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Abstract 
Although information gathering plans have enabled data from 
remote heterogeneous sources to be easily combined and queried, 
their execution performance suffers because access to remote 
sources is often slow.  To address this problem, we have 
developed a method of speculative execution that increases the 
degree of run-time parallelism during plan execution.  Our 
approach allows any information gathering plan to be 
automatically modified to support speculation in a manner that 
can lead to significant speedups, while ensuring that both safety 
and fairness are preserved.  We demonstrate how speculative 
execution can be applied to a typical Internet information 
gathering plan to provide significant performance benefits.   

Introduction 

Improving the performance of information gathering plans 
remains an ongoing research challenge.  Execution is often 
slowed by the time required to access remote sources.  
Plans that gather and extract information from Web 
sources are especially hard hit: they frequently need to 
interleave navigation with data retrieval and can thus 
require more I/O than other kinds of plans.     

Consider the plan for the TheaterLoc information agent 
(Barish et al. 2000b) we recently developed.  TheaterLoc 
integrates information from five Web sources, allowing 
users to query restaurants and theaters for any U.S. city and 
display their resulting locations on a dynamically 
generated map.  TheaterLoc plan execution time averaged 
about 7 seconds – roughly 90% of that time was spent 
waiting for data from the underlying web sources.  During 
that time, the CPU was idle and other local resources (such 
as network bandwidth) were under-utilized.   

The inefficiency of information gathering plans has been 
a topic of current research on network query engines (Ives 
et al. 1999, Hellerstein et al. 2000, Naughton et al. 2001) 
and information agents (Barish et al. 2000a).  Since it is 
impossible to control the performance of the network or of 
the remote sources, current research has instead focused on 
strategies for increasing the degree of run-time parallelism.  
Towards that end, various parallel execution techniques 
such as dataflow-style plan representation, data pipelining, 
and adaptive query execution have been proposed.   

Despite the benefits of these techniques, data 
dependencies between operators can still hamper 
execution.  For example, a query to a remote source often 

depends on the answer of a query to a previous source.  
Such binding-pattern style relationships require sequential 
execution and thus offer no opportunity for parallelization.     

One solution to this problem is to engage in speculative 
execution, the process of executing instructions ahead of 
their normal schedule.  Nearly all modern CPUs employ 
this technique as a means to address the I/O latencies 
associated with accessing local RAM.  The underlying idea 
is that it is more efficient to probabilistically use an 
otherwise idle CPU than to not use it at all.  Speculative 
execution has been shown to be one of the most effective 
means for increasing the level of instruction level 
parallelism (ILP) of a program (Wall 1991).  

Just as it can increase the degree of ILP during program 
execution, speculation can also increase the degree of 
operator-level parallelism during the execution of 
information gathering plans.  By speculating about the 
execution of future operators, it is possible to overcome 
stalls caused by earlier I/O-bound operators (e.g., those 
fetching remote data) and deliver better average 
performance.  Further, applying speculative execution at a 
level much higher than that of machine instructions enables 
two additional benefits: 

� Significant per formance improvement. Instead of 
improving execution time in terms of milliseconds, a 
good result at lower levels of execution, speculative 
plan execution can result in gains of seconds – or at 
speeds relative to the slowest (I/O-bound) operators. 

� The oppor tunity to use more intelligent techniques 
for  speculation.  CPU-level speculative execution 
occurs with very limited resources; consequently, the 
techniques for predicting program control and data 
flow are also limited.  In contrast, plan-level 
speculative execution can leverage greater amounts of 
resources and reap the benefits of using more 
sophisticated machine learning techniques.    

Contr ibutions 
In this paper, we describe an approach for speculative plan 
execution and demonstrate its effectiveness in improving 
the performance of a typical information agent.  In 
particular, the main contributions of this paper are: 

� An approach for speculative plan execution that yields 
arbitrary speedups while ensuring safety and fairness. 



  
� Algorithms for automatically transforming any 

information gathering plan into one capable of 
speculative execution. 

� Empirical results of applying speculative execution to 
one common type of information gathering plan. 

We note that while our approach uses machine learning 
to decide what to predict, this paper focuses on describing 
the process (i.e., how to predict) and how it plans can 
automatically be modified for speculative execution.  A 
separate paper will describe machine learning techniques 
for accurate and efficient data value prediction. 

The remainder of this paper is organized as follows.  
Section 2 describes information gathering plans and 
provides an example.   Section 3 describes the details of 
our technique for the speculative execution of such plans, 
including a discussion of how our technique ensures both 
safety and fairness during execution.  Section 4 contains an 
algorithm that enables any information plan to be modified 
for speculative execution.  Section 5 quantifies the impact 
of our approach on a typical Internet information gathering 
plan.  Finally, section 6 discussed related work.   

Information Gather ing Plans  

Information gathering plans retrieve, combine, and 
manipulate data located in remote sources.  Such plans 
consist of a partially-ordered graph of operators O1..On 
connected in producer/consumer fashion.  Each operator Oi 
consumes a set of inputs �

1..
�

p, retrieves data or performs 
a computation based on that input, and produces one or 
more outputs 

�
1..

