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Abstract

There is currently great interest in building information
mediators that can integrate information from multiple data
sources such as databases or Web sources. The query re-
sponse time in such mediators is typically quite high. We
present an approach for optimizing the performance of in-
formation mediators by selectively materializing data. We
first present our overall framework for materialization in a
mediator environment. We then stress the need to materi-
alize data selectively and outline the factors that must be
considered to select data to materialize. We present an al-
gorithm for identifying classes of data to materialize by an-
alyzing one of the factors which is the distribution of user
queries. We present results with an implemented version of
our optimization system for the Ariadne information media-
tor, which show significant performance improvement over
no materialization and existing schemes such as page level
caching.

1 Introduction

There are several projects focusing on building informa-
tion mediators, the representative systems include TSIM-
MIS [12], Information Manifold [13], The Internet Soft-
bot [8], InfoSleuth [4], Infomaster [9], DISCO [19], HER-
MES [1], SIMS [3] and Ariadne [15]. Many of these
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systems allow database like querying of semi-structured
Web sources through wrappers around pre-specified Web
sources, and they also provide integrated access to multi-
ple data sources. The query response time for information
mediators, particularly Web based mediators is often very
high, mainly because to answer most queries a large num-
ber of Web pages must be fetched over the network. For in-
stance consider a mediator that provides integrated access
to Web sources of information about countries in the world.
For all mediator applications the set of Web sources from
which the mediator will extract and integrate information is
pre-specified and fixed. For the country mediator the set of
sources is:

� The CIA World Factbook1 which provides interesting
information about the geography, people, government,
economy etc. of each country in the world.

� The NATO homepage2 from which we can get a list of
NATO member countries.

� The InfoNation3 source which provides statistical data
about UN member countries.

Without any kind of optimization i.e., assuming that all
data must be fetched from the Web sources in real time, a
typical query to this mediator such as “Find the defense ex-
penditure and spending on education of all countries that
have a national product greater than 500 billion dollars”
can take several minutes to return an answer. This is be-
cause for this particular query the mediator must retrieve the
pages of all countries in the CIA World Factbook to deter-
mine which ones have a national product greater than $500

1http://www.odci.gov/cia/publications/factbook/country.html
2http://www.nato.int/family/countries.htm
3http://www.un.org/Pubs/CyberSchoolBus/infonation/e infonation.htm



billion, which takes a large amount of time. The query re-
sponse time can be greatly improved if frequently accessed
data is materialized at the mediator side.

We present a performance optimization approach for in-
formation mediators based on selectively materializing data.
Our work is different from Web caching systems such as [5]
where caching or materialization is done at the level of indi-
vidual Web pages. Our work is aimed at optimizing media-
tors that extract and integrate information from pre-specified
semi-structured Web sources rather than retrieving entire
Web pages from arbitrary sites.. In our approach there are
two primary issues that must be addressed. First we must
design the overall framework for materialization i.e., how
do we represent and use the materialized data. Then there is
the issue of what data should be materialized. We describe
our overall approach in Section 2. In Section 3 we describe
an approach for selecting data to materialize based on user
queries. We present experimental results in Section 4, fol-
lowed by related work in Section 5 and finally a conclusion.

2 Overall Approach

We now present a description of our approach to perfor-
mance optimization by materialization. We first provide a
brief overview of the SIMS information mediator, in fact the
SIMS architecture is typical of many of the other information
mediator systems we mentioned. The Ariadne architecture
also borrows heavily from that of SIMS. SIMS is used to in-
tegrate information from mainly database systems whereas
Ariadne integrates information from semi-structured Web
sources. We then provide a description of our framework for
materializing data in mediators. Finally we outline the fac-
tors in selecting data to materialize and the portion focused
on in this paper.

