in terms of the concepts in the information source models. If the user requests
information about ports and there is an information source-level concept that contains ports, then the
mapping is straightforward. However, in many cases there will not be a direct mapping. Instead, the
original domain-model query must be reformulated in terms of concepts that do correspond to information
sources.

Consider the fragment of the knowledge base shown in Figure 5, which covers the knowledge relevant to
the example query in Figure 3. The concepts Seaport, Channel and Ship have subconcepts shown by the
shaded circles that correspond to concepts whose instances can be retrieved directly from some information
source. Thus, the geo information source contains information about both seaports and channels and the
port information source contains information about only seaports. Thus, if the user asks for seaports, then
it must be translated into one of the information source concepts | Seaports in geo or Ports in port.

In order to select the information sources for answering a query, the system applies a set of reformulation
operators to transform the domain-level concepts into concepts that can be retrieved directly from an infor-

mation source. The system has a number of truth-preserving reformulation operations that can be used for
this task. The operations include Select-Information-Source, Generalize-Concept, Specialize-Concept, and
Decompose-Relation. These operations are described brie
y below.

Select-Information-Source maps a domain-level concept directly to an information-source-level concept.
In many cases this will simply be a direct mapping from a concept such as Seaport to a concept that
corresponds to the seaports in some information source. There may be multiple information sources
that contain the same information, in which case the domain-level query can be reformulated in terms
of any one of the information source concepts. In general, the choice is made so as to minimize the
overall cost of the retrieval. For example, the cost can be minimized by using as few information
sources as possible.

Generalize-Concept uses knowledge about the relationship between a class and a superclass to reformulate
a query in terms of the more general concept. In order to preserve the semantics of the original
request, one or more additional constraints may need to be added to the query in order to avoid
retrieving extraneous data. For example, if a query requires some information about airports, but the

4

Port

channel_depth

Channel Geoloc
 Code

vehicle_type

Ship
max_draft

port_name

channel_of

 (GEO)
Seaports

 (PORT)
 Ports

 (GEO)
Channels

Seaport
geoloc_
code

Vehicle

range

geoloc_code

fuel_cap

(Assets)
Notional
 Ship

Figure 5: Fragment of Domain Model

information sources that correspond to the airport concept do not contain the requested information,
then it may be possible to generalize airport to port and retrieve the information from some information
source that contains port information. In order to ensure that no extraneous data is returned, the
reformulation will include a join between airport and port.

Specialize-Concept replaces a concept with a more speci�c concept by checking the constraints on the
query to see if there is an appropriate specialization of the requested concept that would satisfy it.
For example, if a query requests all ports with an elevation greater than 1000 feet, it may be possible
to reformulate this in terms of all airports with an elevation greater than 1000 feet since there are no
seaports with an elevation this high. Even if there was an information source corresponding to the
port concept, this may be a more e�cient way to retrieve the data. Range information such as this is
naturally represented and stored as part of the domain model.

Decompose-Relation replaces a relation de�ned between concepts in the domain model with equivalent
terms that are available in the information source models. For example, channel of is a property
of the domain model, but it is not de�ned in any information source. Instead, it can be replaced by
joining over a key, geoloc-code, that in this case happens to occur in both seaport and channel.

Reformulation is performed by treating the reformulation operators as a set of transformation operators
and then using a planning system to search for a reformulation of the given query description. The planner
searches for a way to map each of the concepts and relations into concepts and relations for which data is
available.

For example, consider the query shown in Figure 3. There are two concept expressions { one about
ships and the other about seaports. In the reformulation that is found, the �rst step translates the seaport
expression into a information-source-level expression. Unfortunately, none of the information sources contain
information that corresponds to channel of. Thus, the system must reformulate channel of, using the
decompose operator. This expresses the fact that channel of is equivalent to performing a join over the
keys for the seaport and channel concepts. The resulting reformulation is shown in Figure 6.

