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Abstractx 
Speculative plan execution can be used to significantly 
improve the performance of information gathering plans.  
However, its impact is closely tied to the ability to predict 
data values at runtime.  While caching can be used to issue 
future predictions, such an approach often scales poorly with 
large data sources and is unable to make intelligent 
predictions about novel hints, even when there is an obvious 
relationship between the hint and the predicted value.  In this 
paper, we describe how learning decision trees and 
transducers can lead to a more efficient value prediction 
system as well as one capable of making intelligent 
predictions about new hints.  Our initial results validate these 
claims in the context of the speculative execution of one 
common type of information gathering plan.   

Introduction 

Improving the performance of network-bound information 
gathering plans remains an ongoing research challenge.  
Recent systems that execute such plans (Ives et al. 1999; 
Hellerstein et al. 2000; Naughton et al. 2001) employ 
adaptive query processing techniques to improve execution 
efficiency.  Adaptive query processing is unique to 
network-bound information gathering; it addresses the 
unpredictability of source response time and the potentially 
sizeable results returned by responding to runtime events or 
by dynamically re-ordering tuples or operators.  
 Speculative plan execution (Barish and Knoblock 2002) 
is a new technique that can be used to dramatically improve 
the efficiency of network-bound information gathering 
plans.  The idea involves using data seen early in plan 
execution as a basis for issuing predictions about data 
needed during later parts of execution.  This allows 
sequential data dependency chains to be broken and 
parallelized, leading to better average performance.  
 To maximize the impact of speculative execution on plan 
performance, a good value prediction strategy is required.  
The basic problem involves being able to use some hint h as 
the basis for issuing a predicted value v.  Of course, a few 
simple strategies can be applied.  Caching is an obvious 
choice; we can note that particular hint hx corresponds to a 
particular value vy so that future receipt of hx can lead to a 
prediction of vy.   
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 However, there are two problems with caching.  One is 
space-efficiency: prediction requires the storage of prior 
hint/value mappings.  If the values being predicted are 
associated with large data sources, the resulting lookup 
table can become prohibitively large.  The second problem 
is accuracy: caching only allows prediction of previously 
seen values.  Thus, predictions cannot be issued for new 
hints, even when the former is a simple function of the 
latter or based on a subset of hint attributes. 
 In this paper, we propose a new approach that uses 
machine learning techniques to craft a prediction system 
that is both efficient and accurate.  Our approach uses two 
learning mechanisms for issuing intelligent predictions: (a) 
decision trees, which classify hints based on their most 
informative attributes and (b) subsequential transducers, 
which translate hints into predicted values.  Specifically, 
this paper contributes the following:  

� An approach using decision trees as a means for 
classifying a hint into a prediction. 

� An approach using subsequential transducers as a 
means for translating a hint into a prediction. 

� An algorithm that unifies the incremental learning 
of both structures, based on the type of relationship 
observed between hint and predicted value.  

� Initial results of the application of this algorithm to 
one common type of information gathering plan. 

It is important to note that this work focuses on the 
challenge of what to speculate. Although we review it here 
briefly, prior work (Barish and Knoblock 2002) has 
addressed the details of one method for how to speculate. 
 The rest of this paper is organized as follows.  The next 
section reviews information gathering and speculative 
execution.  In Section 3, we describe how decision trees 
and transducers can be used to build efficient and 
intelligent predictors. Section 4 presents an algorithm that 
unifies the learning of both types of predictors.  Finally, we 
present the initial results of applying our approach to the 
execution of a common type of information gathering plan. 

Preliminar ies  

Information gathering plans retrieve, combine, and 
manipulate data located in remote sources.  Such plans  
consist of a partially-ordered graph of operators O1..On 
connected in producer/consumer fashion.  Each operator Oi 
consumes a set of inputs �

1..
�

p, fetches data or performs a 
computation based on that input, and produces one or more 
outputs 

�
1..

�
q.  The types of operators used in information 

gathering plans varies, but most either retrieve or perform 
computations on data. 