�
q.  The types of operators used in 

information gathering plans varies, but most either retrieve 
or perform computations on data. 
 Operators process and transmit data in terms of 
relations.  Each relation R consists of a set of attributes 
(i.e., columns) a1..ac and a set of zero or more tuples (i.e., 
rows) t1..tr, each tuple ti containing values vi1..vic.  We can 
express relations with attributes and a set of tuples as: 

  R (a1..ac) = ((v11..v1c), (v21..v2c), ... (vr1..vrc)) 

Example Plan.  To illustrate, consider the plan executed 
by an information agent called RepInfo.  This plan, shown 
in Figure 1, gathers information about U.S. congressional 
officials. Given any U.S. postal address, RepInfo returns 
the names, funding charts, and recent news related to U.S. 
federal officials (members of the Senate or House of 
Representatives) for that address.  RepInfo retrieves this 
information via the following web data sources: 

� Vote-Smart, to identify officials for an address. 
� OpenSecrets, for funding data about each official. 
� Yahoo News, for recent news about each official. 

 In Figure 1, Wrapper  operators gather data from Web 
sources, the Select operator filters federal officials from 
other types of officials, and the Join operator combines 
funding and news data into a single result.  Wrapper 
operators are very common in web-based information 

gathering plans.  They extract structured relations of data 
from semi-structured web pages. 

 At the start of execution, an input postal address is used 
to query the Vote-Smart source, returning the set of all 
officials for that location.  The subsequent Select operator 
filters through just Senate and House officials.  This subset 
is then used to query Yahoo News and OpenSecrets. Note 
that the latter requires additional Wrappers in order to 
navigate to the page containing the funding data.  We 
describe why in the next section.  The results of both are 
then joined, providing the result shown in Figure 2. 

 Note that the plan in Figure 1 is one common type of 
information gathering plan.  Similar plans that extract data 
from two or more distinct sources and then combine them 
together are common throughout the literature (Friedman 
& Weld 1997, Ives et al. 1999, Barish et. al. 2000b, etc.).  

Execution 
Execution of an information gathering plan commences 
when input required by the initial plan operators becomes 
available.  For example, in Figure 1, querying the Vote-
Smart source occurs as soon as an input street address is 
provided.  The initial operator(s) (Wrapper, in this case) 
fire and, in turn, route output data to their consumers, 
causing them to fire.  This process continues until all 
operators stop firing and plan output (i.e., the query 
answer) has been produced.   

Note that operator execution order is not determined by 
an instruction counter (i.e., as is the case in von Neumann 
machines), but rather by the availability of data.  Thus, like 
dataflow programs, information gathering plans can be as 
theoretically parallel as their data dependencies allow.  For 
example, in Figure 1, the gathering of funding and news 
data is independent and can be executed concurrently.  
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Figure 1: The RepInfo plan 
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Figure 2: Results from executing RepInfo 



  
This type of parallelism, evident at plan compilation time, 
is also known as horizontal parallelism. 

Most systems that execute information gathering plans 
also support the pipelining (or streaming) of relations 
between producer and consumer operators in the sense that 
they allow tuples output by a producer to be consumed as 
soon as they are generated.  When all tuples have been 
streamed from the producer to the consumer, the producer 
sends an End-of-Stream (EOS) token to indicate this state.  
Data pipelining enables successive operators along a given 
dataflow path of the plan to execute in parallel on a logical 
relation.  This type of pipelined parallelism, evident at plan 
execution time, is also known as vertical parallelism. 

The pipelining of data implies two additional attributes of 
operators in an information gathering system: that they (a) 
perform computations on partial input and (b) maintain 
state.  For example, consider the Select operator, which 
filters tuples according to some specified criteria.  As input 
tuples are received from a producing operator, they can be 
evaluated in terms of that criteria and output immediately.  
Select must also maintain state: it needs to retain its 
filtering criteria until the EOS has been received. 

Per formance Issues 
Despite the use of horizontal and vertical parallelism, 
execution performance for information gathering plans 
remains hindered by I/O latencies and data dependencies 
between operators.  In particular, slow producers starve 
their consumers.  For example, in Figure 1, if Vote-Smart 
responds slowly, execution of Select will also be slow, as it 
requires an answer from its producer in order to execute. 

Information gathering plans that use Web sites as data 
sources fare even worse because of the need to interleave 
navigation with retrieval.  To illustrate, consider the three 
Wrapper operators required to obtain the funding graph 
from OpenSecrets.  Given an official name, these wrappers 
are used to retrieve a bar graph showing the money various 
industries have contributed to that official’s campaign. 

Three wrappers are necessary because OpenSecrets does 
not allow this graph to be queried directly.  Instead, the 
graph can be obtained only after navigating through the 
screens shown in Figures 3a-3d.  In particular, for each 
official, we must submit the name of that official to the 
first page as shown in Figure 3a.  This returns the set of 
campaign year URLs for the official we are querying (Sen. 

Barbara Boxer in this case).  Each campaign year URL 
corresponds to a different year of candidate funding.  Next, 
as Figure 3b shows, the campaign year of interest (2002) is 
selected, allowing us to obtain the member page for that 
year, shown in Figure 3c.  However, the graph we want is 
only accessible by following the “Sectors”  URL circled in 
Figure 3c, resulting in the final page that contains the 
graph, shown in Figure 3d.  In short, obtaining the funding 
graph for each official requires the following three 
wrappers:  

� One returning campaign URLs given an official name 
� One returning a Sectors URL given a campaign URL 
� One returning a funding graph given a Sectors URL  

Thus, execution of the OpenSecrets part of the RepInfo 
plan is inefficient for two reasons.  One is the inherent 
latency of accessing a remote source.  The second is the 
need to navigate to the data we want, which requites 
multiple remote accesses and thus compounds the effects 
of I/O latency.  Interleaving of navigation with retrieval is 
a problem unique to the Web and is one major reason why 
Web-based information gathering plans are slow.  