The next step reformulates the seaport portion of the query into a corresponding information source
query. This can be done using the select-information-source operator, which selects between the geo and
port databases. In this case geo is selected because the information on channels is only available in the
geo database. The resulting query is shown in Figure 7.

The channel and ship portions of the query are then similarly reformulated. The �nal query, which is
the result of reformulating the entire query is shown in Figure 8.

5

(retrieve (?port name ?depth ?ship type ?draft)

(:and (seaport ?port)

(port name ?port ?port name)

(geoloc code ?port ?geocode)

(channel ?channel)

(geoloc code ?channel ?geocode)

(channel depth ?channel ?depth)

(ship ?ship)

(vehicle type ?ship ?ship type)

(range ?ship ?range)

(> ?range 10000)

(max draft ?ship ?draft)

(> ?depth ?draft)))

Figure 6: Result of Applying the Decompose Operator to Eliminate channel of

(retrieve (?port name ?depth ?ship type ?draft)

(:and (seaports ?port)

(seaports.port nm ?port ?port name)

(seaports.glc cd ?port ?geocode)

(channel ?channel)

(geoloc code ?channel ?geocode)

(channel depth ?channel ?depth)

(ship ?ship)

(vehicle type ?ship ?ship type)

(range ?ship ?range)

(> ?range 10000)

(max draft ?ship ?draft)

(> ?depth ?draft)))

Figure 7: Result of Applying the Select-Information-Source Operator on Seaport

(retrieve (?port name ?depth ?ship type ?draft)

(:and (seaports ?port)

(seaports.port nm ?port ?port name)

(seaports.glc cd ?port ?glc cd)

(channels ?channel)

(channels.glc cd ?channel ?glc cd)

(channels.ch depth ft ?channel ?depth)

(notional ship ?ship)

(notional ship.sht nm ?ship ?ship type)

(notional ship.range ?ship ?range)

(> ?range 10000)

(notional ship.max draft ?ship ?draft)

(< ?draft ?depth))))

Figure 8: Result of Selecting Information Sources for Channels and Ships

6

Figure 9: Parallel Query Access Plan

4 Query Access Planning

Once the system has reformulated the query so that it uses only terms from the information source models,
the next step is to generate a query plan for retrieving and processing the data. The query plan speci�es
the precise operations that need to be performed, as well as the order in which they are to be performed.

There may be a signi�cant di�erence in e�ciency between di�erent plans for a query. Therefore, the
planner searches for a plan that can be implemented as e�ciently as possible. To do this the planner must
take into account the cost of accessing the di�erent information sources, the cost of retrieving intermediate
results, and the cost of combining these intermediate results to produce the �nal results. In addition, since
the information sources are distributed over di�erent machines or even di�erent sites, the planner takes
advantage of potential parallelism and generates subqueries that can be issued concurrently.

There are three basic operators that are used to plan out the processing of a query:

� Move-Data { Moves a set of data from one information source to another information source.

� Join { Combines two sets of data into a combined set of data using the given join relations.

� Retrieve-Data { Speci�es the data that is to be retrieved from a particular information source.

Each of these operations manipulates one or more sets of data, where the data is speci�ed in the same terms
that are used for communicating with SIMS. This simpli�es the input/output since there is no conversion
between languages.

The planner is implemented in a version of UCPOP [Penberthy and Weld, 1992, Barrett et al., 1993]

that has been modi�ed to generate parallel execution plans [Knoblock, 1994]. The system searches through
the space of possible plans using a best-�rst search until a complete plan is found.

The plan generated for the example query in Figure 8 is shown in Figure 9. In this example, the
system partitions the given query such that the ship information is retrieved in a single query to the assets
database and the seaport and channel information is retrieved in a single query to the geo database. All
of the information is brought into the local system (Loom) where the draft of the ships can be compared
against the depth of the seaports. Once the �nal set of data has been generated, it is output for the user.