 Operators process and transmit data in terms of relations.  
Each relation R consists of a set of attributes (i.e., columns) 
a1..ac and a set of zero or more tuples (i.e., rows) t1..tr, each 
tuple ti containing values vi1..vic.  We can express relations 
with attributes and a set of tuples as: 

  R (a1..ac) = ((v11..v1c), (v21..v2c), ... (vr1..vrc)) 

Example Plan.  To illustrate, consider the plan executed by 
an information agent called RepInfo.  This plan, shown in 
Figure 1, returns information about U.S. congressional 
officials. Given any U.S. postal address, RepInfo gathers 
the names, funding charts, and recent news related to U.S. 
federal officials (members of the Senate or House of 
Representatives) for that address.  RepInfo retrieves this 
information via the following web data sources: 

� Vote-Smart, to identify the officials for an address. 
� OpenSecrets, for funding data about each official. 
� Yahoo News, for recent news about each official. 

 In Figure 1, Wrapper  operators retrieve data from Web 
sources, a Select operator filters federal officials from other 
types of officials, and a Join operator combines the funding 
and news data in order to return the entire result as a single 
output.  Wrapper-style operators are very common in web 
information gathering plans.  They work by extracting 
semi-structured data from a set of remote web pages into a 
relation of structured data. 

 At the start of execution, an input postal address is used 
to query the Vote-Smart source, returning the set of federal 
officials for that location.  A subsequent Select operator 
filters Senate and House officials.  This subset is then used 
to query Yahoo News and OpenSecrets.  Note that the latter 
requires additional retrieval steps in order to navigate to the 
page containing the funding data.  The results of both are 
then joined together, providing the result shown in Figure 2. 
 The plan shown in Figure 1 is one common type of 
information gathering plan.  Similar plans that combine 
data from two or more distinct sources can be found 
throughout prior research (Friedman and Weld 1997; Ives et 
al. 1999). 

Speculative Plan Execution 
Normally, execution of an information gathering plan 
requires that each of its independent data flows be 
executed serially.  For example, in Figure 1, there are two 
flows.  The first one, f1, includes the Vote-Smart, Select, 
Yahoo News, and Join operators.  The second one, f2, 
includes the Vote-Smart, Select, OpenSecrets, and Join 
operators.  Per Amdahl's Law, the time required to execute 
the plan will be no less than the slowest of these two.  
Table 1 shows the average execution times for f1 and f2.. 

Thus, execution time is MAX(3280, 6500) = 6500ms. 
 Speculative execution overcomes Amdahl's Law by 
parallelizing a sequence of dependent operators through 
predictions about those dependencies.  Predictions are 
made based on hints, which occur earlier during the 
execution of a flow.  For example, in Figure 1, we could 
use the input to Vote-Smart (the postal address) as a hint 
for predicting the likely set of representatives that will be 
communicated to the OpenSecrets and Yahoo operators.  
Thus, the Vote-Smart operator will be executing in parallel 
with the Open Secrets and Yahoo wrappers, generally 
leading to faster execution.  Of course, we need to ensure 
correctness by "guarding" against the release of speculative 
results until earlier predictions are confirmed. 
 Figure 3 shows the plan in Figure 1 modified for 
speculative execution.  In the figure, two types operators 
have been added.  The first is Speculate (labeled SPEC), 
which receives hints and answers, makes predictions, and 
issues confirmations.  These inputs and outputs have been 
labeled for the first Speculate operator in the figure. The 
second new operator is SpecGuard (labeled GUARD), 
which prevents speculative results from exiting the plan 
until the predictions that led to those results has been  
confirmed.  As the figure shows, speculation can be 
cascading (i.e., based on earlier speculation).   Correctness 
is enforced by SpecGuard – only confirmed speculation 
can exit the plan (and affect the external world).    
 In summary, Figure 3 shows three instances of 
speculation: (a) the prediction of federal representatives 
based on street address, (b) the prediction of OpenSecrets 
member page URL based on the name of the official, and 
(c) the prediction of the OpenSecrets funding page URL 
based on the member page URL. In (Barish and Knoblock 
2002), we demonstrate how executing this plan can result 
in an optimistic speedup of 3.65.  

