
Learning Efficient Value Predictors for Speculative Plan Execution*

Greg Barish and Craig A. Knoblock
University of Southern California / Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292
{barish, knoblock}@isi.edu

Abstractx
Speculative plan execution can be used to significantly
improve the performance of information gathering plans.
However, its impact is closely tied to the ability to predict
data values at runtime. While caching can be used to issue
future predictions, such an approach often scales poorly with
large data sources and is unable to make intelligent
predictions about novel hints, even when there is an obvious
relationship between the hint and the predicted value. In this
paper, we describe how learning decision trees and
transducers can lead to a more efficient value prediction
system as well as one capable of making intelligent
predictions about new hints. Our initial results validate these
claims in the context of the speculative execution of one
common type of information gathering plan.

Introduction

Improving the performance of network-bound information
gathering plans remains an ongoing research challenge.
Recent systems that execute such plans (Ives et al. 1999;
Hellerstein et al. 2000; Naughton et al. 2001) employ
adaptive query processing techniques to improve execution
efficiency. Adaptive query processing is unique to
network-bound information gathering; it addresses the
unpredictability of source response time and the potentially
sizeable results returned by responding to runtime events or
by dynamically re-ordering tuples or operators.
 Speculative plan execution (Barish and Knoblock 2002)
is a new technique that can be used to dramatically improve
the efficiency of network-bound information gathering
plans. The idea involves using data seen early in plan
execution as a basis for issuing predictions about data
needed during later parts of execution. This allows
sequential data dependency chains to be broken and
parallelized, leading to better average performance.
 To maximize the impact of speculative execution on plan
performance, a good value prediction strategy is required.
The basic problem involves being able to use some hint h as
the basis for issuing a predicted value v. Of course, a few
simple strategies can be applied. Caching is an obvious
choice; we can note that particular hint hx corresponds to a
particular value vy so that future receipt of hx can lead to a
prediction of vy.

*
 The research reported here was supported in part by the Air Force Office of

Scientific Research under Grant Number F49620-01-1-0053, and in part by the
Integrated Media Systems Center, a National Science Foundation Engineering
Research Center, Cooperative Agreement No. EEC-9529152. Views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of any
of the above organizations or any person connected with them.

 However, there are two problems with caching. One is
space-efficiency: prediction requires the storage of prior
hint/value mappings. If the values being predicted are
associated with large data sources, the resulting lookup
table can become prohibitively large. The second problem
is accuracy: caching only allows prediction of previously
seen values. Thus, predictions cannot be issued for new
hints, even when the former is a simple function of the
latter or based on a subset of hint attributes.
 In this paper, we propose a new approach that uses
machine learning techniques to craft a prediction system
that is both efficient and accurate. Our approach uses two
learning mechanisms for issuing intelligent predictions: (a)
decision trees, which classify hints based on their most
informative attributes and (b) subsequential transducers,
which translate hints into predicted values. Specifically,
this paper contributes the following:

� An approach using decision trees as a means for
classifying a hint into a prediction.

� An approach using subsequential transducers as a
means for translating a hint into a prediction.

� An algorithm that unifies the incremental learning
of both structures, based on the type of relationship
observed between hint and predicted value.

� Initial results of the application of this algorithm to
one common type of information gathering plan.

It is important to note that this work focuses on the
challenge of what to speculate. Although we review it here
briefly, prior work (Barish and Knoblock 2002) has
addressed the details of one method for how to speculate.
 The rest of this paper is organized as follows. The next
section reviews information gathering and speculative
execution. In Section 3, we describe how decision trees
and transducers can be used to build efficient and
intelligent predictors. Section 4 presents an algorithm that
unifies the learning of both types of predictors. Finally, we
present the initial results of applying our approach to the
execution of a common type of information gathering plan.

Preliminar ies

Information gathering plans retrieve, combine, and
manipulate data located in remote sources. Such plans
consist of a partially-ordered graph of operators O1..On
connected in producer/consumer fashion. Each operator Oi
consumes a set of inputs �

1..
�

p, fetches data or performs a
computation based on that input, and produces one or more
outputs

�
1..

