

Speculative Execution for Information Gather ing Plans

Greg Bar ish and Craig A. Knoblock

University of Southern California / Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

{ barish, knoblock} @isi.edu

Abstract
Although information gathering plans have enabled data from
remote heterogeneous sources to be easily combined and queried,
their execution performance suffers because access to remote
sources is often slow. To address this problem, we have
developed a method of speculative execution that increases the
degree of run-time parallelism during plan execution. Our
approach allows any information gathering plan to be
automatically modified to support speculation in a manner that
can lead to significant speedups, while ensuring that both safety
and fairness are preserved. We demonstrate how speculative
execution can be applied to a typical Internet information
gathering plan to provide significant performance benefits.

Introduction

Improving the performance of information gathering plans
remains an ongoing research challenge. Execution is often
slowed by the time required to access remote sources.
Plans that gather and extract information from Web
sources are especially hard hit: they frequently need to
interleave navigation with data retrieval and can thus
require more I/O than other kinds of plans.

Consider the plan for the TheaterLoc information agent
(Barish et al. 2000b) we recently developed. TheaterLoc
integrates information from five Web sources, allowing
users to query restaurants and theaters for any U.S. city and
display their resulting locations on a dynamically
generated map. TheaterLoc plan execution time averaged
about 7 seconds – roughly 90% of that time was spent
waiting for data from the underlying web sources. During
that time, the CPU was idle and other local resources (such
as network bandwidth) were under-utilized.

The inefficiency of information gathering plans has been
a topic of current research on network query engines (Ives
et al. 1999, Hellerstein et al. 2000, Naughton et al. 2001)
and information agents (Barish et al. 2000a). Since it is
impossible to control the performance of the network or of
the remote sources, current research has instead focused on
strategies for increasing the degree of run-time parallelism.
Towards that end, various parallel execution techniques
such as dataflow-style plan representation, data pipelining,
and adaptive query execution have been proposed.

Despite the benefits of these techniques, data
dependencies between operators can still hamper
execution. For example, a query to a remote source often

depends on the answer of a query to a previous source.
Such binding-pattern style relationships require sequential
execution and thus offer no opportunity for parallelization.

One solution to this problem is to engage in speculative
execution, the process of executing instructions ahead of
their normal schedule. Nearly all modern CPUs employ
this technique as a means to address the I/O latencies
associated with accessing local RAM. The underlying idea
is that it is more efficient to probabilistically use an
otherwise idle CPU than to not use it at all. Speculative
execution has been shown to be one of the most effective
means for increasing the level of instruction level
parallelism (ILP) of a program (Wall 1991).

Just as it can increase the degree of ILP during program
execution, speculation can also increase the degree of
operator-level parallelism during the execution of
information gathering plans. By speculating about the
execution of future operators, it is possible to overcome
stalls caused by earlier I/O-bound operators (e.g., those
fetching remote data) and deliver better average
performance. Further, applying speculative execution at a
level much higher than that of machine instructions enables
two additional benefits:

� Significant per formance improvement. Instead of
improving execution time in terms of milliseconds, a
good result at lower levels of execution, speculative
plan execution can result in gains of seconds – or at
speeds relative to the slowest (I/O-bound) operators.

� The oppor tunity to use more intelligent techniques
for speculation. CPU-level speculative execution
occurs with very limited resources; consequently, the
techniques for predicting program control and data
flow are also limited. In contrast, plan-level
speculative execution can leverage greater amounts of
resources and reap the benefits of using more
sophisticated machine learning techniques.

Contr ibutions
In this paper, we describe an approach for speculative plan
execution and demonstrate its effectiveness in improving
the performance of a typical information agent. In
particular, the main contributions of this paper are:

� An approach for speculative plan execution that yields
arbitrary speedups while ensuring safety and fairness.

� Algorithms for automatically transforming any

information gathering plan into one capable of
speculative execution.

� Empirical results of applying speculative execution to
one common type of information gathering plan.

We note that while our approach uses machine learning
to decide what to predict, this paper focuses on describing
the process (i.e., how to predict) and how it plans can
automatically be modified for speculative execution. A
separate paper will describe machine learning techniques
for accurate and efficient data value prediction.

The remainder of this paper is organized as follows.
Section 2 describes information gathering plans and
provides an example. Section 3 describes the details of
our technique for the speculative execution of such plans,
including a discussion of how our technique ensures both
safety and fairness during execution. Section 4 contains an
algorithm that enables any information plan to be modified
for speculative execution. Section 5 quantifies the impact
of our approach on a typical Internet information gathering
plan. Finally, section 6 discussed related work.

Information Gather ing Plans

Information gathering plans retrieve, combine, and
manipulate data located in remote sources. Such plans
consist of a partially-ordered graph of operators O1..On
connected in producer/consumer fashion. Each operator Oi
consumes a set of inputs �

1..
�

p, retrieves data or performs
a computation based on that input, and produces one or
more outputs

�
1..

�
q. The types of operators used in

information gathering plans varies, but most either retrieve
or perform computations on data.
 Operators process and transmit data in terms of
relations. Each relation R consists of a set of attributes
(i.e., columns) a1..ac and a set of zero or more tuples (i.e.,
rows) t1..tr, each tuple ti containing values vi1..vic. We can
express relations with attributes and a set of tuples as:

 R (a1..ac) = ((v11..v1c), (v21..v2c), ... (vr1..vrc))

Example Plan. To illustrate, consider the plan executed
by an information agent called RepInfo. This plan, shown
in Figure 1, gathers information about U.S. congressional
officials. Given any U.S. postal address, RepInfo returns
the names, funding charts, and recent news related to U.S.
federal officials (members of the Senate or House of
Representatives) for that address. RepInfo retrieves this
information via the following web data sources:

� Vote-Smart, to identify officials for an address.
� OpenSecrets, for funding data about each official.
� Yahoo News, for recent news about each official.