Table 1: Execution time of RepInfo data flows 

Figure 1: The RepInfo plan 

Figure 2: Results from executing RepInfo 

Flow Path T ime (ms)
f 1
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Figure 3: RepInfo modified for  speculative execution 



Data Value Prediction 

While speculative plan execution can lead to substantial 
speedups, its effectiveness is directly related to the accuracy 
of the predictions issued.  Good predictions improve the 
average execution time; poor predictions have the opposite 
effect.  Although prediction based on caching prior 
hint/answer tuples is possible, this method is space-
inefficient and unable to make predictions for new hints.  
 To build a more efficient and intelligent predictor, we 
show how machine learning techniques can be applied to 
the problem.  In this section, we describe how two such 
techniques, decision trees and transducers, can be 
employed.  Both are more efficient than caching and both 
allow predictions to be made about novel hints. 

Prediction Using Decision Trees 
Decision trees are an effective tool for classifying data.  By 
calculating the information gain from a series of multi-
attribute examples, we can use decision trees to identify and 
rank the attributes most useful when making a prediction.  
This last feature enables decision trees to issue reasonable 
predictions about novel hints.  
 For example, for the modified plan in Figure 3, we can 
use a subset of address attributes to predict the federal 
officials that will be fetched.  Specifically, we are interested 
in predicting the two Senate members and single House of 
Representatives member for that address. 
 Intuitively, we know that a given senator can be 
associated with millions of addresses and a given 
representative can be associated with thousands.  Decision 
trees can be used to help us identify that the state attribute 
of the address hint is the most informative for senators 
while city and zip code are the most informative hints when 
predicting representatives.   
 As a detailed example, let us consider building decision 
trees that classify House of Representatives members based 
on postal addresses.  Table 2 shows 10 sample addresses 
and their corresponding representatives.  Using the ID3-
based C5.0 classifier based on (Quinlan 1986), the 
following decision list is constructed: 

city = Culver City: Jane Harman (0) 
city = Marina del Rey: Jane Harman (2) 
city = Venice: Jane Harman (3) 
city = Santa Monica: Henry Waxman (1) 
city = Los Angeles: 
:...zip <= 90064: Henry Waxman (1) 
    zip > 90064: Diane Watson (2) 

 We can then use this list to issue predictions for recurring 
and new hints.  For example, we can predict Jane Harman 
for the recurring address 4676 Admiralty Way, Marina del 
Rey, CA as well as for the new address 4680 Admiralty 
Way, Marina del Rey, CA.   
 Note that predictions will not always be correct – for 
example, the above tree incorrectly predicts Jane Harman 
(not Diane E. Watson) as the representative for 4065 
Glencoe Avenue, Marina del Rey, CA, 90292.  However, 
since these are predictions for execution and not final 
answers, such inaccuracy is not fatal – a speculative 
execution system that ensures correctness can recover from 
such errors.  

 In summary, decision trees are effective because they 
enable us to issue intelligent predictions about recurring 
and new hints, accomplishing the latter by learning which 
attributes of the hint are the most informative and ranking 
them accordingly.  Note that, in the worst case where the 
input contains only one attribute or when each hint maps to 
a unique value, decision-tree based prediction reduces to 
simple caching.  Thus, decision trees represent a means for 
prediction that trades infrequent inaccuracies for space 
efficiency and the ability to predict from novel hints.  