Speculative Plan Execution 

To address the performance dilemma, we describe a new 
form of run-time parallelism: speculative plan execution.  
The general idea is to use hints received at earlier points in 
execution to generate speculative input data to dependent 
operators and pre-execute them.  Thus, consumer operators 
that are dependent on slow producers can be executed in 
parallel with those producers, using the input to those 
producers as hints for how to execute.   

The mapping between hints and the predictions they lead 
to occurs over time.  This relationship can either be cached 
or learned from earlier executions.  The key difference 
between caching and learning here is that the former 
allows us to predict based on input we have seen before 
whereas the latter potentially allows us to predict based on 
hint input we have never seen.  We describe the details 
related to learning how to predict data in a separate paper; 
here, we simply focus on the mechanism for speculative 
execution and how its application can be automated. 

To better understand the concept of speculative 
execution, let us return to the RepInfo plan and 
hypothesize about one scenario for speculation.  Consider 

(a) (b) (c) (d)
Figure 3: Inter leaving navigation with retr ieval at OpenSecrets.com 



  
the retrievals of the funding graph from OpenSecrets and 
the news headlines from Yahoo News. Both operations 
occur in parallel, but both are dependent on the 
representative names fetched from Vote-Smart.  If this site 
is slow, performance of the rest of the plan suffers.   

With speculative execution, however, we could use the 
input to Vote-Smart (i.e., the address) to predict the inputs 
for the OpenSecrets and Yahoo News wrappers.  For 
example, we could learn that certain features of the address 
(such as city or zip code) are good predictors of the 
representative names that Vote-Smart will return.  This 
would give us a reasonable basis upon which to predict 
queries to OpenSecrets and Yahoo – even for input we 
have never seen (i.e., same city, but different street 
address).   

In this example, note that we are not limited to 
speculating about only one set of representatives – in fact, 
there is no reason why we cannot speculatively execute 
retrievals for multiple groups of representatives to improve 
our chances for success.  For example, from prior 
executions, we could learn that city=“Marina del Rey”  and 
zip=“90292”  correspond to two different congressional 
districts, one represented by Jane Harman, the other by 
Dianne Watson.  Identifying the correct one (based on 
street address) occurs during the processing of the Vote-
Smart Wrapper.  However, the capability to issue multiple 
predictions allows us to have the best of both worlds and 
confirm only those predictions that turn out to be correct.  
Speculatively executing the same path with multiple data is 
often useful when hints map to multiple answers.   

The above scenario would allow us to execute the 
retrievals to the Vote-Smart, OpenSecrets, and Yahoo in 
parallel.  Since all three tasks are almost entirely I/O-
bound, true concurrent execution occurs.  In fact, if the 
Vote-Smart source responds more slowly than OpenSecrets 
or Yahoo News, we can also execute the Join operation 
that follows these latter two retrievals.  However, we have 
to be careful about what happens after that point – 
specifically, we cannot allow data to exit the plan until we 
have ensured that our earlier prediction was correct.  In 
summary, while the above hypothetical scenario for 
speculation is thus fairly simple, it raises three important 
requirements.  Specifically, it is important to: 

� Define a process: It is important to specify how 
speculative execution actually works – what triggers 
it, how are predictions made, etc. 

� Ensure safety: We must limit speculative execution 
from triggering an unrecoverable action (such as the 
generation of output or the execution of an operator 
affecting the external world) until our earlier 
predictions has been verified. Thus, we must confirm 
speculation 

� Ensure fairness: Speculative execution should not be 
prioritized at the same level as normal execution.  Its 
resources demands should be secondary.  For example, 

the CPU should not be processing speculative 
instructions while normal execution instructions await. 

In the next subsections, we describe our approach in 
terms of each of these three requirements. 

Process 
Our process for enabling speculative execution involves 
augmenting a plan with two additional operators.  The first, 
Speculate, is a mechanism for using hints to predict inputs 
to future operators, and later for correcting or confirming 
those predictions.  The second operator, SpecGuard, halts 
the flow of speculative data beyond “safe points”  in a plan 
until earlier predictions can be confirmed or corrected.  

We show how to deploy these operators in Figure 4, a 
transformation of RepInfo for speculative execution.  The 
plan in the figure executes in the manner described above – 
that is, it uses the input address to predict the names of the 
federal representatives for that address.  As the figure 
shows, a Speculate operator (denoted by SPEC) receives 
its hint (the address) and uses it to generate predictions 
about representative names.  These names, in turn, drive 
the remainder of execution, while the first part of execution 
continues.  Note that the final Join can also be executed – 
the only requirement is that a SpecGuard operator (denoted 
by GUARD) be the last operator in the plan.  It prevents 
speculative results from propagating until Speculate has 
confirmed its predictions. We now describe the Speculate 
and SpecGuard operators in more detail. 