�
q. The types of operators used in information

gathering plans varies, but most either retrieve or perform
computations on data.

 Operators process and transmit data in terms of relations.
Each relation R consists of a set of attributes (i.e., columns)
a1..ac and a set of zero or more tuples (i.e., rows) t1..tr, each
tuple ti containing values vi1..vic. We can express relations
with attributes and a set of tuples as:

 R (a1..ac) = ((v11..v1c), (v21..v2c), ... (vr1..vrc))

Example Plan. To illustrate, consider the plan executed by
an information agent called RepInfo. This plan, shown in
Figure 1, returns information about U.S. congressional
officials. Given any U.S. postal address, RepInfo gathers
the names, funding charts, and recent news related to U.S.
federal officials (members of the Senate or House of
Representatives) for that address. RepInfo retrieves this
information via the following web data sources:

� Vote-Smart, to identify the officials for an address.
� OpenSecrets, for funding data about each official.
� Yahoo News, for recent news about each official.

 In Figure 1, Wrapper operators retrieve data from Web
sources, a Select operator filters federal officials from other
types of officials, and a Join operator combines the funding
and news data in order to return the entire result as a single
output. Wrapper-style operators are very common in web
information gathering plans. They work by extracting
semi-structured data from a set of remote web pages into a
relation of structured data.

 At the start of execution, an input postal address is used
to query the Vote-Smart source, returning the set of federal
officials for that location. A subsequent Select operator
filters Senate and House officials. This subset is then used
to query Yahoo News and OpenSecrets. Note that the latter
requires additional retrieval steps in order to navigate to the
page containing the funding data. The results of both are
then joined together, providing the result shown in Figure 2.
 The plan shown in Figure 1 is one common type of
information gathering plan. Similar plans that combine
data from two or more distinct sources can be found
throughout prior research (Friedman and Weld 1997; Ives et
al. 1999).

Speculative Plan Execution
Normally, execution of an information gathering plan
requires that each of its independent data flows be
executed serially. For example, in Figure 1, there are two
flows. The first one, f1, includes the Vote-Smart, Select,
Yahoo News, and Join operators. The second one, f2,
includes the Vote-Smart, Select, OpenSecrets, and Join
operators. Per Amdahl's Law, the time required to execute
the plan will be no less than the slowest of these two.
Table 1 shows the average execution times for f1 and f2..

Thus, execution time is MAX(3280, 6500) = 6500ms.
 Speculative execution overcomes Amdahl's Law by
parallelizing a sequence of dependent operators through
predictions about those dependencies. Predictions are
made based on hints, which occur earlier during the
execution of a flow. For example, in Figure 1, we could
use the input to Vote-Smart (the postal address) as a hint
for predicting the likely set of representatives that will be
communicated to the OpenSecrets and Yahoo operators.
Thus, the Vote-Smart operator will be executing in parallel
with the Open Secrets and Yahoo wrappers, generally
leading to faster execution. Of course, we need to ensure
correctness by "guarding" against the release of speculative
results until earlier predictions are confirmed.
 Figure 3 shows the plan in Figure 1 modified for
speculative execution. In the figure, two types operators
have been added. The first is Speculate (labeled SPEC),
which receives hints and answers, makes predictions, and
issues confirmations. These inputs and outputs have been
labeled for the first Speculate operator in the figure. The
second new operator is SpecGuard (labeled GUARD),
which prevents speculative results from exiting the plan
until the predictions that led to those results has been
confirmed. As the figure shows, speculation can be
cascading (i.e., based on earlier speculation). Correctness
is enforced by SpecGuard – only confirmed speculation
can exit the plan (and affect the external world).
 In summary, Figure 3 shows three instances of
speculation: (a) the prediction of federal representatives
based on street address, (b) the prediction of OpenSecrets
member page URL based on the name of the official, and
(c) the prediction of the OpenSecrets funding page URL
based on the member page URL. In (Barish and Knoblock
2002), we demonstrate how executing this plan can result
in an optimistic speedup of 3.65.