 In Figure 1, Wrapper operators gather data from Web
sources, the Select operator filters federal officials from
other types of officials, and the Join operator combines
funding and news data into a single result. Wrapper
operators are very common in web-based information

gathering plans. They extract structured relations of data
from semi-structured web pages.

 At the start of execution, an input postal address is used
to query the Vote-Smart source, returning the set of all
officials for that location. The subsequent Select operator
filters through just Senate and House officials. This subset
is then used to query Yahoo News and OpenSecrets. Note
that the latter requires additional Wrappers in order to
navigate to the page containing the funding data. We
describe why in the next section. The results of both are
then joined, providing the result shown in Figure 2.

 Note that the plan in Figure 1 is one common type of
information gathering plan. Similar plans that extract data
from two or more distinct sources and then combine them
together are common throughout the literature (Friedman
& Weld 1997, Ives et al. 1999, Barish et. al. 2000b, etc.).

Execution
Execution of an information gathering plan commences
when input required by the initial plan operators becomes
available. For example, in Figure 1, querying the Vote-
Smart source occurs as soon as an input street address is
provided. The initial operator(s) (Wrapper, in this case)
fire and, in turn, route output data to their consumers,
causing them to fire. This process continues until all
operators stop firing and plan output (i.e., the query
answer) has been produced.

Note that operator execution order is not determined by
an instruction counter (i.e., as is the case in von Neumann
machines), but rather by the availability of data. Thus, like
dataflow programs, information gathering plans can be as
theoretically parallel as their data dependencies allow. For
example, in Figure 1, the gathering of funding and news
data is independent and can be executed concurrently.

Wrapper
OpenSecrets

(member page)

Join
name

Select
senators,

house reps

Wr apper
Vote-Smart

addr ess all offic ials feder al offic ials

graph URL

r ecent news combined r esults

Wr apper
OpenSecrets

(funding page)

funding URL

Wr apper
Yahoo News

Wr apper
OpenSecrets
(names page)

member URL

Figure 1: The RepInfo plan

Ter m: 2nd
Fir st Elected: 1992
Phone: (202) 224-3553
Fax: (415) 956-6701

Address:
SH-112
Washington, DC 20510-0505
Distr ict Off ice: San Francisco
Distr ict Phone: (415) 403-0100

Sen. Barbara Boxer (D-CA)

����������� 	
 �� � �

� � � � � � � � � ��� � � � � � � � � � � � �� � � �� � � � � � �Energy Dept. Sees Rise in Costs (AP)

Bush Adopts Clinton Arsenic Standard (AP)

Boxer and Staff Tested for Anthrax Exposure
(KPIX)

Boxer Goes Underground to Keep Working
(KPIX)

Anthrax Confirmed at U.S. Congress (Reuters)

Congress Mulling New Round Of Base
Closures (San Diego Daily Transcript

Figure 2: Results from executing RepInfo

This type of parallelism, evident at plan compilation time,
is also known as horizontal parallelism.

Most systems that execute information gathering plans
also support the pipelining (or streaming) of relations
between producer and consumer operators in the sense that
they allow tuples output by a producer to be consumed as
soon as they are generated. When all tuples have been
streamed from the producer to the consumer, the producer
sends an End-of-Stream (EOS) token to indicate this state.
Data pipelining enables successive operators along a given
dataflow path of the plan to execute in parallel on a logical
relation. This type of pipelined parallelism, evident at plan
execution time, is also known as vertical parallelism.

The pipelining of data implies two additional attributes of
operators in an information gathering system: that they (a)
perform computations on partial input and (b) maintain
state. For example, consider the Select operator, which
filters tuples according to some specified criteria. As input
tuples are received from a producing operator, they can be
evaluated in terms of that criteria and output immediately.
Select must also maintain state: it needs to retain its
filtering criteria until the EOS has been received.

Per formance Issues
Despite the use of horizontal and vertical parallelism,
execution performance for information gathering plans
remains hindered by I/O latencies and data dependencies
between operators. In particular, slow producers starve
their consumers. For example, in Figure 1, if Vote-Smart
responds slowly, execution of Select will also be slow, as it
requires an answer from its producer in order to execute.

Information gathering plans that use Web sites as data
sources fare even worse because of the need to interleave
navigation with retrieval. To illustrate, consider the three
Wrapper operators required to obtain the funding graph
from OpenSecrets. Given an official name, these wrappers
are used to retrieve a bar graph showing the money various
industries have contributed to that official’s campaign.

Three wrappers are necessary because OpenSecrets does
not allow this graph to be queried directly. Instead, the
graph can be obtained only after navigating through the
screens shown in Figures 3a-3d. In particular, for each
official, we must submit the name of that official to the
first page as shown in Figure 3a. This returns the set of
campaign year URLs for the official we are querying (Sen.