The Speculate Operator .  The inputs and outputs of the 
Speculate operator are summarized in Figure 5.  As the 
figure shows, this operator receives hints (input data to an 
earlier operator in the plan) and uses those hints to generate 
data predictions (used as input to operators later in the 
plan).  Later, Speculate receives answers to its earlier 
predictions from the operator normally producing this data. 
Using these answers, confirmations can be generated to 
validate prior predictions.  Any data errantly predicted is 
not confirmed and data that was never predicted is 
communicated via the predictions/additions output. For 
example, in Figure 4, suppose that an address is used to 
predict representatives X and Y. OpenSecrets and Yahoo 
News information is collected and combined for each, but 
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Figure 5: The Speculate operator  

Figure 4: RepInfo modified for  speculative execution 
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held up at the SpecGuard operator.  At the same time, 
suppose that the Speculate operator receives an answer 
from Select that indicates that the real representatives were 
X and Z.  It can subsequently confirm only X to 
SpecGuard and propagate Z through the OpenSecrets, 
Yahoo News, and Join operators.   Thus, because Speculate 
operates at the tuple level, corrections to its predictions are 
fine-grained and require only the minimum amount of 
additional work be done to correct a mistaken prediction. 

The SpecGuard Operator .  The functionality of 
SpecGuard is similar to that of a relational Select operator 
– it acts as a filter to a set of incoming tuples.  Figure 6 
illustrates its inputs and outputs: probable_results are the 
incoming speculative tuples, confirmations are generated 
by the Speculate operator, and actual_results are the 
filtered (correct) results.  SpecGuard is used in our scheme 
to guard against the release of unconfirmed or errant tuples 
beyond a safe point in the plan.   The main way it differs 
from a standard relational Select is in how it uses the 
confirmations data as a filter to halt all probable_results 
tuples until they have been confirmed.  

Once again, note that our approach exploits the fine-
grained property of execution that data pipelining provides.  
By basing our production of verified results on 
confirmations – instead of errors – we can output correct 
data as soon as possible, without waiting for the remaining 
corrections to be processed.  SpecGuard can also continue 
to wait for corrections until it receives an EOS (controlled 
and propagated by Speculate).  

Ensur ing Safety  
Ensuring safety during speculative execution means 
preventing errant predictions from affecting the external 
world in unrecoverable ways.  As described above, the 
SpecGuard operator facilitates safety by only producing 
confirmed results – however, it must still be correctly 
placed in a transformed plan.  To maximize speculative 
execution benefits while ensuring correctness, SpecGuard 
is placed as far as possible along a speculative path, 
occurring just prior to plan output or an “unsafe operator” .  
In Figure 4, SpecGuard is located just prior to plan output.  

Ensur ing Fairness  
Fairness refers to the need to control resources such that 
normal execution is prioritized over speculative execution.  
For information gathering plans, the primary two resources 
to be concerned about are processing power (CPU) and 
network bandwidth.  Fairness with respect to the CPU can 
be ensured by the operating system.  During execution, 
operators for information gathering systems are typically 

associated with threads and processing occurs at the tuple-
level.  By maintaining a pool of standard-priority “normal 
threads”  and a pool of lower-priority “speculative threads” , 
the former can be used to service normal execution while 
the latter can be used for speculative execution.  Standard 
operating system thread scheduling thus ensures that 
speculative CPU use never supersedes normal CPU use. 

In terms of bandwidth, there exists a large body of 
computer networking research on resource reservation.  In 
addition to hardware-based (e.g., network switch 
bandwidth provisioning) and software-based (e.g., TCP/IP 
socket configuration) methods, network resources can also 
be controlled by limiting the number of speculative 
threads.  A fixed number of such threads limits 
simultaneous connections and bounds the amount of 
speculative bandwidth concurrently demanded.  

Optimistic Per formance 
The maximum, or optimistic performance benefit resulting 
from speculative execution is equal to the minimum 
possible execution time of a transformed plan.  Calculating 
this requires computing the minimum execution times for 
each of its independent sequential flows and then choosing 
the maximum value of that set.  Using the minimum 
execution time for each flow implies all predictions are 
correct and no further additions are needed.   

For example, consider the optimistic performance of the 
plan in Figure 4.  This plan shows three paths of concurrent 
execution: the Vote-Smart path px, the OpenSecrets 
speculative path py, and the Yahoo News speculative path 
pz.  If we assume that all network retrievals take 1000ms 
and all computations (such as Select and Join) take 100ms, 
the resulting flow performance is: 

px = 1000 + 100 = 1100 ms 
py = 1000 + 100 = 1100 ms 
pz = 1000 + 1000 + 1000 + 100 = 3100 ms   

Since the original execution time of the plan (using these 
assumed values) would have been 4200ms, the potential 
speedup due to speculative execution is 4200ms/3100ms = 
1.35.  Note that if Vote-Smart had been slow, say 3000ms, 
overall performance would have been slower (6200ms) and 
potential speedup (6200/3100 = 2.0) greater.     

Achieving Better  Speedups 
While a speedup of two allows us to halve our execution 
time and produce noticeable results, we can in fact do 
better.  At first, it might not seem possible – since all 
speculation must be confirmed, execution time appears 
bound by either the time to perform speculative work or 
the time to process its confirmation.  However, two 
additional techniques can be used to improve performance 
such that speedups well beyond two are possible. 

Ear ly confirmation.  Normally, we need to confirm 
speculation immediately after the answer is produced.  