Table 1: Execution time of RepInfo data flows

Figure 1: The RepInfo plan

Figure 2: Results from executing RepInfo

Flow Path T ime (ms)
f 1

VoteSmart � Select � Yahoo � Join 3280

f 2
VoteSmart � Select � OpenSecrets � Join 6500

Wr apper
OpenSecrets

(member page)

Join
name

Select
senators,

house reps

Wrapper
Vote-Smart

addr ess all offic ials feder al offic ials

gr aph URL

r ecent news combined r esults

Wr apper
OpenSecrets

(funding page)

funding URL

Wr apper
Yahoo News

Wr apper
OpenSecrets
(names page)

member URL

Ter m: 2nd
Fir st Elected: 1992
Phone: (202) 224-3553
Fax: (415) 956-6701

Address:
SH-112
Washington, DC 20510-0505
Distr ict Off ice: San Francisco
Distr ict Phone: (415) 403-0100

Sen. Barbara Boxer (D-CA)

� � � � � � � � ��� 	
 � � � �

� �

Energy Dept. Sees Rise in Costs (AP)

Bush Adopts Clinton Arsenic Standard (AP)

Boxer and Staff Tested for Anthrax Exposure
(KPIX)

Boxer Goes Underground to Keep Working
(KPIX)

Anthrax Confirmed at U.S. Congress (Reuters)

Congress Mulling New Round Of Base
Closures (San Diego Daily Transcript

W

J

SW

W

SPEC

GUARD

SPEC

W
hints

predictions/additions

conf irmations

answers

WSPEC

Figure 3: RepInfo modified for speculative execution

Data Value Prediction

While speculative plan execution can lead to substantial
speedups, its effectiveness is directly related to the accuracy
of the predictions issued. Good predictions improve the
average execution time; poor predictions have the opposite
effect. Although prediction based on caching prior
hint/answer tuples is possible, this method is space-
inefficient and unable to make predictions for new hints.
 To build a more efficient and intelligent predictor, we
show how machine learning techniques can be applied to
the problem. In this section, we describe how two such
techniques, decision trees and transducers, can be
employed. Both are more efficient than caching and both
allow predictions to be made about novel hints.

Prediction Using Decision Trees
Decision trees are an effective tool for classifying data. By
calculating the information gain from a series of multi-
attribute examples, we can use decision trees to identify and
rank the attributes most useful when making a prediction.
This last feature enables decision trees to issue reasonable
predictions about novel hints.
 For example, for the modified plan in Figure 3, we can
use a subset of address attributes to predict the federal
officials that will be fetched. Specifically, we are interested
in predicting the two Senate members and single House of
Representatives member for that address.
 Intuitively, we know that a given senator can be
associated with millions of addresses and a given
representative can be associated with thousands. Decision
trees can be used to help us identify that the state attribute
of the address hint is the most informative for senators
while city and zip code are the most informative hints when
predicting representatives.
 As a detailed example, let us consider building decision
trees that classify House of Representatives members based
on postal addresses. Table 2 shows 10 sample addresses
and their corresponding representatives. Using the ID3-
based C5.0 classifier based on (Quinlan 1986), the
following decision list is constructed:

city = Culver City: Jane Harman (0)
city = Marina del Rey: Jane Harman (2)
city = Venice: Jane Harman (3)
city = Santa Monica: Henry Waxman (1)
city = Los Angeles:
:...zip <= 90064: Henry Waxman (1)
 zip > 90064: Diane Watson (2)

 We can then use this list to issue predictions for recurring
and new hints. For example, we can predict Jane Harman
for the recurring address 4676 Admiralty Way, Marina del
Rey, CA as well as for the new address 4680 Admiralty
Way, Marina del Rey, CA.
 Note that predictions will not always be correct – for
example, the above tree incorrectly predicts Jane Harman
(not Diane E. Watson) as the representative for 4065
Glencoe Avenue, Marina del Rey, CA, 90292. However,
since these are predictions for execution and not final
answers, such inaccuracy is not fatal – a speculative
execution system that ensures correctness can recover from
such errors.