Barbara Boxer in this case). Each campaign year URL
corresponds to a different year of candidate funding. Next,
as Figure 3b shows, the campaign year of interest (2002) is
selected, allowing us to obtain the member page for that
year, shown in Figure 3c. However, the graph we want is
only accessible by following the “Sectors” URL circled in
Figure 3c, resulting in the final page that contains the
graph, shown in Figure 3d. In short, obtaining the funding
graph for each official requires the following three
wrappers:

� One returning campaign URLs given an official name
� One returning a Sectors URL given a campaign URL
� One returning a funding graph given a Sectors URL

Thus, execution of the OpenSecrets part of the RepInfo
plan is inefficient for two reasons. One is the inherent
latency of accessing a remote source. The second is the
need to navigate to the data we want, which requites
multiple remote accesses and thus compounds the effects
of I/O latency. Interleaving of navigation with retrieval is
a problem unique to the Web and is one major reason why
Web-based information gathering plans are slow.

Speculative Plan Execution

To address the performance dilemma, we describe a new
form of run-time parallelism: speculative plan execution.
The general idea is to use hints received at earlier points in
execution to generate speculative input data to dependent
operators and pre-execute them. Thus, consumer operators
that are dependent on slow producers can be executed in
parallel with those producers, using the input to those
producers as hints for how to execute.

The mapping between hints and the predictions they lead
to occurs over time. This relationship can either be cached
or learned from earlier executions. The key difference
between caching and learning here is that the former
allows us to predict based on input we have seen before
whereas the latter potentially allows us to predict based on
hint input we have never seen. We describe the details
related to learning how to predict data in a separate paper;
here, we simply focus on the mechanism for speculative
execution and how its application can be automated.

To better understand the concept of speculative
execution, let us return to the RepInfo plan and
hypothesize about one scenario for speculation. Consider

(a) (b) (c) (d)
Figure 3: Inter leaving navigation with retr ieval at OpenSecrets.com

the retrievals of the funding graph from OpenSecrets and
the news headlines from Yahoo News. Both operations
occur in parallel, but both are dependent on the
representative names fetched from Vote-Smart. If this site
is slow, performance of the rest of the plan suffers.

With speculative execution, however, we could use the
input to Vote-Smart (i.e., the address) to predict the inputs
for the OpenSecrets and Yahoo News wrappers. For
example, we could learn that certain features of the address
(such as city or zip code) are good predictors of the
representative names that Vote-Smart will return. This
would give us a reasonable basis upon which to predict
queries to OpenSecrets and Yahoo – even for input we
have never seen (i.e., same city, but different street
address).

In this example, note that we are not limited to
speculating about only one set of representatives – in fact,
there is no reason why we cannot speculatively execute
retrievals for multiple groups of representatives to improve
our chances for success. For example, from prior
executions, we could learn that city=“Marina del Rey” and
zip=“90292” correspond to two different congressional
districts, one represented by Jane Harman, the other by
Dianne Watson. Identifying the correct one (based on
street address) occurs during the processing of the Vote-
Smart Wrapper. However, the capability to issue multiple
predictions allows us to have the best of both worlds and
confirm only those predictions that turn out to be correct.
Speculatively executing the same path with multiple data is
often useful when hints map to multiple answers.

The above scenario would allow us to execute the
retrievals to the Vote-Smart, OpenSecrets, and Yahoo in
parallel. Since all three tasks are almost entirely I/O-
bound, true concurrent execution occurs. In fact, if the
Vote-Smart source responds more slowly than OpenSecrets
or Yahoo News, we can also execute the Join operation
that follows these latter two retrievals. However, we have
to be careful about what happens after that point –
specifically, we cannot allow data to exit the plan until we
have ensured that our earlier prediction was correct. In
summary, while the above hypothetical scenario for
speculation is thus fairly simple, it raises three important
requirements. Specifically, it is important to:

� Define a process: It is important to specify how
speculative execution actually works – what triggers
it, how are predictions made, etc.

� Ensure safety: We must limit speculative execution
from triggering an unrecoverable action (such as the
generation of output or the execution of an operator
affecting the external world) until our earlier
predictions has been verified. Thus, we must confirm
speculation

� Ensure fairness: Speculative execution should not be
prioritized at the same level as normal execution. Its
resources demands should be secondary. For example,

the CPU should not be processing speculative
instructions while normal execution instructions await.

In the next subsections, we describe our approach in
terms of each of these three requirements.

Process
Our process for enabling speculative execution involves
augmenting a plan with two additional operators. The first,
Speculate, is a mechanism for using hints to predict inputs
to future operators, and later for correcting or confirming
those predictions. The second operator, SpecGuard, halts
the flow of speculative data beyond “safe points” in a plan
until earlier predictions can be confirmed or corrected.

We show how to deploy these operators in Figure 4, a
transformation of RepInfo for speculative execution. The
plan in the figure executes in the manner described above –
that is, it uses the input address to predict the names of the
federal representatives for that address. As the figure
shows, a Speculate operator (denoted by SPEC) receives
its hint (the address) and uses it to generate predictions
about representative names. These names, in turn, drive
the remainder of execution, while the first part of execution
continues. Note that the final Join can also be executed –
the only requirement is that a SpecGuard operator (denoted
by GUARD) be the last operator in the plan. It prevents
speculative results from propagating until Speculate has
confirmed its predictions. We now describe the Speculate
and SpecGuard operators in more detail.