The system attempts to minimize the overall execution time by searching for a query that can be imple-
mented as e�ciently as possible. It does this by using a simple estimation function to calculate the expected
cost of the various operations and then selecting a plan that has the lowest overall parallel execution cost.
In the example, the system performs the join between the seaport and channel tables in the remote database
since this will be cheaper than moving the tables into the local system. If the system could perform all of the
work in one remote system, then it would completely bypass the local system and return the data directly

7

to the user. Once an execution plan has been produced, it is sent to the reformulation system for global
optimization, as described in the next section.

5 Semantic Query Reformulation

This section �rst describes how the system reformulates a single subquery and then describes how the system
reformulates the entire query plan.

5.1 Subquery Reformulation

The goal of the semantic query reformulation is to use reformulation to search for the least expensive query
in the space of semantically equivalent queries. The reformulation from one query to another is done through
logical inference using database abstractions, the abstracted knowledge of the contents of relevant databases.
See [Hsu and Knoblock, 1993a] for an explanation of how rules like these are automatically learned. The
database abstractions describe the databases in terms of the set of closed formulas of �rst-order logic. These
formulas describe the database in the sense that they are true with regard to all instances in the database.

Consider the example shown in Figure 10. The input query retrieves ship types whose ranges are greater
than 10,000 miles. This query could be expensive to evaluate because there is no index placed on the range
attribute. The system must scan the entire database table notional ship and check the values of range to
retrieve the answer.

Input Query:

(db-retrieve (?sht-type ?ship ?draft)

(:and (notional ship ?ship)

(notional ship.sht nm ?ship ?ship-type)

(notional ship.max draft ?ship ?draft)

(notional ship.range ?ship ?range)

(> ?range 10000)))

Figure 10: Example Subquery

A set of applicable rules for this query is shown in Figure 11. These rules would either be learned by
the system or provided as semantic integrity constraints. Rule R1 states that for all ships with maximum
drafts greater than 10 feet, their range is greater than 12,000 miles. Rule R2 states that all ships with range
greater than 10,000 miles have fuel capacities greater than 5,000 gallons. The last rule R3 simply states that
the drafts of ships are greater than 12 feet when their fuel capacity is more than 4,500 gallons.

Based on these rules, the system infers a set of additional constraints and merges them with the input
query. The resulting query is the �rst query shown in Figure 12. This query is semantically equivalent to
the input query but is not necessary more e�cient. The set of constraints in this resulting query is called
the inferred set. The system will then select a subset of constraints in the inferred set to complete
the reformulation. The selection is based on two criteria: reducing the total evaluation cost, and retaining
the semantic equivalence. Detailed description of the algorithm is in [Hsu and Knoblock, 1993b]. In this
example, the input query is reformulated into a new query where the constraint on the attribute range is
replaced with a constraint on the attribute max draft, on which there is a secondary index in the database.
The reformulated query can therefore be evaluated more e�ciently.

The reformulation is not limited to removing constraints. There are cases when the system can reformu-
late a query by adding new constraints or proving that the query is unsatis�able. The inferred set turns
out to be useful information for extending the algorithm to reformulate an entire query plan. Previous work
only reformulates single database queries. In addition, our algorithm is polynomial in terms of the number
of database abstraction rules and the syntactic length of the input query [Hsu and Knoblock, 1993b]. A
large number of rules may slow down the reformulation. In this case, we can adopt sophisticated indexing
and hashing techniques in rule matching, or constrain the size of the database abstractions by removing
database abstractions with low utility.