 In summary, decision trees are effective because they
enable us to issue intelligent predictions about recurring
and new hints, accomplishing the latter by learning which
attributes of the hint are the most informative and ranking
them accordingly. Note that, in the worst case where the
input contains only one attribute or when each hint maps to
a unique value, decision-tree based prediction reduces to
simple caching. Thus, decision trees represent a means for
prediction that trades infrequent inaccuracies for space
efficiency and the ability to predict from novel hints.

Prediction Using Finite State Devices
While predictions based on decision trees allow us to
predict previously seen data based on new hints, they do
not enable us to make novel predictions – that is, they do
not enable us to predict values that we have never
otherwise seen occur during execution. However, if we
model the problem of prediction as one of translation, we
can issue novel predictions.
 Natural language processing research often relies on
finite state devices to accomplish translation (Knight and
Al-Onaizan 1998). One finite state device of interest is the
subsequential transducer. This device is a state transition
graph that consists of nodes (states) connected by arcs
(transitions) labeled x/y where x is the input string and y is
the output string. The special character � indicates that no
output is generated, the character ? refers to any symbol
other than those appearing on any remaining arcs for that
node, and the # character corresponds to the end of the
input. Arcs labeled with only output are also possible.
 To understand why transducers are useful and how they
can be applied, consider again the RepInfo plan in Figure
1. As the figure shows, three separate wrapper calls are
required to obtain the funding graph we want. First, a
representative name is used to locate the OpenSecrets
member URL. This result allows us to locate the funding
URL, the web page that contains the graph we want.
Finally, we need to fetch that page in order to identify the
URL of the graph image. This costly interleaving of
navigation and retrieval is commonplace for information
agents, particularly those that query web sources.
 However, in looking at the data retrieved, we see that it
is surprisingly predictable. As Table 3 shows, although the
representative name does not correspond to the member
URL, the member URL does correspond to the funding
URL. Specifically, the latter can be generated from the
former by replacing summary.asp with sector.asp (more
precisely, replacing "ummary" with "ector"). Thus, we
could build a transducer that translates a member URL

Table 2: Sample constituent postal addresses

Street City State Zip Representative

14044 Panay Way Marina del Rey CA 90292 Jane Harman

4676 Admiralty Way Marina del Rey CA 90292 Jane Harman

101 Washington Blv d Venice CA 90292 Jane Harman

1301 Main St Venice CA 90291 Jane Harman

1906 Lincoln Blv d Venice CA 90291 Jane Harman

2107 Lincoln Blv d Santa Monica CA 90405 Henry Wax man

2222 S Centinela Av e Los Angeles CA 90064 Henry Wax man

4065 Glencoe Av e Marina del Rey CA 90292 Diane Watson

3970 Berry man Av e Los Angeles CA 90066 Diane Watson

11461 Washington Blv d Los Angeles CA 90066 Diane Watson

into a funding URL, enabling us to make novel predictions
(i.e., predict funding URLs for new member URLs).

One such transducer that accomplishes this is shown in
Figure 4. Following states 0 through 5, we can see how a
member URL is translated into a funding URL. For
example, the "http://www.opensecrets.org/" part of each
member URL causes state 0 to be maintained (although
state 1 is briefly visited for each "s", since no "u" follows,
control is returned to state 1). Meanwhile, each input
symbol is copied to the output. Finally, the "s" of
"summary" invites state 1 and the "u" is replaced by "e",
leading to state 2. Transition to and at state 3 enable "mma"
to be replaced by "cto". Transition to state 4 occurs upon
"r" and the other arc at this state removes the "y" from
"summary" and the cycle at this state enables the remainder
of the URL to be appended.