SpecGuard
confirmations

probable_results
actual_results

Figure 6: The SpecGuard operator  



  
However, if we consider that some operators are 
deterministic, and always produce the same results for a 
given input, we can theoretically confirm speculation prior 
to its normal production.  For example, as Figure 6 shows, 
we normally need to confirm our guesses about federal 
officials at the same point in the plan where those officials 
are produced – as in the case of the plan in Figure 4, 
following the Select operator.  However, Select is 
deterministic: for a given set of input data and filtering 
criteria, it always produces the same output.  Thus, we 
could confirm our speculation at least one operator earlier 
in Figure 4, thus enabling a potential speedup of 
6400/(3100-100) = 2.13.  Obviously, the increased speedup 
depends on the number of deterministic operators 
preceding the data being predicted and their individual 
execution times.  The reliability of early confirmation via 
deterministic operators is based on prior work related to 
inference rules for functional dependencies (FDs), 
specifically the transitive rule which states:  

�
 relations X, Y, Z:  { X � Y, Y � Z}  

�
 X � Z 

If we consider that each relation of intermediate results can 
be assigned a unique hash value, then the relationship 
between intermediate results input to and output from a 
deterministic operator is identical to the relationship 
between two sets of attributes whose tuples are dependent. 

Cascading speculation.  We are not limited to speculating 
about only one input.  In fact, there are many cases where 
we can pursue multiple paths of speculation in parallel and 
then confirm them at once, resulting in very high speedups 
when our predictions are correct.  To illustrate, consider a 
longer sequence of operators, such as that in Figure 7.  
Using our earlier assumption, the execution of 10 
successive Wrappers normally takes 10 seconds.  
Predicting input f allows the first and last halves of the plan 
to execute concurrently, resulting in a new execution time 
of 5 seconds and a speedup of 2. 
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Figure 7: Longer  sequence of operators 

However, suppose that we used A as a hint to speculate 
about B, the speculation of B as a hint to C, and so on. This 
is shown in Figure 8 (Each Speculate operator is denoted 
by an S; SpecGuard by a G).  Note that in the case of 
cascading speculation, only one SpecGuard is required.  

W W W W W W W W W W

S S S S S S S S S

G  

Figure 8: Cascading speculation 

Since all wrappers require the same amount of time to 
execute and are all I/O-bound, they would act 

simultaneously and their confirmations could be processed 
at once. Thus, the resulting execution time would simply 
be the duration of a single wrapper call plus the overhead 
for speculation and the time to process confirmation.  Even 
if we assume that the overhead and confirmation somehow 
requires an additional 100ms, execution would still only 
require 1000+100=1100ms, a speedup of 9.09. 

Figure 9 shows a version of the plan in Figure 4 further 
modified for cascading speculation.  If we make our earlier 
assumption that each network retrieval takes 1000ms and 
computations each require 100ms, then the five flows 
require (1100, 1100, 1000, 1000, 1100) and thus the 
optimistic speedup is 3200/(1100+100) = 2.67.   

Automatic Plan Transformation 

In the previous section, we described how speculative plan 
execution can yield significant performance gains.  
However, the augmentation of the example plan was done 
manually.  In this section, we present algorithms that 
enable the automatic transformation of any information 
gathering plan into one capable of speculative execution.   

Our overall goal is to maximize the theoretical average 
performance gain resulting from speculative execution.  At 
the same time, we also need to be wary of the overhead (or 
cost) of speculative execution – this is primarily the 
additional execution time required because of the increased 
context switching that thread-level speculation demands.  
In particular, if the execution time for the unmodified plan 
P was represented as T(P) and we identify a set of possible 
transformed plans P � 1..P � m, then we are interested in the 
execution time T(P � i) as well as the overhead of 
speculation C(P � i) for each of these plans.  Given this 
information, we then want to find the plan Pbest such that: 

Pbest = MIN (T(P � i) – C(P � i) ),  1 <= i <= m 

Identifying Pbest requires enumerating the set of candidate 
transformations and the calculating the most efficient one. 

The Set of Candidate Transformations 
One natural way to derive the set of candidate plan 
transformations is to use a brute force approach that 
generates a unique transformation for every case where a 
prior operator input can potentially be used as a hint to 
predict any future input along the same path.  

Let p1..ps represent the number of unique execution paths 
in a plan.  Next, consider a single execution path, pj, 
composed of operators  Ob..Od �  O1..On.  To simplify, let 
us assume that each operator has only one input; thus, the 

Figure 9: RepInfo with cascading speculation 
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set of inputs is represented by�
b..

�
d.  Then, the number of 

possible speculative transformations S( �
k) using the hint 

�
k, such that  b <= k < d, can be calculated as:  �� ��

1)( 2 ����� bdbdS k
�

          (Eq.1) 

In combining the set of possible transformations for a 
given input with the set of inputs along a given path pj, we 
see that S(pj), the total number of speculative 
transformations for that path is �� d

b kj SpS )()( �             (Eq.2) 

Finally, to compute the total number of candidate 
speculative transformations S(P) for a given plan P, we 
need to combine the number of paths with the number of 
possible transformations per path.  Specifically: �� s
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Thus, although a brute force approach allows us to 
consider every possible schedule for speculative execution, 
it quickly results in a large number of candidate 
transformations as the set of operator inputs increases. 