2.1 SIMS Architecture

In the SIMS system we use the LOOM [16] knowledge rep-
resentation language (we can also view this as a data mod-
eling language) for modeling data. The user is presented
with an integrated view of the information in several differ-
ent sources, which is known as the domain model. We de-
scribe the contents of the individual information sources in
terms of the domain model. A simple example is shown in
Figure 1(a). The white circle labeled COUNTRY represents a
domain concept (equivalent of a class in an object-oriented
model) and the shaded circles represent sources. The small
lines on the circles represent attributes of the concepts. In
this example the domain concept COUNTRY provides an in-
tegrated view over two sources of information about coun-
tries – FACTBOOK-COUNTRY and INFONATION-COUNTRY.
The user queries the integrated view i.e., concepts in the do-
main model and the query planner in the mediator generates

plans to retrieve the requested information from one or more
sources. Please refer to [3] for a more detailed description of
SIMS.

2.2 Materializing Data in Mediators

Our approach to optimization is based on an idea de-
scribed in [2] where we identify useful classes of informa-
tion to materialize, materialize the data in these classes in
a database local to the mediator and define these classes
as auxiliary information sources that the mediator can ac-
cess. For instance in the countries application4 suppose
we determined that the class of information - the popula-
tion and national product of all European countries was fre-
quently queried and thus useful to materialize. We mate-
rialize this data and define it as an additional information
source as shown in Figure 1(b). Given a query the media-
tor prefers to use the materialized data instead of the original
Web source(s) to answer the query.

Defining the materialized data as another information
source has two advantages. First, we can provide a seman-
tic description of the contents of the materialized data (in
LOOM). Second, the query planner in the mediator consid-
ers the materialized data source when generating plans to re-
trieve data to answer a user query. The SIMS query planner
is designed to generate high quality plans and will gener-
ate plans that attempt to use the materialized data sources
whenever they reduce the cost of processing a query. We
use the materialized data in essentially the same manner as
in a semantic caching [7] system. Our approach of defin-
ing the materialized data as another information source al-
lows us to use the information mediator’s knowledge repre-
sentation system and query planner to address two important
problems that arise in any semantic caching system, namely
providing a description of the materialized or cached data
and doing containment checking i.e., determining if all or
some portion of data in a query has already been cached.

2.3 Selecting Data to Materialize

The key problem that remains to be addressed is how to
determine what classes of information are useful to materi-
alize. Note that we wish to only selectively materialize data
that is useful. The brute force approach of materializing all
the data in all the Web sources being integrated is impracti-
cal for the following reasons:

� The sheer amount of space needed to store all the data
could be very large.

4The model showing the attributes of the COUNTRY concept in the
countries application is given in the appendix. We will be using this model
in examples throughout the paper
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Figure 1. Information modeling in SIMS

� Data gets updated at the original Web sources and the
maintenance cost of keeping the materialized data con-
sistent could be very high.

It is clear that data must be materialized selectively. This
leaves us with the question of how do we automatically iden-
tify the portion of data that is most useful to materialize. We
propose an approach where we consider several factors in
combination to identify data to materialize. The factors con-
sidered are:

� User Query Distribution: By analyzing the user query
distribution we can identify the classes of data that are
queried most frequently by users and consider materi-
alizing such classes. In addition to the materialization
framework, an algorithm to identifysuch frequentlyac-
cessed classes is the other major contributionof this pa-
per.

� Application and Source Structure: Since we are gath-
ering and integrating data from Web sources that were
not designed to support database like querying, cer-
tain kinds of queries can be very expensive. For many
such queries we can materialize data that will improve
response time for those queries. Consider again the
country mediator. Assume we have an interface that
allows us to ask queries with a selection condition on
the GDP. Now such a query is expensive as the source
for this information - the CIA World Factbook source
does not support selections by GDP and we have to re-
trieve pages of all the 270 countries in the CIA World
Factbook to determine which ones have GDP > $500
billion. We can prefetch and materialize the primary
key (country name) and the selection attribute (GDP)

which will improve the response time for selection
queries on GDP as the selection can now be done lo-
cally. We are developing an approach where we first
identify the kinds of queries that can ever be asked of
the domain classes in a particular mediator application.
In many cases the user can query the mediator appli-
cation only through a user interface that might further
restrict the kinds of queries that can be asked of the do-
main classes. We have developed a language for pro-
viding the specification of the user interface so that it
may be used in determining the kinds of queries that
can be asked. We then estimate the costs of the various
classes of queries using a cost estimator which is part
of the mediator. The purpose is to identify in advance
the expensive kinds of queries that could be asked in a
particular mediator application. Then using heuristics
based on the kind of query, source or sources used to
answer the query and also the different data processing
operations that are performed to answer the query we
prefetch and materialize data that can improve the re-
sponse time for the expensive queries.