Prediction Using Finite State Devices 
While predictions based on decision trees allow us to 
predict previously seen data based on new hints, they do 
not enable us to make novel predictions – that is, they do 
not enable us to predict values that we have never 
otherwise seen occur during execution. However, if we 
model the problem of prediction as one of translation, we 
can issue novel predictions.   
 Natural language processing research often relies on 
finite state devices to accomplish translation (Knight and 
Al-Onaizan 1998).  One finite state device of interest is the 
subsequential transducer. This device is a state transition 
graph that consists of nodes (states) connected by arcs 
(transitions) labeled x/y where x is the input string and y is 
the output string.  The special character �  indicates that no 
output is generated, the character ? refers to any symbol 
other than those appearing on any remaining arcs for that 
node, and the # character corresponds to the end of the 
input.  Arcs labeled with only output are also possible.   
 To understand why transducers are useful and how they 
can be applied, consider again the RepInfo plan in Figure 
1.  As the figure shows, three separate wrapper calls are 
required to obtain the funding graph we want.  First, a 
representative name is used to locate the OpenSecrets 
member URL.  This result allows us to locate the funding 
URL, the web page that contains the graph we want.  
Finally, we need to fetch that page in order to identify the 
URL of the graph image.  This costly interleaving of 
navigation and retrieval is commonplace for information 
agents, particularly those that query web sources.  
 However, in looking at the data retrieved, we see that it 
is surprisingly predictable.  As Table 3 shows, although the 
representative name does not correspond to the member 
URL, the member URL does correspond to the funding 
URL. Specifically, the latter can be generated from the 
former by replacing summary.asp with sector.asp (more 
precisely, replacing "ummary" with "ector").  Thus, we 
could build a transducer that translates a  member URL 

Table 2:  Sample constituent postal addresses 

Street City State Zip Representative

14044 Panay  Way  Marina del Rey CA 90292 Jane Harman

4676 Admiralty  Way Marina del Rey CA 90292 Jane Harman

101 Washington Blv d Venice CA 90292 Jane Harman

1301 Main St Venice CA 90291 Jane Harman

1906 Lincoln Blv d Venice CA 90291 Jane Harman

2107 Lincoln Blv d Santa Monica CA 90405 Henry  Wax man

2222 S Centinela Av e Los Angeles CA 90064 Henry  Wax man

4065 Glencoe Av e Marina del Rey CA 90292 Diane Watson

3970 Berry man Av e Los Angeles CA 90066 Diane Watson

11461 Washington Blv d Los Angeles CA 90066 Diane Watson



into a funding URL, enabling us to make novel predictions 
(i.e., predict funding URLs for new member URLs).  

One such transducer that accomplishes this is shown in 
Figure 4.  Following states 0 through 5, we can see how a 
member URL is translated into a funding URL.  For 
example, the "http://www.opensecrets.org/" part of each 
member URL causes state 0 to be maintained (although 
state 1 is briefly visited for each "s", since no "u" follows, 
control is returned to state 1).   Meanwhile, each input 
symbol is copied to the output.  Finally, the "s" of 
"summary" invites state 1 and the "u" is replaced by "e", 
leading to state 2.  Transition to and at state 3 enable "mma" 
to be replaced by "cto".  Transition to state 4 occurs upon 
"r" and the other arc at this state removes the "y" from 
"summary" and the cycle at this state enables the remainder 
of the URL to be appended.   

 At this point, it is tempting to ask: is a transducer simply 
just a more inefficient means for saying replace word wx 
with word wy?  Although there is no question that 
transducers can result in word-level replacement, as shown 
in Figure 4, they permit a far more powerful way of 
describing – at a letter-level – how replacement occurs.  For 
example, for a source value "Marina del Rey" that is 
embedded later in an encoded URL as "Marina+Del+Rey", 
we can learn the transducer shown in Figure 5, which 
captures the higher-level notion of replace all spaces with 
plus signs.   Thus, transducers are a more powerful way to 
describe how letters from a source value can be used to 
generate a target value. 

A Unifying Learning Algor ithm 

In this section, we present an incremental learning 
algorithm called RETROSPECT that incorporates the value 
prediction methods above.   
 In general, RETROSPECT uses previous hint and answer 
tuples to incrementally learn how to construct prediction 
tuples.  Specifically, the algorithm learns a predictor for 
each attribute of the answer tuple.  This predictor is either a 
decision tree or a transformation rule, the latter possibly 
including a transducer.  For example, based on the type of 
data in Table 2, RETROSPECT learns a decision tree for 
predicting federal official given a street address.  In 
contrast, based on the data in Table 3, the algorithm learns a 
transformation rule (that includes a transducer)  for 
predicting Funding URL given a Member URL. 
   RETROSPECT is applied at the point of speculation (e.g., 

by the Speculate operator) for each hint and answer tuple 
pair it receives.  The algorithm uses the first pair to 
initialize all of its predictors as transformation rules.  Each 
rule describes how to use tokens of the hint tuple to derive 
a value for a particular attribute of the answer tuple.  This 
allows speculation to occur for the very next tuple. 