The Speculate Operator . The inputs and outputs of the
Speculate operator are summarized in Figure 5. As the
figure shows, this operator receives hints (input data to an
earlier operator in the plan) and uses those hints to generate
data predictions (used as input to operators later in the
plan). Later, Speculate receives answers to its earlier
predictions from the operator normally producing this data.
Using these answers, confirmations can be generated to
validate prior predictions. Any data errantly predicted is
not confirmed and data that was never predicted is
communicated via the predictions/additions output. For
example, in Figure 4, suppose that an address is used to
predict representatives X and Y. OpenSecrets and Yahoo
News information is collected and combined for each, but

Speculate
answers

hints

confirmations

predictions /addit ions

Figure 5: The Speculate operator

Figure 4: RepInfo modified for speculative execution

W

J

SW

W

SPEC

GUARDW
hints

predictions/additions

conf irmations

answers
W

held up at the SpecGuard operator. At the same time,
suppose that the Speculate operator receives an answer
from Select that indicates that the real representatives were
X and Z. It can subsequently confirm only X to
SpecGuard and propagate Z through the OpenSecrets,
Yahoo News, and Join operators. Thus, because Speculate
operates at the tuple level, corrections to its predictions are
fine-grained and require only the minimum amount of
additional work be done to correct a mistaken prediction.

The SpecGuard Operator . The functionality of
SpecGuard is similar to that of a relational Select operator
– it acts as a filter to a set of incoming tuples. Figure 6
illustrates its inputs and outputs: probable_results are the
incoming speculative tuples, confirmations are generated
by the Speculate operator, and actual_results are the
filtered (correct) results. SpecGuard is used in our scheme
to guard against the release of unconfirmed or errant tuples
beyond a safe point in the plan. The main way it differs
from a standard relational Select is in how it uses the
confirmations data as a filter to halt all probable_results
tuples until they have been confirmed.

Once again, note that our approach exploits the fine-
grained property of execution that data pipelining provides.
By basing our production of verified results on
confirmations – instead of errors – we can output correct
data as soon as possible, without waiting for the remaining
corrections to be processed. SpecGuard can also continue
to wait for corrections until it receives an EOS (controlled
and propagated by Speculate).

Ensur ing Safety
Ensuring safety during speculative execution means
preventing errant predictions from affecting the external
world in unrecoverable ways. As described above, the
SpecGuard operator facilitates safety by only producing
confirmed results – however, it must still be correctly
placed in a transformed plan. To maximize speculative
execution benefits while ensuring correctness, SpecGuard
is placed as far as possible along a speculative path,
occurring just prior to plan output or an “unsafe operator” .
In Figure 4, SpecGuard is located just prior to plan output.

Ensur ing Fairness
Fairness refers to the need to control resources such that
normal execution is prioritized over speculative execution.
For information gathering plans, the primary two resources
to be concerned about are processing power (CPU) and
network bandwidth. Fairness with respect to the CPU can
be ensured by the operating system. During execution,
operators for information gathering systems are typically

associated with threads and processing occurs at the tuple-
level. By maintaining a pool of standard-priority “normal
threads” and a pool of lower-priority “speculative threads” ,
the former can be used to service normal execution while
the latter can be used for speculative execution. Standard
operating system thread scheduling thus ensures that
speculative CPU use never supersedes normal CPU use.

In terms of bandwidth, there exists a large body of
computer networking research on resource reservation. In
addition to hardware-based (e.g., network switch
bandwidth provisioning) and software-based (e.g., TCP/IP
socket configuration) methods, network resources can also
be controlled by limiting the number of speculative
threads. A fixed number of such threads limits
simultaneous connections and bounds the amount of
speculative bandwidth concurrently demanded.

Optimistic Per formance
The maximum, or optimistic performance benefit resulting
from speculative execution is equal to the minimum
possible execution time of a transformed plan. Calculating
this requires computing the minimum execution times for
each of its independent sequential flows and then choosing
the maximum value of that set. Using the minimum
execution time for each flow implies all predictions are
correct and no further additions are needed.

For example, consider the optimistic performance of the
plan in Figure 4. This plan shows three paths of concurrent
execution: the Vote-Smart path px, the OpenSecrets
speculative path py, and the Yahoo News speculative path
pz. If we assume that all network retrievals take 1000ms
and all computations (such as Select and Join) take 100ms,
the resulting flow performance is:

px = 1000 + 100 = 1100 ms
py = 1000 + 100 = 1100 ms
pz = 1000 + 1000 + 1000 + 100 = 3100 ms

Since the original execution time of the plan (using these
assumed values) would have been 4200ms, the potential
speedup due to speculative execution is 4200ms/3100ms =
1.35. Note that if Vote-Smart had been slow, say 3000ms,
overall performance would have been slower (6200ms) and
potential speedup (6200/3100 = 2.0) greater.

Achieving Better Speedups
While a speedup of two allows us to halve our execution
time and produce noticeable results, we can in fact do
better. At first, it might not seem possible – since all
speculation must be confirmed, execution time appears
bound by either the time to perform speculative work or
the time to process its confirmation. However, two
additional techniques can be used to improve performance
such that speedups well beyond two are possible.

Ear ly confirmation. Normally, we need to confirm
speculation immediately after the answer is produced.

SpecGuard
confirmations

probable_results
actual_results

Figure 6: The SpecGuard operator

However, if we consider that some operators are
deterministic, and always produce the same results for a
given input, we can theoretically confirm speculation prior
to its normal production. For example, as Figure 6 shows,
we normally need to confirm our guesses about federal
officials at the same point in the plan where those officials
are produced – as in the case of the plan in Figure 4,
following the Select operator. However, Select is
deterministic: for a given set of input data and filtering
criteria, it always produces the same output. Thus, we
could confirm our speculation at least one operator earlier
in Figure 4, thus enabling a potential speedup of
6400/(3100-100) = 2.13. Obviously, the increased speedup
depends on the number of deterministic operators
preceding the data being predicted and their individual
execution times. The reliability of early confirmation via
deterministic operators is based on prior work related to
inference rules for functional dependencies (FDs),
specifically the transitive rule which states:

�
 relations X, Y, Z: { X � Y, Y � Z}

�
 X � Z

If we consider that each relation of intermediate results can
be assigned a unique hash value, then the relationship
between intermediate results input to and output from a
deterministic operator is identical to the relationship
between two sets of attributes whose tuples are dependent.