8

Database Abstractions:

R1: (:if (:and (notional ship ?ship)

(notional ship.max draft ?ship ?draft)

(notional ship.range ?ship ?range)

(> ?draft 10))

(:then (> ?range 12000)))

R2: (:if (:and (notional ship ?ship)

(notional ship.range ?ship ?range)

(notional ship.fuel cap ?ship ?fuel cap)

(> ?range 10000))

(:then (> ?fuel cap 5000)))

R3: (:if (:and (notional ship ?ship)

(notional ship.max draft ?ship ?draft)

(notional ship.fuel cap ?ship ?fuel cap)

(> ?fuel cap 4500))

(:then (> ?draft 12)))

Figure 11: Applicable Rules in the Database Abstractions

Query with inferred set:

(db-retrieve (?ship-type ?ship ?draft)

(:and (notional ship ?ship)

(notional ship.sht nm ?ship ?ship-type)

(notional ship.max draft ?ship ?draft)

(notional ship.range ?ship ?range)

(notional ship.fuel cap ?ship ?fuel cap)

(> ?range 10000)

(> ?fuel cap 5000)

(> ?draft 12)))

Reformulated Query:

(db-retrieve (?sht-type ?ship ?draft)

(:and (notional ship ?ship)

(notional ship.sht nm ?ship ?ship-type)

(notional ship.max draft ?ship ?draft)

(> ?draft 12)))

Figure 12: Reformulated Query

5.2 Query Plan Reformulation

We can reformulate each subquery in the query plan with the subquery reformulation algorithm and im-
prove their e�ciency. However, the most expensive aspect of the multidatabase query is often processing
intermediate data. In the example query plan in Figure 9, the constraint on the �nal subqueries involves the
variables ?draft and ?depth that are bound in the preceding subqueries. If we can reformulate these pre-
ceding subqueries so that they retrieve only the data instances possibly satisfying the constraint (< ?draft

?depth) in the �nal subquery, the intermediate data will be reduced. This requires the query plan reformu-
lation algorithm to be able to propagate the constraints along the data
ow paths in the query plan. We
developed a query plan reformulation algorithm which achieves this by updating the database abstractions
and rearranging constraints. We explain the algorithm using the query plan in Figure 9.

The algorithm �rst reformulates each subquery in the partial order (i.e., the data
ow order) speci�ed
in the plan. The two subqueries to databases are reformulated �rst. The database abstractions are updated
and saved in Inferred-Set, which is returned from the subquery reformulation to propagate the constraints
to later subqueries. For example, when reformulating the subquery on notional ship, (> ?draft 12) is
inferred and saved in the inferred set. In addition, the constraint (> ?range 10000) in the original subquery

9

Figure 13: Reformulated Query Access Plan

is propagated along the data
ow path to its succeeding subquery. Similarly, the system can infer the range
of ?depth in this manner. In this case, the range of ?depth is 41 � ?depth � 60.

Now that the updated ranges for ?draft and ?depth are available, the subquery reformulation algorithm
can infer from the constraint (< ?draft ?depth) a new constraints (< ?draft 60) and add it to the
subquery for join. However, this constraint should be placed on the remote subquery instead of the local
Loom query because it only depends on the data in the remote database. In this case, when updating the
query plan with the reformulated subquery, the algorithm locates where the constrained variable of each
new constraint is bound, and inserts the new constraint in the corresponding subqueries. In our example,
the variable is bound by (max draft ?ship ?draft) in the subquery on notional ship in Figure 9. The
algorithm will insert the new constraint on ?draft in that subquery.

The semantics of the modi�ed subqueries, such as the subquery on notional ship in this example,
are changed because of the newly inserted constraints. However, the semantics of the overall query plan
remain the same. After all the subqueries in the plan have been reformulated, the system reformulates these
modi�ed subqueries again to improve their e�ciency. In our example, the subquery reformulation algorithm
is applied again to the notional ship subquery. This time, no reformulation is found to be appropriate.
The �nal reformulated query plan is returned and shown in Figure 13.

This query plan is more e�cient and returns the same answer as the original one. In our example, the
subquery to notional ship is more e�cient because the constraint on the attribute range is replaced with
another constraint that can be evaluated more e�ciently. The intermediate data are reduced because of
the new constraint on the attribute ?draft. The logical rationale of this new constraint is derived from
the constraints in the other two subqueries: (> ?range 10000) and (< ?draft ?depth), and the rules

in the database abstractions. The entire algorithm for query plan reformulation is still polynomial. Our
experiments shows that the overheads of reformulation is very small compared to the overall query processing

cost. On a set of 32 example queries, the query reformulation yielded signi�cant performance improvements
with an average reduction in execution time of 43%.