� Update Characteristics and Frequency: We integrate
data from Web sources that may get updated. The ma-
terialized data must be kept consistent with the original
sources and also the maintenance cost for the material-
ized data must be taken into account. We are working
on an approach to automatically estimating the main-
tenance cost for each proposed materialized class of
data from specifications about the update characteris-
tics of the sources and the user’s requirements for fresh-
ness of data. The maintenance cost will also be con-
sidered when deciding what classes of data to materi-



alize. There is also the problem of knowing when data
in a source has changed. For certain sources we may
know exactly at what time and with what frequency the
source is updated. For other sources we propose to use
techniques for change detection such as those devel-
oped in [6].

In this paper our focus is on the first factor i.e., the distri-
bution of user queries to decide what classes of data to ma-
terialize. In the following section we present an algorithm
that determines the frequently accessed classes of data by
extracting patterns in user queries. In the first version of a
local materialization system that we have developed for the
Ariadne mediator, we materialize data based on just the out-
put of this algorithm.

3 Analyzing the Distribution of User Queries

One of the hypotheses of our approach is that there will
be patterns present in user queries i.e., some classes of data
would be queried more frequently than others. It would
be very useful if we could extract such patterns by analyz-
ing previous user queries as we could consider materializ-
ing those. We provide a description of the CM (Cluster and
Merge) algorithm which identifies useful classes of infor-
mation to materialize, by extracting patterns in user queries.
The algorithm takes as input a distribution of user queries
and outputs a compact description of patterns that it can ex-
tract from the query distribution in the form of classes of
data. A compact description of frequently accessed classes
is necessary from a performance point of view. For each
class of data we materialize we define a new information
source for the mediator. The general problem of query plan-
ning to gather information from many sources is combinato-
rially hard and having a large number of sources will create
performance problems for the query planner.

3.1 CM Algorithm

The pseudo code for the CM() algorithm is given in Fig-
ure 2. There are three main steps in the algorithm:

� Classifying queries (CLASSIFY QUERIES()). This is to
determine what classes of data the user is interested in.

� Clustering attribute groups
(CLUSTER ATTRIBUTE GROUPS()). To determine at-
tribute groups of interest for each class.

� Merging classes (MERGE CLASSES()). This is to try
and merge classes of data to make the description more
compact.

We now describe the steps in the algorithm in more detail.

CM (QS) f /* QS is set of user queries */
O=CLASSIFY QUERIES(QS) /* build ontology O of classes

of interest */
CLUSTER ATTRIBUTE GROUPS(O) /* cluster attribute

groups in each class */
FOR (all coverings (S; C) in O) f

MERGE CLASSES(S;C) /* merge classes */
g

g

CLASSIFY QUERIES(QS)
WHILE ( more queries(QS)) f

Q = get next query(QS)
SP = get query subclass(Q)
f SP i g = get interest subclasses(Q)

/*subclasses based on individual predicates */
update ontology(SP )
IF P = ; f
update attribute count(S,A)
g ELSE f
n=count(f SP i g)
FOR i = 1 to n DO update attribute count( SP i; A )
update ontology( SP )

g

CLUSTER ATTRIBUTE GROUPS(O) f
/* cluster attribute groups for each class in O with similar frequency */
g

MERGE CLASSES(S;C)
i=1
n=number of elements(C) /* size of set C */
totalsize = 0 /* space occupied by matching groups */
seed = get seed(Ci) /* pick an attribute group from Ci */
WHILE (seed 6= ; ) f

seedsize=get size(seed) /* space occupied by seed */
totalseedsize= seedsize*n /* space occupied by (S,seed) */
FOR i = 1 to n DO f

temp = find match(seed, Ci) /* find best matching group for
seed in Ci */

size = get size(temp)
totalsize += size /* total size of matching groups */
g
IF (totalsize/totalseedsize) � MERGETHRESHOLD f