Cascading speculation. We are not limited to speculating
about only one input. In fact, there are many cases where
we can pursue multiple paths of speculation in parallel and
then confirm them at once, resulting in very high speedups
when our predictions are correct. To illustrate, consider a
longer sequence of operators, such as that in Figure 7.
Using our earlier assumption, the execution of 10
successive Wrappers normally takes 10 seconds.
Predicting input f allows the first and last halves of the plan
to execute concurrently, resulting in a new execution time
of 5 seconds and a speedup of 2.

W

a

W W

b c

W

d

W W

e f

W

g

W W

h i

W

j

Figure 7: Longer sequence of operators

However, suppose that we used A as a hint to speculate
about B, the speculation of B as a hint to C, and so on. This
is shown in Figure 8 (Each Speculate operator is denoted
by an S; SpecGuard by a G). Note that in the case of
cascading speculation, only one SpecGuard is required.

W W W W W W W W W W

S S S S S S S S S

G

Figure 8: Cascading speculation

Since all wrappers require the same amount of time to
execute and are all I/O-bound, they would act

simultaneously and their confirmations could be processed
at once. Thus, the resulting execution time would simply
be the duration of a single wrapper call plus the overhead
for speculation and the time to process confirmation. Even
if we assume that the overhead and confirmation somehow
requires an additional 100ms, execution would still only
require 1000+100=1100ms, a speedup of 9.09.

Figure 9 shows a version of the plan in Figure 4 further
modified for cascading speculation. If we make our earlier
assumption that each network retrieval takes 1000ms and
computations each require 100ms, then the five flows
require (1100, 1100, 1000, 1000, 1100) and thus the
optimistic speedup is 3200/(1100+100) = 2.67.

Automatic Plan Transformation

In the previous section, we described how speculative plan
execution can yield significant performance gains.
However, the augmentation of the example plan was done
manually. In this section, we present algorithms that
enable the automatic transformation of any information
gathering plan into one capable of speculative execution.

Our overall goal is to maximize the theoretical average
performance gain resulting from speculative execution. At
the same time, we also need to be wary of the overhead (or
cost) of speculative execution – this is primarily the
additional execution time required because of the increased
context switching that thread-level speculation demands.
In particular, if the execution time for the unmodified plan
P was represented as T(P) and we identify a set of possible
transformed plans P � 1..P � m, then we are interested in the
execution time T(P � i) as well as the overhead of
speculation C(P � i) for each of these plans. Given this
information, we then want to find the plan Pbest such that:

Pbest = MIN (T(P � i) – C(P � i)), 1 <= i <= m

Identifying Pbest requires enumerating the set of candidate
transformations and the calculating the most efficient one.

The Set of Candidate Transformations
One natural way to derive the set of candidate plan
transformations is to use a brute force approach that
generates a unique transformation for every case where a
prior operator input can potentially be used as a hint to
predict any future input along the same path.

Let p1..ps represent the number of unique execution paths
in a plan. Next, consider a single execution path, pj,
composed of operators Ob..Od � O1..On. To simplify, let
us assume that each operator has only one input; thus, the

Figure 9: RepInfo with cascading speculation

W

J

SW

W

SPEC

GUARD

SPEC

W
hints

predictions/additions

conf irmations

answers

WSPEC

set of inputs is represented by�
b..

�
d. Then, the number of

possible speculative transformations S(�
k) using the hint

�
k, such that b <= k < d, can be calculated as: �� ��

1)(2 ����� bdbdS k
�

 (Eq.1)

In combining the set of possible transformations for a
given input with the set of inputs along a given path pj, we
see that S(pj), the total number of speculative
transformations for that path is �� d

b kj SpS)()(� (Eq.2)

Finally, to compute the total number of candidate
speculative transformations S(P) for a given plan P, we
need to combine the number of paths with the number of
possible transformations per path. Specifically: �� s

jpSPS
1

)()((Eq.3)

Thus, although a brute force approach allows us to
consider every possible schedule for speculative execution,
it quickly results in a large number of candidate
transformations as the set of operator inputs increases.

The Most-Expensive-Path (MEP) Algor ithm
We can reduce the size of the candidate transformation set
substantially by leveraging Amdahl’s law, which states that
program execution time is a function of its most latent
sequence of instructions. That is, it is not worthwhile to
consider the transformations based on inputs or operators
that do not exist along this path because any improvement
does not allow overall execution to be any faster.

Thus, we can use a most-expensive-path (MEP) approach
that identifies the most latent sequence of operators in an
information gathering plan and focuses the generation of
candidate transformations on that path. The MEP
approach is well-suited for information gathering, a
process that frequently requires the parallel retrieval of
information that is later combined. Conceptually, an MEP-
based transformation algorithm for a given plan P would:

1. Find all paths of P and their execution costs.
2. Identify the MEP.
3. Optimize the MEP for speculative execution.

Although this algorithm allows the MEP to be improved,
what of the new MEP in the resulting transformed plan?
Theoretically, it too can be improved by speculation – in
fact, the refinement process can continue until it is no
longer possible to optimize the MEP of the plan. The
iterative refinement of plans for speculative execution is an
important asset because it provides an anytime property
and thus allows refinement to be bounded by some fixed
time, if necessary. The detailed form of the algorithm
above is called SPEC-REWRITE and is shown in Figure 10.

