
Dataflow Plan Execution for Software Agents
Greg Barish, Daniel DiPasquo, Craig A. Knoblock, and Steven Minton

Information Sciences Institute, Integrated Media Systems Center,
and Department of Computer Science

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

{barish, dipasquo, knoblock, minton}@isi.edu

ABSTRACT
Recent research has made it possible to build information agents
that retrieve and integrate information from the World Wide Web.
Although there now exist solutions for modeling Web sources,
query planning, and information extraction, less attention has
been given to the problem of optimizing agent execution. In this
paper, we describe Theseus, an efficient agent plan execution
system. Through its pipelined, dataflow-based architecture,
Theseus offers a high degree of parallelism and asynchronous
information routing, features that can substantially improve
performance. Theseus differs from prior work in reactive planning
systems and parallel databases because it gathers information
from the Web, a domain where information retrieval is a problem
that is network-bound and is often based on interleaved data
gathering and navigation. The Theseus plan language and
architecture directly address these issues, resulting in a high-
performance execution system.

1. INTRODUCTION
Gathering information from the World Wide Web is a research
problem that has received substantial attention in recent years.
There now exist a number of systems [7, 10, 13] and approaches
towards automating this process, including work on data
extraction [11, 14], query planning [1, 12], data materialization
[2], and methods for handling data inconsistency [4]. Today, it is
possible to construct useful agents that rely on these technologies
as tools to perform automatic and intelligent data integration [3].

Although these individual technologies may each be efficient,
overall end-to-end agent execution performance is often less than
optimal. This is primarily because Web-based data integration is
a process that is network-bound and masks the efficiencies of
individual technologies (such as data extraction). Complicating
matters is the fact that building useful agents often requires larger,
more complex plans. For example, consider how people
commonly use the Web to locate houses for sale, which meet a
particular set of criteria (e.g., price and location). This process
means more than simply executing a particular query once and
then returning a long list of data. More often, searching for a
house means executing the same or similar queries periodically,
say on a daily basis, over the course of a few weeks or months.
Furthermore, a “useful” search process means gathering only new

or updated listings (meeting the specified criteria) for each query
execution. Users are rarely interested in being reminded of houses
about which they have already been notified. Also, with the
explosive growth in mobile networking, there are many users who
would prefer to have their query results distributed through
different messaging means (i.e., e-mail, cellular phone, fax) and
reported using a variety of formats (i.e., XML, HTML, WML,
text, voice). Finally, in addition to message notification, it is often
desirable to have newly gathered information trigger a variety of
other actions. For example, if a search for a house yields a result,
a user may want to immediately send an automated e-mail to the
corresponding real-estate agent suggesting a meeting time (based
on the user’s personal schedule, also kept online).

Thus, while gathering data is unquestionably an important task,
there are also challenges related to useful processing of this data.
We believe that information gathering is a piece of a larger puzzle
called information management, a problem that involves
conditional plan execution, continuous querying, query result
accumulation, local persistent storage, and the linking of other
actions to the results of queries. This problem encompasses issues
that are at the heart of how users query the Web today to retrieve
meaningful information and the way such data is put to practical
use. Searching for a new house is merely one type of application.
There are numerous other instances where such automation is not
only useful, but perhaps essential: newswire tracking, online
auction participation, and stock/portfolio management, to name a
few. In these scenarios, users want more than to just query and
retrieve data once - they want to be able to monitor Web sites.
The dynamic nature of the Internet invites this approach.
However, a means for building high-performance agents for this
type of information management remains a relatively open issue.

2. THESEUS
This paper outlines our approach to efficient information
management in the presence of heterogeneous and distributed
databases. In particular, our approach benefits from combining
features found in both parallel databases and general plan
execution systems, marrying the efficiency found in former with
the generality and flexibility found in the latter. Parallel database
research [5, 8, 17] has shown that it is possible to build highly
efficient query execution systems for local databases.
Complementarily, existing plan execution systems [6, 15] have
proven to be more generally applicable to a wide-range of
planning problems and often provide more flexibility in terms of
plan control flow (i.e., support for loops and conditionals).
Motivated by this research, we have implemented the combination
of these features in the Theseus agent plan execution system.
Based on a dataflow processing architecture, Theseus is an
approach well-suited for efficient information integration and
management of Internet data sources.

The Theseus plan language allows plans to be specified as a
network of operators connected through sets of enablements.
Operators can be thought of as finite state machines that, when
enabled, perform a specific type of information management
action. Enablements are similar to planning pre/post-conditions,
except that they can also carry data, thus allowing information to
be easily routed between operators. Declaring plans with
operators and enablements allows execution to be specified in
terms of those control and data dependencies necessary to ensure
correct execution. Theseus operators include those useful for data
processing, remote information retrieval, local storage (i.e., in a
local relational database), and those for flexible communication of
plan results (i.e., via e-mail). Leveraging these operators and
built-in support for loops and conditionals allows powerful,
practical information management plans to be specified.

The Theseus execution engine is designed to function like a
hybrid dataflow machine [16]. The availability of enablements
determines when various operators execute. Thus, as is the case
with most dataflow systems, parallelism and synchronization are
realized automatically. Operators exist as threads, so Theseus can
theoretically achieve as much true parallelism as there are CPUs.
The execution system also supports pipelining, in which producer
operators asynchronously propagate enablements to consumer
operator queues. Without the synchronization overhead,
opportunities for parallel execution are increased.