/* merging criteria satisfied */
remove(seed,C) /* remove attributes in seed from all classes */
add group(S,seed) /* form group in superclass */
g
ELSE f

mark down(seed,Ci) /* so that the same seed is not chosen again */
g

i= (i+1)mod(n) /* chose next class in C cyclically */
seed = get seed(Ci) /* get seed from next class */
g

Figure 2. The CM algorithm for extracting pat-
terns in queries



3.1.1 Classifying Queries

We first analyze queries to determine what classes of
information users are interested in (procedure CLAS-
SIFY QUERIES() ). For instance queries of the form:

SELECT A

FROM COUNTRY

WHERE region= “Europe”

indicate that the user is interested in the class of Euro-
pean countries. We maintain an ontology in LOOM of
classes of information that are queried by users. Initially
the ontology contains only the classes in the domain model.
We then add sub-classes of these existing classes to the
ontology, the sub-classes are generated by analyzing con-
straints in the user queries. Assuming an SQL syntax for
the queries, a query to a domain class has the following
general form:

SELECT A

FROM S

WHERE P

where A is the set of attributes queried for the domain
class S and P = P1 and P2 and ... Pn are predicates
specifying the query constraints (we restrict ourselves to
conjunctive queries). We denote as SP the “query sub-
class” which is the sub-class of S satisfying P. We denote
as fSP 1; SP 2; :::; SPn g the set of “sub-classes of interest”
where the Pi s are the individual predicates comprising P
and SP i is the sub-class of S satisfying Pi. For instance
consider a query such as:

SELECT population; area

FROM COUNTRY

WHERE (region = “Europe”) AND (government = “Republic”);

In the above query the query sub-class is that of Euro-
pean Republic Countries and the sub-classes of interest
are European Country and Republic Country. In the
CLASSIFY QUERIES() procedure for each query we first
determine the query sub-classes and set of sub-classes
of interest and insert them into the ontology if they are
not already present. For instance for a set of queries on
the concept COUNTRY in which the WHERE clauses have
constraints on the attributes region (bound to a value such
as Europe, Asia etc.) or government (bound to a value such
as Republic, Monarchy, Communist etc.) or both, we would
create an ontology such as shown in Figure 3.(The arcs in
the figure represent coverings of groups of subclasses for
the superclass COUNTRY).

We also update the query count for the query sub-class
SP for the attribute group A. This is to maintain a record for

each sub-class of what attribute groups have been queried
and how many times.

3.1.2 Clustering Attribute Groups

After the step of classifying queries we have an ontology
of classes of interest and also for each class what attribute
groups have been queried and with what frequency. We at-
tempt to merge together attribute groups with similar fre-
quencies in order to reduce the number of groups for each
class that we have to consider. This makes the description
of classes more compact. Attribute groups are merged to-
gether if the relative difference of their frequencies is within
a preset limit known as CLUSTER-DIFFERENCE. This is
done in the procedure CLUSTER ATTRIBUTE GROUPS(). It
is a straightforward procedure where we sort the attribute
groups by the number of queries and merge together groups
with number of queries that differ relatively by no more than
CLUSTER-DIFFERENCE.

3.1.3 Merging Classes

We mentioned earlier that it is important to keep the number
of classes of information materialized small from a query
processing perspective. Consider the following classes of
information, each of which is essentially a group of at-
tributes in a class:
(i) (EUROPEAN-COUNTRY,fpopulation,areag)
(ii) (ASIAN-COUNTRY, fpopulation,areag)
(iii) (AFRICAN-COUNTRY,fpopulation,areag)
(iv) (N.AMERICAN-COUNTRY,fpopulation,areag)
(v) (S.AMERICAN-COUNTRY, fpopulation,areag) and
(vi) (AUSTRALIAN-COUNTRY,fpopulation,areag).
We could replace the above six classes by just one class
(COUNTRY,fpopulation,areag) which represents exactly the
same data. In general thus a group of classes of information
of the form (C1; A); (C2; A); ::::; (Cn; A) 5 may be replaced
by one class i.e., (S;A) ifC1; C2; ::; Cnare direct subclasses
of S and form a covering of S. As the ontology of classes is
maintained in LOOM, we use LOOM to determine groups of
classes we can merge based on class/subclass relationships.