The Most-Expensive-Path (MEP) Algor ithm  
We can reduce the size of the candidate transformation set 
substantially by leveraging Amdahl’s law, which states that 
program execution time is a function of its most latent 
sequence of instructions. That is, it is not worthwhile to 
consider the transformations based on inputs or operators 
that do not exist along this path because any improvement 
does not allow overall execution to be any faster.  

Thus, we can use a most-expensive-path (MEP) approach 
that identifies the most latent sequence of operators in an 
information gathering plan and focuses the generation of 
candidate transformations on that path.  The MEP 
approach is well-suited for information gathering, a 
process that frequently requires the parallel retrieval of 
information that is later combined. Conceptually, an MEP-
based transformation algorithm for a given plan P would: 

1. Find all paths of P and their execution costs. 
2. Identify the MEP. 
3. Optimize the MEP for speculative execution. 

Although this algorithm allows the MEP to be improved, 
what of the new MEP in the resulting transformed plan?  
Theoretically, it too can be improved by speculation – in 
fact, the refinement process can continue until it is no 
longer possible to optimize the MEP of the plan.  The 
iterative refinement of plans for speculative execution is an 
important asset because it provides an anytime property 
and thus allows refinement to be bounded by some fixed 
time, if necessary.  The detailed form of the algorithm 
above is called SPEC-REWRITE and is shown in Figure 10. 

The figure shows that our refinement of the original plan 
consists of continually identifying the MEP for the current 
refinement and then optimizing that path via TRANSFORM-
PATH (described shortly).   Refinement stops when the 

MEP cannot be improved any further.  This process 
enables us to focus our transformations only on the plan 
flow that determines overall execution time.  In contrast to 
a brute force approach, it requires consideration of less 
candidate transformations and has an anytime property. 

Enumerating Candidates  
Having defined an algorithm that focuses transformation 
on a single path (the MEP), our next task is to generate and 
compare the set of candidate transformations. This set 
includes each member S(pj), as defined by (Eq.2).  

Figure 11 shows GENERATE-CANDIDATES, an algorithm 
returning the set of possible MEP transformations for 
speculative execution.  The algorithm iterates over the set 
of possible hints (i.e., any input preceding the current 
operator) and builds a set of speculative paths using that 
hint (i.e., all combinations of predicting future inputs). 

GENERATE-CANDIDATES (path)  
{  
  candSet �  Ø 
  isFirst �  TRUE 
  foreach operator op in path 
      if (isFirst) then 
         isFirst �  FALSE 
      else     
          possibleHints �  FIND-POSSIBLE-HINTS(op, path) 
         foreach hint h in possibleHints 
             curSpecPaths �  BUILD-SPEC-PATHS(h, op) 
             candSet �  candSet 		 		  curSpecPaths 
  return candSet 
}  
 Figure 11: The GENERATE-CANDIDATES algor ithm 
 

SPEC-REWRITE (plan)  
{  
    mep �  Ø 
    curPlan := plan 
    do  
       bestCandPath �  Ø 
       maxPathCost �  0 
       planPaths �  FIND-ALL-PATHS (curPlan) 
       foreach path p 
  planPaths  
         curPathCost �  PATH-COST (p) 
         if (curPathCost > maxPathCost) then 
           mep �  p 
           maxPathCost �  curPathCost 
         if (mep != Ø) then 
            candPaths �  GENERATE-CANDIDATES (mep) 
            bestCandCost �  maxPathCost 
            foreach candidate c 
  candPaths 
               curCandCost �  SPEC-PATH-COST (c) 
               if (curCandCost < bestCandCost) then 
                  bestCandCost �  curCandCost  
                  bestCandPath �  c  
               if (bestCandPath != Ø) then 
                  curPlan �  REPLACE-PATH (curPlan, mep, 
                      bestCandPath) 
    while (bestCandPath != Ø) 
    return curPlan 
}  

Figure 10: The SPEC-REWRITE algor ithm 
 



  

Evaluating Candidates 
In terms of comparing the candidate set, we are interested 
in identifying the fastest average execution time of any of 
the possible speculative path transformations.  We consider 
the average time because our candidate evaluation needs to 
account for speculation failure as well as success.   

If we consider that m represents the original MEP and 
that m� 1...m� q are the set of possible MEP transformations, 
then the average execution time of that transformation 
T(m� i) requires two important statistics: the average 
execution time of each operator in that transformation and 
a measure describing the predictability of the inputs. 

  The average execution time Tavg(Oi) of a single operator 
on m� i can easily be determined by keeping a log of prior 
executions.  Calculating the predictability of a particular 
future input to an operator given the existence of a prior 
input merely requires that we also keep a record of how 
these inputs correspond.  For this paper, we assume that, 
for each of the collective set of inputs �

1..
�

x, we are able to 
ascertain P( �

h|
�

g) where g<h and thus: the probability that 
a prior input ag can predict a future input �

h.   
To see how to use average execution time and predictive 

probability to evaluate m� 1...m� q, let us consider evaluating 
the sample path shown in Figure 11. Without any 
speculation, the original cost of this execution path is the 
sum of its individual operator average execution times: 

T(m) = Tavg(Op1) + Tavg(Op2) + Tavg(Op3) + Tavg (Op4) 

To calculate the execution time of each possible 
speculative transformation on that path, we must use 
average execution times and predictive probabilities to 
determine average path execution times.  For example, 
Figure 12 shows one of the many possible speculative 
transformations of Figure 11.  