 Future answer tuple values are then first compared with 
the prediction tuple value issued.  If they match (i.e., an 
accurate prediction), nothing is done – the initial 
transformation rule was correct.  If not, RETROSPECT 
attempts repair.  Repairing a transformation rule involves 
choosing a new hypothesis that describes the current 
situation as well as those prior.  If no refinement exists, the 
method of prediction is changed to classification – thus, a 
decision tree is employed.  From then on, all future 
incorrect predictions are handled via incremental decision 
tree refinement – for example, using a method similar to 
that described by (Utgoff 1989).  
 Transformation rules require further explanation. Each 
rule is simply a recipe for how to compose a particular 
value of the prediction tuple from the hint tuple.  Rules 
consist of an ordered set of operations that progressively 
compose the answer value string.  Table 4 shows all 
possible operations and what they concatenate. 

 Building a transformation rule for a particular hint tuple 
and answer value pair then involves three basic steps: 

1. Tokenizing the hint tuple and answer values 
2. Finding the best alignment between the token sets  
3. Using that alignment to build a transformation rule 

 The first step is tokenization.  Hint tuples are naturally 
tokenized by their attribute boundaries.  However, certain 
hint attributes, as well as the answer value, may require 
further domain-dependent tokenization.  With web-based 
information gathering plans, we have found it necessary to 
support HTTP URL tokenization.  For example, consider 
tokenization of the following hint and answer tuple pair:  

FUNCTION Retrospect 
  INPUT: old-predictor, hint-tuple, answer-value, predicted-value 
  OUTPUT: new-predictor 
{ 
  if old-predictor is NULL 
    new-predictor � create transformation-rule 
  else      
    new-predictor � NULL 
    if predicted-value <> answer-value 
      if old-predictor was a transformation-rule 
        new-predictor � refine transformation-rule hypothesis 
        if unable to refine transform-rule hypothesis 
          new-predictior � create decision-tree 
          add (hint, answer-value) example to new decision-tree  
      else  /* old-predictor is a decision tree */ 
         add (hint, answer-value) example to existing decision-tree 
  return new-predictor        
} 

Nam e Mem ber URL Funding URL

Box er http://w w w .opensecrets.org/summary .asp?CID=N00006692&cy cle=2002 http://w w w .opensecrets.org/sector.asp?CID=N00006692&cy cle=2002

Feinstein http://w w w .opensecrets.org/summary .asp?CID=N00007364&cy cle=2002 http://w w w .opensecrets.org/sector.asp?CID=N00007364&cy cle=2002

Harman http://w w w .opensecrets.org/summary .asp?CID=N00006750&cy cle=2002 http://w w w .opensecrets.org/sector.asp?CID=N00006750&cy cle=2002

Table 3: The relationship between official name and the resulting OpenSecrets member  and funding URLs 

Oper at ion Concate nate s

Append String literal

Copy Tokens replicated f rom hint

Transduce Tokens transduced f rom hint

Table 4: Transformation operations 

0 1 3?/?

m/t y/ �

u/e
5

r/r

a/o

s/s
4

?/?

2
m/c

?/?

#/#

Figure 4: Transducer  for  member  URL to funding URL 

Figure 5: Transducer  that replaces spaces with plus signs 

0

?/?

[  ] /+

1
#/#



`The second step of building a transformation rule is to 
find an alignment between the tokenized hint tuple and 
answer value.  An alignment describes a mapping from hint 
to answer value tokens, using one of two kinds of edges.  
Exact edges are used to describe a complete replication of a 
hint token while a close edge describes an approximate 
replication.  "Closeness" occurs when some hint and value 
are not equal, but some threshold percentage �  of characters 
from the hint exist in the answer token.  For example, one 
possible alignment of the above hint/answer pair is: 

In this example, "Marina del Rey" and "Marina+del+Rey" 
are close in that the hint token contains all of the characters 
in the answer value, but the two are not equal. 