6 Related Work

In the database community, there are a variety of approaches to handling distributed, heterogeneous, and
autonomous databases [Reddy et al., 1989, Sheth and Larson, 1990]. Of these approaches, the tightly-coupled
federated systems (e.g., Multibase [Landers and Rosenberg, 1982]) are the most closely related to SIMS in
that they attempt to support total integration of all information sources in the sense that SIMS provides.
However, building tightly-coupled federated system requires constructing a global schema for the databases
to be combined and then hard-wiring the mapping between the global schema and the local schemas.

10

The information source selection in SIMS is used instead of the standard schema integration used in
database systems [Batini and Lenzerini, 1986]. Our approach requires constructing a general domain model
that encompasses the relevant parts of the database schemas. Then each of the database models is related
to this general domain model. The integration problem is shifted from how to build a single integrated
model to how to map between the domain and the information source models. After de�ning this mapping,
the remaining integration process is performed automatically by the reformulation system using operators
that transform the high-level query into an information source-level query. An important advantage of this
approach is that it is easier and simpler to map one model to another model than it is to provide a completely
integrated view of a number of models with di�erent structures, types, and dependencies.

The query planning in SIMS is similar to the query access planning performed in many database systems.
The primary di�erence between the planning in SIMS and query access planning in other systems is that the
planning in SIMS is performed by an AI planner, which provides a level of
exibility that goes well beyond
what standard database systems can provide. Currently, it allows the system to construct a plan that takes
into account the availability of the various databases. In addition, we are in the process of integrating the
planning with the execution system, which will allow the system to dynamically replan parts of a query that
fail while continuing to execute the other subqueries of the overall plan.

The semantic reformulation approach to query optimization was �rst developed by King [King, 1981]

and has since been extended in a number of systems [Adam et al., 1993, Shenoy and Ozsoyoglu, 1989,
Shekhar et al., 1988, Siegel, 1988]. Our approach to this problem di�ers from other related work in that we
do not rely on explicit heuristics of the database implementation to guide search for reformulations in the
combinatorially large space of the potential reformulated subqueries. Instead, our algorithm considers all
possible reformulations by �ring all applicable rules and collecting candidate constraints in an inferred set.
Then the system selects the most e�cient set of the constraints from the inferred set to form the reformulated
subqueries.

The Carnot project [Collet et al., 1991] is similar to SIMS in that it uses a knowledge base to integrate a
variety of information sources. Carnot integrates heterogeneous databases using a set of articulation axioms
that describe how to map between SQL queries and domain concepts. Carnot uses the Cyc knowledge base
[Lenat and Guha, 1990] to build the articulation axioms, but after the axioms are built the domain model
is no longer used or needed. In contrast, the domain model in SIMS is an integral part of the system, and
allows SIMS to both combine information stored in the knowledge base and to reformulate queries.

7 Conclusion

SIMS provides a
exible system for processing queries to multiple information sources. In this paper we
described the process of transforming a domain-level query into an e�cient and executable query plan. This
process consists of three steps. First, the information sources are selected in the process of transforming the
domain-level query into an information source-level query. Second, the system generates a query plan, which
speci�es all the operations to be performed on the data as well as the order of these operations. Third, the
system performs global optimization through the use of database abstractions to reformulate the query plan.

Future work will focus on extending the selection, planning, and reformulation capabilities described
in this paper. An important issue that we have not yet addressed is how to handle the various forms of
incompleteness and inconsistency that will inevitably arise from using autonomous information sources. We
plan to address these issues by exploiting available domain knowledge and employing more sophisticated
planning and reasoning capabilities to both detect and recover from these problems.