Notice that per invocation, there exist four possible 
execution scenarios: (a) S1 and S2 are successful 
predictors, (b) S1 is successful but S2 is not, (c) S2 is 
successful but S1 is not, and (d) both fail.  To compute the 
average execution time of the transformation in Figure 12, 
we calculate the time required by each of these four 
scenarios multiplied by the likelihood of their occurrence.   

For example, if P( �
2|

�
1)=0.6, P( �

3|
�

2)=0.7, and each 
operator requires 1000ms to execute (assume SpecGuard 
requires 100ms), then we can figure the average execution 
time by first calculating the time T(Si) required for each 
scenario and the likelihood L(Si) of that scenario occurring: 

(a) T(S1)=2000+100=2100,  L(S1)=0.6*0.7=0.42 
(b) T(S2)=3000+100=3100,  L(S2)=0.6*0.3=0.18 
(c) T(S3)=3000+100=3100,  L(S3)=0.4*0.7=0.28 
(d) T(S4)=4000+100=4100,  L(S4)=0.4*0.3=0.12 

Thus, the average execution time of this transform is:  

  (0.42*2100)+(0.18*3100)+(0.28*3100)+(0.12*4100) 
     = 2800ms + SPECULATIVE-OVERHEAD(m � i) 
We summarize this average cost calculation in the SPEC-
PATH-COST algorithm shown in Figure 13.  As shown, the 
algorithm determines the average execution cost of a path 
by combining the overhead of speculation on that path with 
the summation of each scenario execution time multiplied 
by the likelihood that it will occur. 

SPEC-PATH-COST (specpath)  
{  
    cost �  SPECULATIVE-OVERHEAD(specpath) 
    execScenarios �  BUILD-SCENARIOS(specpath) 
    foreach scenario s in execScenarios 
        cost �  cost + PATH-COST(s) *  LIKELIHOOD(s) 
    return cost 
}  

Figure 13: The SPEC-PATH-COST algor ithm 

Exper imental Results 

To demonstrate the performance benefits of speculative 
execution, we applied our transformation algorithms to a 
real version of the RepInfo information gathering plan.  
We used RepInfo because it represented a common data 
integration task, similar to plans described in (Friedman & 
Weld 1997, Ives et al. 1999, Barish et al. 2000b). 

Methodology 
We experimented with four different RepInfo execution 
paradigms: normal (original plan), best-case (optimistic) 
speculation, worst-case (pessimistic) speculation, and 
average speculation (predictions correct 50% of the time). 

To execute RepInfo, we used the Theseus information 
agent execution system (Barish et al. 2000a).  Theseus is 
an information agent execution system, able to execute 
information gathering plans in a dataflow-style manner.  
To achieve high concurrency, Theseus uses threads to 
process operator firings (as they occur) and supports 
pipelined I/O between plan operators.  Theseus was 
modified to support the Speculate and SpecGuard 
operators, running these operators at a lower priority than 
other operators. Theseus consists of about 15,000 lines of 
code and is written entirely in Java.  

We ran Theseus on a Dell Latitude PC containing an 
833MHz Intel Pentium III processor, 256MB of RAM, 
running Windows 2000 (Professional), and connected to 
our local LAN using a 10Mbps Ethernet card.   
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Figure 12: One possible transformation of Fig. 11 
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Normal Execution Per formance 
The original RepInfo plan was shown earlier in Figure 1.  
After building and executing this plan ten times, we found 
the following average execution times for its operators: 

Operator Time (ms) 

Wrapper (Vote-Smart) 2010 

Select 10 

Wrapper (OpenSecrets1) 2250 

Wrapper (OpenSecrets2) 2110 

Wrapper (OpenSecrets3) 2380 

Wrapper (Yahoo News) 1250 

Join 10 

OpenSecrets1, OpenSecrets2, and OpenSecrets3 correspond 
(respectively) to the wrappers for obtaining the names 
page, the member details, and the funding graph. Thus, the 
performance of each RepInfo path was:  

Path Time (ms) 

 VoteSmart � Select � OpenSecrets1,2,3� Join 8770 

 VoteSmart � Select � Yahoo� Join 3280 

Identifying the longer of the two paths gave us the normal 
execution time of the plan: 8770ms. 

Speculative Execution Per formance 
After ten initial runs using identical input, we used SPEC-
REWRITE to automatically transform the RepInfo plan into 
the plan shown in Figure 9, which we called RepInfoSpec.  
We then measured the performance of this new plan under 
optimistic, pessimistic, and average speculative success. 

Transformation. As specified by SPEC-REWRITE, the 
MEP of RepInfo was first identified and then rewritten to a 
more efficient form, capable of speculative execution.  The 
MEP of the resulting plan was also identified and 
improved.  This process continued until it was no longer 
possible to improve the MEP.  Below, we describe part of 
the first iteration of the SPEC-REWRITE algorithm; due to 
space constraints, we summarize but omit the details for 
the remainder of the steps.  