There may exist several possible alignments and thus 
several possible transformation rule hypotheses.  Any 
method of choosing one hypothesis over another can be 
used, since all are capable of generating the target value.  
However, alternative alignments are not discarded; they 
may be used later during refinement.  

Once an alignment has been chosen, the transformation 
rule can be built.  This simply involves iterating through 
each token of the answer value and adding one of the 
operations in Table 4 to the rule, based on the alignment (or 
lack of) with the tokenized hint.  When a value token 
cannot be aligned to a hint token, Append is chosen.  When 
an exact match exists, Copy is chosen.  Finally, Transduce 
is used for close matches.  Each Transduce is associated 
with a transducer that describes how to translate the hint 
token into the value token.  Learning a transducer can be 
done via the approach suggested by (Oncina et al. 1993) or 
by simpler, approximation algorithms.  
Hypothesis refinement.  When a predicted value does not 
match the real value and the current method of prediction is 
transformation, RETROSPECT can potentially repair the old 
rule through hypothesis refinement.  As described earlier, 
building a transformation rule requires choosing from a set 
of hypotheses H = (h0, h1,...hk). During refinement, a new 
set H', is developed for the hint/answer example that 
violates the existing rule and this new set is used to filter 
out incompatible hypotheses from the previous set via H = 
H �  H'.  If H <> � , a new hypothesis is chosen from the 
resulting H, otherwise refinement is deemed impossible.     

Example: Learning RepInfo Predictors. As another 
example of RETROSPECT, let us consider how it learns the 
latter two predictors in Figure 3.   That is, we want one that 
is able to predict member URL given the name of the 
official and one that predicts the funding URL given 
member URL.  Our discussion will assume that the 
examples seen during incremental learning are the same as 
those in Table 3 (Boxer, Feinstein, and Harman).  
 Consider the first predictor.  For the first example, the 
hint "Boxer" is followed by the member URL.  As 

RETROSPECT specifies, a transform rule is the form of the 
initial predictor.  However, since there is no alignment 
between hint and answer tuples (i.e., they share no 
common tokens) the resulting transformation rule is: 
 1. APPEND ("http://...summary.asp...CID=N006692...2002") 

The next example (Feinstein) violates this rule and, since 
there are no alternatives that explain both, refinement is 
impossible.  Thus, the algorithm reverts to a decision tree 
to learn the relationship between official name and URL. 
 Now consider learning the predictor of funding URL 
based on member URL.  As with the previous predictor, 
RETROSPECT first builds a transformation rule.  However, 
unlike the previous predictor, the alignment: 

is possible and results in the (simplified) rule: 
 1. COPY (hint tokens 0-2) 
 2. TRANSDUCE (hint token 3, � 1) 
 3. COPY (hint tokens 4-11) 

In this case, the � 1 transducer is similar to the one in Figure 
4.  Future examples (Feinstein, Boxer, etc) validate this 
rule and no further refinement is necessary. 
 Thus, after learning the predictors for the data in Table 
3, the system can then use the name of a federal official to 
predict the member URL and subsequently use this 
speculative member URL to predict the funding URL.  
Thus, both predictions can be issued in parallel.    

Preliminary Results 

To begin evaluating the efficiency and accuracy of  
RETROSPECT, we have initially compared it to a prediction 
method based on caching for the modified RepInfo plan in 
Figure 3.  Specifically, we conducted three tests – one for 
each speculative opportunity  in Figure 3 – and compared 
both approaches.  These three tests are summarized below: 

 Each test involved drawing strain training examples and 
stest testing samples from the same larger pool of size spool.  
The P1 pool consisted of 5000 addresses in a distribution 
roughly equivalent to that of the US population (e.g., there 
were more addresses from New York and California than 
Wyoming).  For P2, the pool was the set of all US senators 
and representatives (435 + 100 = 535). The P3 pool 
consisted of all 535 OpenSecrets member URLs. The 
predictors learned by RETROSPECT were the same as 
described earlier: P1 and P2 were decision trees while P3 
was a transformation rule. Table 5 shows the accuracy and 
efficiency of RETROSPECT as compared to caching.  