In fact we also allow for a kind of ‘relaxed’
merge where we may merge a set of classes such as
(C1; A1); :::; (Cn; An) to (S;A) where the Cis are direct
subclasses of S as above. However A1; :::; An need not
be exactly equal groups rather they just need to overlap,
and A is the union of A1; :::; An. The disadvantage in this
case is that the merged class of information will contain
some extra data i.e., data not present in any of the classes
of information merged to form the merged class. There is
a tradeoff between space wasted to store the extra data and
the time gained (in query planning) in reducing the number

5
Cis are classes and A is an attribute group
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of classes materialized. The amount of space that can be
wasted by extra data is limited by a parameter known as the
MERGE-THRESHOLD.

The procedure MERGE CLASSES() shows how we do ex-
act or relaxed merging of classes. The procedure takes as in-
put a superclass S and a set of subclasses C of S that form
a covering of S. For each class in C we also have the set
of groups of attributes queried. The basic idea is to take
an attribute group A in a class Ci in C and see if we can
merge with other groups in other classes in C to the group
A in the superclass S. We describe the steps in the pro-
cedure MERGE CLASSES() by stepping through the proce-
dure with an example as shown in Table 1. The first column
shows the the various classes in C along with their attribute
groups. The asterisk(*) next to the fimports,exportsg group
of the first class i.e., EUROPEAN–COUNTRY indicates that
we will choose that group as a seed for merging with other
classes. This seed group is chosen randomly. The next step
is to find matching groups for the seed in all other classes.
This is done by the find match() procedure which given a
seed and a class returns the largest subset of attributes of
the seed that it can find in any group in the class. The re-
sults of find match() for each of the classes in C are shown
in the third column. The next step is to find the ratio of the
space occupied by the matching groups in the classes of C
to the space needed to store the group A for the superclass
S. The ratio should be higher than the MERGE-THRESHOLD

to allow merging the matching clusters to the cluster A in
S . Intuitively this is to ensure that the attributes in A oc-
cur sufficiently through the classes in C to justify merging
the matching groups to the group A in S. In this example
totalsize i.e., the space occupied by the matching groups is
(2+2+1+0+2+2) = 9 units. The totalseedsize i.e., the space
that should be occupied in case of an exact merge is 2*6=
12. Thus the ratio is 9/12=0.75 and we do merge to the group

fimports,exportsg for the superclass COUNTRY (assume that
MERGE-THRESHOLD is 0.7). Table 2 shows the same set
of classes after the merging step when the attributes in A=
fimports,exportsghave been removed from the classes inC.
In case we do not merge the groups we do not remove the at-
tributes from the classes. However we mark the seed group
as ‘down’ so that it is not picked again as a seed. We then
pick a seed from the next class ASIAN–COUNTRY and repeat
the above procedure.

The main motivation behind the steps of merging at-
tribute groups for a single class and also merging classes
based on class/subclass relationships is to keep the descrip-
tion of the classes of data extracted as patterns compact. Fi-
nally we also keep count of how many queries each class of
data supports i.e., how many queries can be answered using
that class. From this we can calculate the ratio of supported
queries by each class to the total number of queries in the
distribution. A class is finally output as a pattern by the CM
algorithm only if this ratio is greater than a threshold known
as the query ratio threshold (q).

4 Experimental Evaluation

The experimental evaluation consists of two parts. First
we evaluate how effective the CM algorithm is in extract-
ing patterns from a query distribution. Next we evaluate the
effectiveness of a performance optimization system that we
built for Ariadne which materializes data based on just the
user query distribution.