Through its language and execution system, Theseus enables
agents to perform useful information management tasks, such as
periodic execution, query result accumulation, and flexible result
communication. Most importantly, through properties of its
architecture, Theseus reduces the overall effect of network
latencies on data integration, providing increased parallelism and
asynchrony during execution so that the overall end-to-end agent
execution process is substantially faster.

Theseus has evolved from research related to the Ariadne [10]
information mediator project. Ariadne enabled the integration of
multiple heterogeneous data sources, so that the combined data
can be accessed from a single, logical model. We believe Theseus
is a logical next step: it builds on integration, allowing users to do
something useful with information that is gathered.

3. RELATED WORK
As described earlier, Theseus can be viewed as a cross between
general plan executors and parallel database systems. The key
differences are that (a) unlike general plan executors, Theseus is
optimized for the information processing domain and that (b)
unlike parallel databases, standard techniques for achieving high-
performance (such as the shared-nothing approach) are simply not
applicable to information management on the Internet, which
consists of heterogeneous and distributed data sources, beyond
the administrative domain of the execution engine.

Theseus can also be compared with Tukwila [9], which supports
efficient query execution on remote, heterogeneous data sources.
Like Theseus, Tukwila is interested in data integration, especially
the ability to gather information from web sites as if they were
databases. The main difference between Theseus and Tukwila is
that Theseus uses a hybrid dataflow model of execution while
Tukwila uses standard (von-Neumann) control flow model. Key
in understanding this difference is in the tradeoffs between
dataflow and control flow systems. The former allows implicit,
on-demand parallelism with minimal synchronization penalty,

while the latter manages parallelism manually, usually with higher
synchronization overhead.

4. CONCLUSION
We have provided an overview of Theseus and how it is a useful
approach for building efficient information agents that can gather
and manage data from the Web. Because our planning language
allows complex plans for managing information to be easily
expressed, users can build powerful agents. Furthermore, since the
execution system described is based on a dataflow paradigm, and
operates with substantial asynchrony and parallelism, these agents
can realize a high level of performance.

5. ACKNOWLEDGEMENTS
This work was supported in part by the United States Air Force
under contract number F49620-98-1-0046, by the Rome Laboratory
of the Air Force Systems Command and the Defense Advanced
Research Projects Agency (DARPA) under contract number
F30602-98-2-0109, and by the Integrated Media Systems Center
(an NSF Engineering Research Center). The views and
conclusions contained in this article are the authors’ and should not
be interpreted as representing the official opinion or policy of any
of the above organizations or any person connected with them.

6. REFERENCES
[1] Ambite, J.L. and Knoblock, C.A. 1997. Planning by Rewriting:

Efficiently Generating High-Quality Plans. AAAI-1997.

[2] Ashish, N.; Knoblock, C.A.; and Shahabi, C. 1999. Selective
materializing data in mediators by analyzing user queries. COOPIS-99

[3] Barish, G.; Knoblock, C.A.; Chen, Y-S.; Minton, S.; Philpot, A.;
Shahabi, C. 1999. TheaterLoc: A Case Study in Information
Integration. IJCAI-99 Workshop on Information Integration.

[4] Cohen, W. W. 1998. Integration of Heterogeneous Databases Without
Common Domains Using Queries Based on Textual Similarity.
SIGMOD-1998.

[5] DeWitt D.J. and Gray, J. 1992. Parallel Database Systems: The Future
of High Performance Database Systems. Comm of ACM 35(6).

[6] Firby, R.J. 1994. Task Networks for Controlling Continuous
Processes. Proceedings of the 2nd Intl Conf on AI Planning Systems.

[7] Genesereth, M.R.; Keller, A.M.; and Duschka, O.M. 1997.
Infomaster: An information integration system. SIGMOD-1997.

[8] Graefe, G. 1994. Volcano-An Extensible and Parallel Query
Evaluation System. IEEE Trans Knowledge Data Engineering 6(1).

[9] Ives, Z; Florescu, D.; Friedman, M.; Levy, A.; Weld , D. 1999. An
Adaptive Query Execution Engine for Data Integration. SIGMOD-99.

[10] Knoblock, C.A.; Minton, S; Ambite, J.L.; Ashish, N.; Modi, J.;
Muslea, I.; Philpot, A. and Tejada, S. 1998. Modeling Web Sources
for Information Integration. AAAI-1998.

[11] Kushmerick, N. 1997. Wrapper Induction for Information Extraction.
PhD Thesis, Computer Science Dept. University of Washington.

[12] Kwok, C.T and Weld, D.S. 1996. Planning to gather information.
AAAI-1996.

[13] Levy, A.Y.;Rajaraman, A; Ordille, J.J. 1996. Querying Heterogeneous
Information Sources Using Source Descriptions. VLDB 1996.

[14] Muslea, I.; Minton, S.; and Knoblock, C.A. 1998. STALKER:
Learning Extraction Rules for Semistructured, Web-based Information
Sources. AAAI-98 AI & Information Integration Wkshp

[15] Myers, K. 1996. A Procedural Knowledge Approach to Task-Level
Control. In Proc of the Third Intl Conf on AI Planning Systems.

[16] Papadopolous, G.M. and Traub, K.R. 1991. Multithreading: A
revisionist view of dataflow architectures. Proc 18th Intl Symp on
Computer Architecture.

[17] Wilschut, A.N. and Alpers, P.M.G. 1991. Dataflow query execution
in a main memory environment. Proc of 1st PDIS Conference.