For the first iteration of the plan, SPEC-REWRITE needed 
to consider the effect of how statistics related to the 
predictability of future inputs could impact average plan 
execution time.  In particular, the following data was 
potentially predictable, in various combinations: 

� The set of public officials op, consumed by Select  
� The set of federal officials of, consumed by Yahoo and 

OpenSecrets1 
� The member URL m for each federal official, 

consumed by OpenSecrets2  
� The funding URL f associated with each member 

page, consumed by OpenSecrets3 
� The funding graph g for each federal official, 

consumed by Join  

For purposes of illustration, we consider a subset of the 
combinations predictable: the effect of predicting each of 
the above data given the input address a.  Using a measure 
of likelihood gained through applying machine learning 
techniques, the efficiency of the different scenarios was:  

Scenario L(S) Average Execution Time (ms) 

op | a .86 (6760+10)*.86 +  (8770+10)*.14 = 7051  

of  | a .86 (6750+10)*.86 +  (8770+10)*.14 = 7043  

m | a .16 (4270+10)*.16 +  (8770+10)*.84 = 8060  

f  | a .16 (6380+10)*.16 +  (8770+10)*.84 = 8398 

g | a .16 (8760+10)*.16 +  (8770+10)*.84 = 8778  

Since it has the shortest average execution time, the best 
candidate is the scenario of |a, where address is used to 
predict the set of federal officials. As it turns out, Figure 9 
shows that this scenario ends up being accepted as one of 
the eventual plan transformations.  Continued application 
of the algorithm works in a similar fashion and eventually 
results in the plan in Figure 9.  The final MEP consists of 
just the OpenSecrets3 wrapper – however, since there is no 
further improvement possible, the algorithm terminates and 
returns the resulting plan.   

Optimistic Speculation.  To measure RepInfoSpec under 
best-case conditions, we used the same input that had been 
used in earlier runs of the original RepInfo plan.  Thus, the 
probabilities of predicting all operator inputs was 100%.  
The resulting performance was 2400ms, indicating a 
speedup of 8770/2400 = 3.65.  

Pessimistic Speculation.  To measure the performance of 
RepInfoSpec under pessimistic conditions, we run it using 
new input.  All speculation was thus incorrect and the plan 
had to execute operators in their original order in addition 
to suffering the overhead of speculation.  The resulting 
plan performance was about 8790ms, a difference not 
noticeable when compared to original plan execution time. 

Average Speculative Execution Per formance. Finally, 
we considered the theoretical average performance time of 
RepInfoSpec under conditions where our predictions were 
only correct 50% of the time.  To do so, we simply halved 
the execution times of optimistic and pessimistic versions 
of RepInfoSpec and calculated the resulting sum: (0.50 * 
2400) + (0.50 * 8790) = 5595ms, resulting in a speedup of 
8770/5595 = 1.57.  Figure 14 summarizes and compares all 
four execution paradigms.  
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Figure 14: Impact of speculative execution on per formance 



  

   Related Work 

The approach described here represents a completely new 
way to execute information gathering plans.  In the context 
of existing work on network query engines (Ives et al. 
1999, Hellerstein et al. 2000, Naughton et al. 2001), it can 
be considered a new form of adaptive query execution.  It 
is somewhat related to the partial results strategy of 
Niagara  (Shanmugasundaram et al. 2000) in the sense that 
it involves execution of future operators based on 
unverified input data.  The work here is also related to the 
dynamic operator ordering facilitated by Telegraph eddy 
(Avnur & Hellerstein 2000) in the sense that both involve 
out-of-order execution.  The difference between the work 
here and these existing techniques is that speculative 
execution can be applied anywhere in a plan (not just near 
aggregate operators), is dependent on synthetic data, and 
can be cascading.  Prior techniques operate on real data 
(thus limited by the latency of prior operators) and are only 
relevant to certain operators or moments during execution.          

In a narrow sense, speculative execution can be thought 
of as a prefetching strategy (Adali et al. 1996, Godfrey & 
Gryz 1997).  Like prefetching, speculation allows data to 
be retrieved from a source earlier than it normally would.  
However, unlike prefetching, speculative execution of 
information gathering plans does not lead to the problem of 
stale data – since it prefetches when plan execution starts, 
it can be seen as always retrieving the most recent data.  

Finally, our approach to speculative execution has been 
inspired by both its historical and recent success at the 
system-level. In addition to work on classic processor 
branch prediction, (Chang & Gibson 1999) showed how 
speculation can improve file system performance, and 
(Hull et al. 2000) showed how “eager”  execution can 
reduce the database latencies of e-commerce workflows.  It 
is also worth noting that while there is a long history of 
speculative execution under von Neumann architectures, 
its use in dataflow machines has never been studied.     

Conclusion and Future Work 

In this paper, we have described an approach to the 
speculative execution of information gathering plans.  We 
have shown how this approach represents a new form of 
run-time parallelism that can lead to significant execution 
speedups without sacrificing fairness or safety during 
execution.  In addition, we have presented algorithms that 
enables any information gathering plan to be automatically 
transformed into one capable of speculative execution.   

We are very encouraged by our initial results and plan to 
focus our future efforts on the problem of learning how to 
predict data.  Although a simple caching scheme can be 
used to map hints into predictions, we believe that a more 
space-efficient and intelligent alternative strategy exists.  
Specifically, by applying standard machine learning 
techniques, we can learn classifiers or functions that enable 

us to not only efficiently store how hints map to 
predictions, but also enable us to predict data based on 
hints that we have never previously seen.  
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