4.1 Evaluating the CM Algorithm

We set up an experiment to evaluate the effectiveness
of the CM algorithm in extracting patterns from a query



set of subclasses C with attribute groups matching groups size
(EUROPEAN-COUNTRY,f*imports,exportsg,farea,gdp,economy g) fimports,exportsg 2
(ASIAN-COUNTRY,fimports,exports,climateg,fdebt,economy g) fimports,exportsg 2
(AFRICAN-COUNTRY,fimportsg,fpopulation, languages g) fimportsg 1
(N.AMERICAN-COUNTRY,fclimate,terraing,fgovernment g,fliteracy g) fg 0
(S.AMERICAN-COUNTRY,farea, coastlineg,fimports,exportsg fimports,exportsg 2
(AUSTRALIAN-COUNTRY,fimports,exports,debtg,fgdp,defenseg) fimports,exportsg 2

Table 1. Merging across classes

set of subclasses C with attribute groups
(EUROPEAN-COUNTRY,farea,gdp,economy g)
(ASIAN-COUNTRY,f*climateg,fdebt,economy g)
(AFRICAN-COUNTRY,fpopulation, languages g)
(N.AMERICAN-COUNTRY,fclimate,terraing,fgovernment g,fliteracy g)
(S.AMERICAN-COUNTRY,farea, coastlineg
(AUSTRALIAN-COUNTRY,fdebtg,fgdp,defenseg)

Table 2. Classes after one merging step

distribution. The experiment is based on standard preci-
sion and recall measurements for evaluating information re-
trieval systems. This is because we are trying to estimate
how effective CM is in extracting patterns that are present
and also to what extent it extracts extraneous data as pat-
terns.

We first defined a schema for an imaginary mediator ap-
plication against which we can pose queries. The schema
consists of a class S with 50 attributes A1,A2,...,A50. The
class S is further partitioned into 5 disjoint subclasses
S1,S2,S3,S4 and S5. Each subclass has 10 instances, S1
has instances E1,E2,..,E10, S2 has instances E11,...,E20 etc.
We then defined a “pattern” P which is the class S3 with
attributes A25,...A30. We then generated different query
distributions against this schema varying the percentage of
queries that fall within the pattern. We input each distribu-
tion to the CM algorithm to see what patterns it would ex-
tract from the distribution. We use standard precision and
recall measurements from information retrieval to measure
the effectiveness of CM in extracting the predefined pattern
P. The precision is the percentage of data extracted that is
relevant whereas recall is the percentage of relevant data ex-
tracted. In our experiment the predefined pattern P is the
relevant data, while for each time we run the CM algorithm
over a query distribution the patterns extracted from the dis-
tribution is the data retrieved. Finally since the query ratio
threshold (q) affects what patterns are ultimately output by
the CM algorithm we present precision and recall measures
for varying threshold values.

Figures 4(a) and (b) show the precision and recall val-
ues respectively against varying percentages of queries that
fall within the predefined pattern P in a query distribution.
For each we present precision and recall values for differ-
ent query ratio thresholds (q). The CM algorithm does in-

deed prove to be efficient in extracting the predefined pat-
tern P as the recall values are very high (100%) for most
of the threshold range for moderate or high percentages of
queries in the pattern P. For extraneous data extracted along
with P we must analyze the precision values graph. For high
threshold values(q=0.4 - 0.5) the precision is very high when
a high percentage of queries are in P (> 50%) but very low
for lower percentages. This is because even if queries in the
pattern P are present, they need to be in a very high propor-
tion for the CM algorithm to extract them at all. For lower
threshold (q= 0 - 0.1) the precision is quite low even when
a high percentage of queries is in P. This is because of a low
threshold the CM algorithm extracts a lot of random classes
as patterns in addition to the pattern P. It is best to keep the
threshold at an intermediate value (0.2 -0.3) where the preci-
sion is high for moderate or high percentage of queries in P.
The recall remains quite high (100%) for most of the thresh-
old range for moderate or high percentages of queries in the
pattern P.