The figure shows that our refinement of the original plan
consists of continually identifying the MEP for the current
refinement and then optimizing that path via TRANSFORM-
PATH (described shortly). Refinement stops when the

MEP cannot be improved any further. This process
enables us to focus our transformations only on the plan
flow that determines overall execution time. In contrast to
a brute force approach, it requires consideration of less
candidate transformations and has an anytime property.

Enumerating Candidates
Having defined an algorithm that focuses transformation
on a single path (the MEP), our next task is to generate and
compare the set of candidate transformations. This set
includes each member S(pj), as defined by (Eq.2).

Figure 11 shows GENERATE-CANDIDATES, an algorithm
returning the set of possible MEP transformations for
speculative execution. The algorithm iterates over the set
of possible hints (i.e., any input preceding the current
operator) and builds a set of speculative paths using that
hint (i.e., all combinations of predicting future inputs).

GENERATE-CANDIDATES (path)
{
 candSet � Ø
 isFirst � TRUE
 foreach operator op in path
 if (isFirst) then
 isFirst � FALSE
 else
 possibleHints � FIND-POSSIBLE-HINTS(op, path)
 foreach hint h in possibleHints
 curSpecPaths � BUILD-SPEC-PATHS(h, op)
 candSet � candSet 		 		 curSpecPaths
 return candSet
}
 Figure 11: The GENERATE-CANDIDATES algor ithm

SPEC-REWRITE (plan)
{
 mep � Ø
 curPlan := plan
 do
 bestCandPath � Ø
 maxPathCost � 0
 planPaths � FIND-ALL-PATHS (curPlan)
 foreach path p
 planPaths
 curPathCost � PATH-COST (p)
 if (curPathCost > maxPathCost) then
 mep � p
 maxPathCost � curPathCost
 if (mep != Ø) then
 candPaths � GENERATE-CANDIDATES (mep)
 bestCandCost � maxPathCost
 foreach candidate c
 candPaths
 curCandCost � SPEC-PATH-COST (c)
 if (curCandCost < bestCandCost) then
 bestCandCost � curCandCost
 bestCandPath � c
 if (bestCandPath != Ø) then
 curPlan � REPLACE-PATH (curPlan, mep,
 bestCandPath)
 while (bestCandPath != Ø)
 return curPlan
}

Figure 10: The SPEC-REWRITE algor ithm

Evaluating Candidates
In terms of comparing the candidate set, we are interested
in identifying the fastest average execution time of any of
the possible speculative path transformations. We consider
the average time because our candidate evaluation needs to
account for speculation failure as well as success.

If we consider that m represents the original MEP and
that m� 1...m� q are the set of possible MEP transformations,
then the average execution time of that transformation
T(m� i) requires two important statistics: the average
execution time of each operator in that transformation and
a measure describing the predictability of the inputs.

 The average execution time Tavg(Oi) of a single operator
on m� i can easily be determined by keeping a log of prior
executions. Calculating the predictability of a particular
future input to an operator given the existence of a prior
input merely requires that we also keep a record of how
these inputs correspond. For this paper, we assume that,
for each of the collective set of inputs �

1..
�

x, we are able to
ascertain P(�

h|
�

g) where g<h and thus: the probability that
a prior input ag can predict a future input �

h.
To see how to use average execution time and predictive

probability to evaluate m� 1...m� q, let us consider evaluating
the sample path shown in Figure 11. Without any
speculation, the original cost of this execution path is the
sum of its individual operator average execution times:

T(m) = Tavg(Op1) + Tavg(Op2) + Tavg(Op3) + Tavg (Op4)

To calculate the execution time of each possible
speculative transformation on that path, we must use
average execution times and predictive probabilities to
determine average path execution times. For example,
Figure 12 shows one of the many possible speculative
transformations of Figure 11.

Notice that per invocation, there exist four possible
execution scenarios: (a) S1 and S2 are successful
predictors, (b) S1 is successful but S2 is not, (c) S2 is
successful but S1 is not, and (d) both fail. To compute the
average execution time of the transformation in Figure 12,
we calculate the time required by each of these four
scenarios multiplied by the likelihood of their occurrence.

For example, if P(�
2|

�
1)=0.6, P(�

3|
�

2)=0.7, and each
operator requires 1000ms to execute (assume SpecGuard
requires 100ms), then we can figure the average execution
time by first calculating the time T(Si) required for each
scenario and the likelihood L(Si) of that scenario occurring:

(a) T(S1)=2000+100=2100, L(S1)=0.6*0.7=0.42
(b) T(S2)=3000+100=3100, L(S2)=0.6*0.3=0.18
(c) T(S3)=3000+100=3100, L(S3)=0.4*0.7=0.28
(d) T(S4)=4000+100=4100, L(S4)=0.4*0.3=0.12

Thus, the average execution time of this transform is:

 (0.42*2100)+(0.18*3100)+(0.28*3100)+(0.12*4100)
 = 2800ms + SPECULATIVE-OVERHEAD(m � i)
We summarize this average cost calculation in the SPEC-
PATH-COST algorithm shown in Figure 13. As shown, the
algorithm determines the average execution cost of a path
by combining the overhead of speculation on that path with
the summation of each scenario execution time multiplied
by the likelihood that it will occur.