References

[Adam et al., 1993] N.R. Adam, A. Gangopadhyay, and J. Geller. Design and implementation of a
knowledge-based query processor. International Journal of Intelligent and Cooperative Information Sys-

tems, 2(2):107{125, 1993.

11

[Arens et al., 1993] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving and
integrating data from multiple information sources. International Journal on Intelligent and Cooperative

Information Systems, 2(2):127{158, 1993.

[Barrett et al., 1993] Anthony Barrett, Keith Golden, Scott Penberthy, and Daniel Weld. Ucpop user's
manual (version 2.0). Technical Report 93-09-06, Department of Computer Science and Engineering,
University of Washington, 1993.

[Batini and Lenzerini, 1986] Carlo Batini and Maurizio Lenzerini. A comparative analysis of methodologies
for database schema integration. ACM Computer Survey, 18(4):323{364, 1986.

[Collet et al., 1991] Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integration using a
large knowledge base in carnot. IEEE Computer, pages 55{62, December 1991.

[Hsu and Knoblock, 1993a] Chun-Nan Hsu and Craig A. Knoblock. Learning database abstractions for
query reformulation. In Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, 1993.

[Hsu and Knoblock, 1993b] Chun-Nan Hsu and Craig A. Knoblock. Reformulating query plans for multi-
database systems. In Proceedings of the Second International Conference of Information and Knowledge

Management, Washington, D.C., 1993.

[King, 1981] Jonathan Jay King. Query Optimization by Semantic Reasoning. Ph.D. Thesis, Stanford
University, Department of Computer Science, 1981.

[Knoblock, 1994] Craig A. Knoblock. Generating parallel execution plans with a partial-order planner.
Information Sciences Institute,University of Southern California, 1994.

[Landers and Rosenberg, 1982] Terry Landers and Ronni L. Rosenberg. An overview of multibase. In H.J.
Schneider, editor, Distributed Data Bases. North-Holland, 1982.

[Lenat and Guha, 1990] D. Lenat and R.V. Guha. Building Large Knowledge-Based Systems: Representation
and Inference in the Cyc Project. Addison-Wesley, Reading, MA, 1990.

[MacGregor, 1988] R. MacGregor. A deductive pattern matcher. In Proceedings of AAAI-88, The National

Conference on Arti�cial Intelligence, St. Paul, MN, 1988.

[MacGregor, 1990] R. MacGregor. The evolving technology of classi�cation-based knowledge representation
systems. In John Sowa, editor, Principles of Semantic Networks: Explorations in the Representation of

Knowledge. Morgan Kaufmann, 1990.

[Penberthy and Weld, 1992] J. Scott Penberthy and Daniel S. Weld. Ucpop: A sound, complete, partial
order planner for adl. In Proceedings of KR-92, pages 189{197, 1992.

[Reddy et al., 1989] M.P. Reddy, B.E. Prasad, and P.G. Reddy. Query processing in heterogeneous dis-
tributed database management systems. In Amar Gupta, editor, Integration of Information Systems:

Bridging Heterogeneous Databases, pages 264{277. IEEE Press, NY, 1989.

[Shekhar et al., 1988] Shashi Shekhar, Jaideep Srivastava, and Soumitra Dutta. A formal model of trade-o�
between optimization and execution costs in semantic query optimization. In Proceedings of the 14th

VLDB Conference, Los Angeles, CA, 1988.

[Shenoy and Ozsoyoglu, 1989] S.T. Shenoy and Z.M. Ozsoyoglu. Design and implementation of a semantic
query optimizer. IEEE Trans. Knowledge and Data Engineering, I(3):344{361, 1989.

[Sheth and Larson, 1990] Amit P. Sheth and James A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183{236, 1990.

[Siegel, 1988] Michael D. Siegel. Automatic rule derivation for semantic query optimization. In Larry
Kerschberg, editor, Proceedings of the Second International Conference on Expert Database Systems, pages
371{385. George Mason Foundation, Fairfax, VA, 1988.

12