4.2 Evaluating the Performance Improvement

We have implemented an optimization system for the
Ariadne information mediator where we materialize data
based on the user query distribution i.e., we materialize
classes of data output by running the CM algorithm over the
query distribution. In this version we simply sort the classes
output by CM by the ratio H/S where H is the number of hits
to the class and S is the space occupied by the class, and store
and materialize classes in descending order of this ratio till
all available space for materialized data is used up. We are
however developing a more sophisticated scheme for admit-
ting and replacing classes of materialized data, such as de-
scribed for data warehouse cache management [18] where
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Figure 4. Effectiveness of CM Algorithm

the query execution cost, space occupied by the class and
maintenance cost are all taken into account. To compare the
effectiveness of our approach with existing approaches we
also implemented a page level caching system for the Ari-
adne mediator based on an LFU (Least Frequently Used) re-
placement scheme. The aim of the performance evaluation
experiments is to compare the performance improvement
in Ariadne achieved with our scheme with Ariadne without
any optimization based on materialization and also with an
optimization system based on an existing scheme such as
page level caching.

We measured the total query response time against two
query sets to the mediator without any optimization sys-
tem, with our optimization system and with an optimiza-
tion system based on page level caching. The CM algo-
rithm in the system was run using a query ratio thresh-
old of 0.3. The first query set Q1 is one that we gen-
erated and in which we introduced some distinct query
patterns. The details of the distribution are given in the
appendix. The second query set Q2 is the set of ac-
tual user queries to the countries mediator that we made
available online at http://www.isi.edu/ariadne/demo/mapping-
factbook/index.html. We logged queries to this mediator over
a several month period. Table 3 shows the response time (to-
tal time for the entire query set) without any optimization,
with page level caching and with our system for both query
sets. Our system is effective in improving performance. For
Q1 (200 queries) with a limited space for materialized data
our system system not only provides significant improve-
ment in query response time but also the optimization is an
order of magnitude better than with page level caching with
the same local space. We also show query response against
the set of actual user queries Q2 (182 queries). Again with
our optimizationsystem the performance is much better than

no optimization or with page level caching.

5 Related Work

We materialize data in a manner similar to a semantic
caching [7] or predicate based [14] caching system. A prob-
lem with the semantic caching approach is that that the con-
tainment checking problem is hard and having a large num-
ber of semantic regions creates performance problems. A
solution proposed in [14] is to reduce the number of seman-
tic regions by merging them whenever possible. This is in
fact an idea we have built on. In the CM algorithm we have
presented an approach for systematically creating new se-
mantic regions to consider for materializing and merging
them when possible. We have also proposed a relaxed merg-
ing of semantic regions in addition to exact merging.

For the mediator environment an approach to caching is
described in [1]. The focus of their work however is caching
for a mediator environment where we integrate informa-
tion from sources that may not be traditional database sys-
tems. Their contribution is a caching approach based on first
estimating the cost of accessing various sources based on
statistics of costs of actually fetching data from the sources.
In their approach reasoning about cache contents is done
through the notion of invariants which are basically ex-
pressions that show possible substitutions or rewritings of
queries. This approach provides very limited semantic rea-
soning capabilities about the contents of the cached data as
compared to our approach in which we are able to perform
more powerful reasoning of the materialized data contents
through LOOM.

Another approach to caching for federated databases is
described in [10]. Theirs is also a semantic caching ap-
proach where the data cached is described by queries. They



Query set Response Time Response Time Response Time %improvement %improvement
(No optimization) (Page level) (Our system) (Page level) (Our system)

Q1 9661 sec 8695 sec 1536 sec 10 % 84 %
Q2 3742 sec 3255sec 2245 sec 13 % 40 %

Table 3. Query response times

also define some criteria for choosing an optimal set of
queries to cache. Finding the optimal set is an NP-complete
problem and they use an A* algorithm to obtain a near op-
timal solution. A limitation of their approach is that the
cached classes can only be in terms of classes in a predefined
hierarchy of classes of information for a particular applica-
tion. Our approach is much more flexible in that we dynam-
ically construct classes of information to materialize.

There is some research on materializing the Web de-
scribed in [17]. The focus of their work however is to build
a fully materialized view over Web data for data in a user
specified generic domain of interest. Our goal is different
in that we wish to just partially materialize data to improve
performance for mediators that would otherwise access data
from remote sources.