SPEC-PATH-COST (specpath)
{
 cost � SPECULATIVE-OVERHEAD(specpath)
 execScenarios � BUILD-SCENARIOS(specpath)
 foreach scenario s in execScenarios
 cost � cost + PATH-COST(s) * LIKELIHOOD(s)
 return cost
}

Figure 13: The SPEC-PATH-COST algor ithm

Exper imental Results

To demonstrate the performance benefits of speculative
execution, we applied our transformation algorithms to a
real version of the RepInfo information gathering plan.
We used RepInfo because it represented a common data
integration task, similar to plans described in (Friedman &
Weld 1997, Ives et al. 1999, Barish et al. 2000b).

Methodology
We experimented with four different RepInfo execution
paradigms: normal (original plan), best-case (optimistic)
speculation, worst-case (pessimistic) speculation, and
average speculation (predictions correct 50% of the time).

To execute RepInfo, we used the Theseus information
agent execution system (Barish et al. 2000a). Theseus is
an information agent execution system, able to execute
information gathering plans in a dataflow-style manner.
To achieve high concurrency, Theseus uses threads to
process operator firings (as they occur) and supports
pipelined I/O between plan operators. Theseus was
modified to support the Speculate and SpecGuard
operators, running these operators at a lower priority than
other operators. Theseus consists of about 15,000 lines of
code and is written entirely in Java.

We ran Theseus on a Dell Latitude PC containing an
833MHz Intel Pentium III processor, 256MB of RAM,
running Windows 2000 (Professional), and connected to
our local LAN using a 10Mbps Ethernet card.

S1 S2

Op1 Op3Op2 Op4 G

Figure 12: One possible transformation of Fig. 11

Figure 11: A simple operator sequence

Op1 Op3Op2

�

1
�

2
�

3

Op4

�

4

Normal Execution Per formance
The original RepInfo plan was shown earlier in Figure 1.
After building and executing this plan ten times, we found
the following average execution times for its operators:

Operator Time (ms)

Wrapper (Vote-Smart) 2010

Select 10

Wrapper (OpenSecrets1) 2250

Wrapper (OpenSecrets2) 2110

Wrapper (OpenSecrets3) 2380

Wrapper (Yahoo News) 1250

Join 10

OpenSecrets1, OpenSecrets2, and OpenSecrets3 correspond
(respectively) to the wrappers for obtaining the names
page, the member details, and the funding graph. Thus, the
performance of each RepInfo path was:

Path Time (ms)

 VoteSmart � Select � OpenSecrets1,2,3� Join 8770

 VoteSmart � Select � Yahoo� Join 3280

Identifying the longer of the two paths gave us the normal
execution time of the plan: 8770ms.

Speculative Execution Per formance
After ten initial runs using identical input, we used SPEC-
REWRITE to automatically transform the RepInfo plan into
the plan shown in Figure 9, which we called RepInfoSpec.
We then measured the performance of this new plan under
optimistic, pessimistic, and average speculative success.

Transformation. As specified by SPEC-REWRITE, the
MEP of RepInfo was first identified and then rewritten to a
more efficient form, capable of speculative execution. The
MEP of the resulting plan was also identified and
improved. This process continued until it was no longer
possible to improve the MEP. Below, we describe part of
the first iteration of the SPEC-REWRITE algorithm; due to
space constraints, we summarize but omit the details for
the remainder of the steps.

For the first iteration of the plan, SPEC-REWRITE needed
to consider the effect of how statistics related to the
predictability of future inputs could impact average plan
execution time. In particular, the following data was
potentially predictable, in various combinations:

� The set of public officials op, consumed by Select
� The set of federal officials of, consumed by Yahoo and

OpenSecrets1
� The member URL m for each federal official,

consumed by OpenSecrets2
� The funding URL f associated with each member

page, consumed by OpenSecrets3
� The funding graph g for each federal official,

consumed by Join

For purposes of illustration, we consider a subset of the
combinations predictable: the effect of predicting each of
the above data given the input address a. Using a measure
of likelihood gained through applying machine learning
techniques, the efficiency of the different scenarios was:

Scenario L(S) Average Execution Time (ms)

op | a .86 (6760+10)*.86 + (8770+10)*.14 = 7051

of | a .86 (6750+10)*.86 + (8770+10)*.14 = 7043

m | a .16 (4270+10)*.16 + (8770+10)*.84 = 8060

f | a .16 (6380+10)*.16 + (8770+10)*.84 = 8398

g | a .16 (8760+10)*.16 + (8770+10)*.84 = 8778

Since it has the shortest average execution time, the best
candidate is the scenario of |a, where address is used to
predict the set of federal officials. As it turns out, Figure 9
shows that this scenario ends up being accepted as one of
the eventual plan transformations. Continued application
of the algorithm works in a similar fashion and eventually
results in the plan in Figure 9. The final MEP consists of
just the OpenSecrets3 wrapper – however, since there is no
further improvement possible, the algorithm terminates and
returns the resulting plan.

Optimistic Speculation. To measure RepInfoSpec under
best-case conditions, we used the same input that had been
used in earlier runs of the original RepInfo plan. Thus, the
probabilities of predicting all operator inputs was 100%.
The resulting performance was 2400ms, indicating a
speedup of 8770/2400 = 3.65.

Pessimistic Speculation. To measure the performance of
RepInfoSpec under pessimistic conditions, we run it using
new input. All speculation was thus incorrect and the plan
had to execute operators in their original order in addition
to suffering the overhead of speculation. The resulting
plan performance was about 8790ms, a difference not
noticeable when compared to original plan execution time.

Average Speculative Execution Per formance. Finally,
we considered the theoretical average performance time of
RepInfoSpec under conditions where our predictions were
only correct 50% of the time. To do so, we simply halved
the execution times of optimistic and pessimistic versions
of RepInfoSpec and calculated the resulting sum: (0.50 *
2400) + (0.50 * 8790) = 5595ms, resulting in a speedup of
8770/5595 = 1.57. Figure 14 summarizes and compares all
four execution paradigms.