Table 5: Preliminary results compar ing RETROSPECT to caching 

Tes t Hin t Pr ed ict io n

P1 street address federal of f icial

P2 federal of f icial member URL

P3 member URL funding URL

hint tuple

answer va lue URL

http:// foo.com / bar.cgi ? s = Marina+del+Rey & s = CA

CITY STATE

Marina del Rey CA

| http:// | foo.com | / | bar.cgi | ? | c | = | Marina+del+Rey | & | s | = | CA |

| Marina del Rey | CA | 

close exact

| http:// | www.opensecrets.org | / | sector.asp | ? | CID | = | N00006692 | & | cycle | = | 2002 |

| http:// | www.opensecrets.org | / | summary.asp | ? | CID | = | N00006692 | & | cycle | = | 2002 |

Caching Retrospec t

TEST sp o o l str ain stest Accuracy Size (bits) Accuracy Size (bits)

P1 5000 1000 1000 20.42% 458208 85.48% 113968

P2 535 100 100 17.07% 91840 16.07% 91840

P3 535 100 100 16.78% 117600 99.90% 10944



 For P1 and P3, RETROSPECT was substantially more 
accurate and space efficient than caching.  However, in P2 
– where there was only one attribute by which to classify – 
RETROSPECT degenerated into a tree with one branch. Even 
under this worst-case classification scenario, however, use 
of RETROSPECT was roughly equivalent to caching. 

Related Work 

Learning to speculatively execute programs has been well-
studied in computer science.  Historically, computer 
architecture research has largely focused on branch 
prediction – which involves predicting control, not data.  
Recently, hardware-level value prediction has received 
some attention in the literature; both (Lipasti et al. 1996) 
and (Sazeides and Smith 1997) provide good overviews of 
current approaches.  However, in general, the techniques 
that can be used for hardware-level value prediction tend to 
be limited by resource constraints.     
 To the best of our knowledge, this is the first paper that 
discusses learning value predictors for the speculative 
execution of information gathering plans.  (Hull et al. 2000) 
describe use of speculative execution in a decision-flow 
framework, but speculation in that system is control-based 
and there is no learning involved.  There is an interesting 
relationship between our work and (Shanmugasundaram et 
al. 2000), which describes how Niagara executes plans 
based on partial results to combat the performance penalties 
of blocking operators (like NEST).  Both describe plan 
execution based on unconfirmed results; however, the 
partial results approach deals with data that has been 
generated by other operators in the system (no learning 
involved) and applies to consumers of aggregate operators, 
whereas the approach here describes how to predict 
intermediate data and can be applied anywhere within a 
plan (although it would most commonly occur after a 
network read).   The partial results approach is also similar 
to past work in optimizing aggregate queries (Hellerstein et 
al. 1997) and approximate query answering.  All of these 
efforts are related to the notion of speculative execution in 
that they attempt to increase performance by computing 
based on unconfirmed results.  However, unlike speculative 
execution, none generate data predictions to accomplish 
that execution (i.e., they leverage real results, but in partial 
form) and thus none of them need to synthesize data.   

Conclusion 

Successful speculative execution of information gathering 
plans is fundamentally linked with the ability to make good 
predictions.  In this paper, we have described how two 
simple techniques – decision trees and transducers – can be 
applied to the problem.  Our initial experimental results 
have shown that such predictors are not only more space 
efficient than simple caching schemes but that they are also 
capable of issuing predictions for novel hints.  We believe 
that a bright future exists for data value prediction at the 
information gathering level, primarily because of the 
potential speedup enabled by speculative execution and 
because of the availability of resources (i.e., memory) that 
exist at higher levels of execution, enabling more 
sophisticated machine learning techniques to be applied.  
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