Our work is also related to recent work on view selec-
tion in a data warehousing environment. One of the most
important decisions in designing a data warehouse is select-
ing what views to materialize so that the total query response
time is minimized with a constraint such as limited storage
space and/or cost of maintaining the views. [20] and [11]
show that this is an intractable problem and present heuristic
algorithms for near optimal solutions. However the ware-
housing problem differs from our problem in several as-
pects. In warehousing there is a fixed set of views and a
decision is to be made for each view whether to materialize
it or not, in the mediator environment however we dynam-
ically propose new ‘views’ (classes of data to materialize)
with the additionalconstraint that the number of such classes
be small. Also in warehousing, the cost that we are trying to
minimize is that of reading large relation tables from disk
into main memory, and main memory operations on these
tables. In the mediator environment the dominant cost is
that of retrieving data from the remote Web sources which
is what we attempt to minimize.

6 Future Work and Conclusion

We have described an approach for optimizing the perfor-
mance of informationmediators. The major contributionsof
this paper can be summarized as follows:

� We outlined a proposal for selecting data to material-
ize based on a combination of user query distribution,
source structure analysis and update cost.

� We presented the CM algorithm for compactly identi-
fying data to materialize by analyzing the user query
distribution.

� We demonstrated the effectiveness of our approach
with an initial implementation of the system

Although the initial version of our materialization sys-
tem uses only the user query distribution for materializing
data our ultimate goal is to build a system that uses all of
query distributionanalysis, source structure analysis and up-
date costs in combination to materialize data in an optimal
fashion. We are working on the design and implementation
issues of incorporating the other factors of source structure
analysis and update cost when selectively materializing data
and plan to develop a comprehensive solution to the perfor-
mance issue in information mediators.
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A COUNTRY Relation

Attributes of COUNTRY relation.
Relation: COUNTRY
Attributes: ( geography location map references

region area total area land area comparative area
land boundaries coastline maritime claims inter-
national disputes climate terrain natural resources
land use irrigated land environment note people pop-
ulation age structure population growth rate birth rate
death rate net migration rate infant mortality rate
life expectancy at birth total fertility rate nationality
ethnic divisions religions languages literacy labor force
government names digraph type capital administra-
tive divisions independence national holiday consti-
tution legal system suffrage executive branch legisla-
tive branch judicial branch political parties and leaders
other political or pressure groups diplo-
matic representation in US us diplomatic representation
organization flag economy overview na-
tional product national product real growth rate na-
tional product per capita inflation rate consumer prices
unemployment rate budget exports imports exter-
nal debt industrial production electricity industries
agriculture illicit drugs economic aid currency ex-
change rates fiscal year transportation railroads high-
ways inland waterways pipelines ports merchant marine
airports communications telephone system radio tele-
vision defense Forces branches manpower availability
defense expenditures )

B Query Set Q1

Details of distribution:
1. 30 % of the queries are of the form:
SELECT A
FROM COUNTRY

WHERE name= C;
where A is a set of attributes and C is a country name. A
and C are generated for each query of this form. In 80%
of the instances of A all the attributes in set A lie within a
set of 3 predefined “favourite” attributes. The remainder
20% contain randomly selected attributes. We chose the
favourite set to be fimports, exports, economyg. For C
we randomly selected a country name from the set of all
country names. The names were picked with approximately
equal probabilities.

2. 20 % of the queries are of the form:
SELECT A
FROM COUNTRY

WHERE region = “ASIA” ;
80% of the instances of A are within a set of 4 favourite
attributes that we chose to be flocation,map references,
area,climateg .



3. Another 20 % of the queries are of the form:
SELECT A
FROM COUNTRY

WHERE region = “ASIA” and organization = “NATO” ;
As above 80% of the instances of A are within a set of
2 favourite attributes that in this case we chose to be
fdefense expenditure,external debtg .

4. Finally the remaining 30 % queries are of the form
SELECT A
FROM COUNTRY

WHERE region = X;
where X is a region such as ASIA, EUROPE etc. The queries
are uniformly distributed amongst the (six) possible values
of region. Again, 80% of the instances of A are within a
set of 4 favourite attributes that in this case we chose to be
feconomy,currency,religions,literacyg .