0

2000

4000

6000

8000

10000

Execution Paradigm

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Normal

Optimistic Spec

Pessimistic Spec

Average Spec

Figure 14: Impact of speculative execution on per formance

 Related Work

The approach described here represents a completely new
way to execute information gathering plans. In the context
of existing work on network query engines (Ives et al.
1999, Hellerstein et al. 2000, Naughton et al. 2001), it can
be considered a new form of adaptive query execution. It
is somewhat related to the partial results strategy of
Niagara (Shanmugasundaram et al. 2000) in the sense that
it involves execution of future operators based on
unverified input data. The work here is also related to the
dynamic operator ordering facilitated by Telegraph eddy
(Avnur & Hellerstein 2000) in the sense that both involve
out-of-order execution. The difference between the work
here and these existing techniques is that speculative
execution can be applied anywhere in a plan (not just near
aggregate operators), is dependent on synthetic data, and
can be cascading. Prior techniques operate on real data
(thus limited by the latency of prior operators) and are only
relevant to certain operators or moments during execution.

In a narrow sense, speculative execution can be thought
of as a prefetching strategy (Adali et al. 1996, Godfrey &
Gryz 1997). Like prefetching, speculation allows data to
be retrieved from a source earlier than it normally would.
However, unlike prefetching, speculative execution of
information gathering plans does not lead to the problem of
stale data – since it prefetches when plan execution starts,
it can be seen as always retrieving the most recent data.

Finally, our approach to speculative execution has been
inspired by both its historical and recent success at the
system-level. In addition to work on classic processor
branch prediction, (Chang & Gibson 1999) showed how
speculation can improve file system performance, and
(Hull et al. 2000) showed how “eager” execution can
reduce the database latencies of e-commerce workflows. It
is also worth noting that while there is a long history of
speculative execution under von Neumann architectures,
its use in dataflow machines has never been studied.

Conclusion and Future Work

In this paper, we have described an approach to the
speculative execution of information gathering plans. We
have shown how this approach represents a new form of
run-time parallelism that can lead to significant execution
speedups without sacrificing fairness or safety during
execution. In addition, we have presented algorithms that
enables any information gathering plan to be automatically
transformed into one capable of speculative execution.

We are very encouraged by our initial results and plan to
focus our future efforts on the problem of learning how to
predict data. Although a simple caching scheme can be
used to map hints into predictions, we believe that a more
space-efficient and intelligent alternative strategy exists.
Specifically, by applying standard machine learning
techniques, we can learn classifiers or functions that enable

us to not only efficiently store how hints map to
predictions, but also enable us to predict data based on
hints that we have never previously seen.

Acknowledgements

The research reported here was supported in part by the Air
Force Office of Scientific Research under Grant Number
F49620-01-1-0053, and in part by the Integrated Media
Systems Center, a National Science Foundation
Engineering Research Center, Cooperative Agreement No.
EEC-9529152. Greg Barish was supported in part by a
fellowship from Intel Corporation. Views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any of the
above organizations or any person connected with them.

References
Adali, S.; Candan, K.; Papakonstantinou, Y.; and Subrahmanian,
V. 1996. Query caching and optimization in distributed mediator
systems. SIGMOD-1996.

Avnur, R. and Hellerstein, J.M. 2000. Eddies: Continuously
adaptive query processing, SIGMOD-2000.
Barish, G.; DiPasquo, D.; Knoblock, C.A.; and Minton, S. 2000.
A dataflow approch for information management. International
Conference on Artificial Intelligence (ICAI-2000).
Barish, G.; Knoblock, C.A.; Chen, Y-S.; Minton, S.; Philpot, A.;
and Shahabi C. 2000. The TheaterLoc virtual application. Proc.
Innovative Applications in Artificial Intelligence (IAAI-2000).
Chang, F. and Gibson, G. A. 1999. Automatic I/O hint generation
through speculative execution. Proceedings of Third Symposium
on Operating Systems Design and Implementation (OSDI-99).

Friedman, M., and Weld, D. 1997. Efficient execution of
information gathering plans. IJCAI-1997.
Godfrey, P. and Gryz, J. 1997. Semantic query caching in
heterogeneous databases. KRDB at VLDB 1997.
Hellerstein, J.M.; Franklin, M.J.; Chandrasekaran, S.; Deshpande,
A.; Hildrum, K.; Madden, S.; Raman, V.; and Shah, M.A. 2000
Adaptive query processing: technology in evolution. IEEE Data
Engineering Bulletin, 23(2).
Hull, R.; Kumar, B.; Llirbat, F.; Zhou, G.; Dong, G.; and Su, J.
2000. Optimization techniques for data-intensive decision flows.
Proc of Intl Conf on Data Engineering (ICDE-2000).
Ives, Z.G.; Florescu, D.; Friedman, M.; Levy, A.Y; and Weld,
D.S. 1999. An adaptive query execution system for data
integration. SIGMOD-1999.
Naughton, J.; DeWitt, D.; Maier, D.; et al. 2001. The Niagara
Internet query system. IEEE Data Engineering Bulletin, 24(2)
Shanmugasundaram, J. Tufte, K. DeWitt, D.J.; Naughton, J.F.;
and Maier, D. 2000. Architecting a Network Query Engine for
Producing Partial Results. Proc of WebDB-2000 Workshop.
Wall, D.W. 1991. Limits of instruction-level parallelism, Proc of
the 4th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-91).