 At this point, it is tempting to ask: is a transducer simply
just a more inefficient means for saying replace word wx
with word wy? Although there is no question that
transducers can result in word-level replacement, as shown
in Figure 4, they permit a far more powerful way of
describing – at a letter-level – how replacement occurs. For
example, for a source value "Marina del Rey" that is
embedded later in an encoded URL as "Marina+Del+Rey",
we can learn the transducer shown in Figure 5, which
captures the higher-level notion of replace all spaces with
plus signs. Thus, transducers are a more powerful way to
describe how letters from a source value can be used to
generate a target value.

A Unifying Learning Algor ithm

In this section, we present an incremental learning
algorithm called RETROSPECT that incorporates the value
prediction methods above.
 In general, RETROSPECT uses previous hint and answer
tuples to incrementally learn how to construct prediction
tuples. Specifically, the algorithm learns a predictor for
each attribute of the answer tuple. This predictor is either a
decision tree or a transformation rule, the latter possibly
including a transducer. For example, based on the type of
data in Table 2, RETROSPECT learns a decision tree for
predicting federal official given a street address. In
contrast, based on the data in Table 3, the algorithm learns a
transformation rule (that includes a transducer) for
predicting Funding URL given a Member URL.
 RETROSPECT is applied at the point of speculation (e.g.,

by the Speculate operator) for each hint and answer tuple
pair it receives. The algorithm uses the first pair to
initialize all of its predictors as transformation rules. Each
rule describes how to use tokens of the hint tuple to derive
a value for a particular attribute of the answer tuple. This
allows speculation to occur for the very next tuple.

 Future answer tuple values are then first compared with
the prediction tuple value issued. If they match (i.e., an
accurate prediction), nothing is done – the initial
transformation rule was correct. If not, RETROSPECT
attempts repair. Repairing a transformation rule involves
choosing a new hypothesis that describes the current
situation as well as those prior. If no refinement exists, the
method of prediction is changed to classification – thus, a
decision tree is employed. From then on, all future
incorrect predictions are handled via incremental decision
tree refinement – for example, using a method similar to
that described by (Utgoff 1989).
 Transformation rules require further explanation. Each
rule is simply a recipe for how to compose a particular
value of the prediction tuple from the hint tuple. Rules
consist of an ordered set of operations that progressively
compose the answer value string. Table 4 shows all
possible operations and what they concatenate.

 Building a transformation rule for a particular hint tuple
and answer value pair then involves three basic steps:

1. Tokenizing the hint tuple and answer values
2. Finding the best alignment between the token sets
3. Using that alignment to build a transformation rule

 The first step is tokenization. Hint tuples are naturally
tokenized by their attribute boundaries. However, certain
hint attributes, as well as the answer value, may require
further domain-dependent tokenization. With web-based
information gathering plans, we have found it necessary to
support HTTP URL tokenization. For example, consider
tokenization of the following hint and answer tuple pair:

FUNCTION Retrospect
 INPUT: old-predictor, hint-tuple, answer-value, predicted-value
 OUTPUT: new-predictor
{
 if old-predictor is NULL
 new-predictor � create transformation-rule
 else
 new-predictor � NULL
 if predicted-value <> answer-value
 if old-predictor was a transformation-rule
 new-predictor � refine transformation-rule hypothesis
 if unable to refine transform-rule hypothesis
 new-predictior � create decision-tree
 add (hint, answer-value) example to new decision-tree
 else /* old-predictor is a decision tree */
 add (hint, answer-value) example to existing decision-tree
 return new-predictor
}

Nam e Mem ber URL Funding URL

Box er http://w w w .opensecrets.org/summary .asp?CID=N00006692&cy cle=2002 http://w w w .opensecrets.org/sector.asp?CID=N00006692&cy cle=2002

Feinstein http://w w w .opensecrets.org/summary .asp?CID=N00007364&cy cle=2002 http://w w w .opensecrets.org/sector.asp?CID=N00007364&cy cle=2002

Harman http://w w w .opensecrets.org/summary .asp?CID=N00006750&cy cle=2002 http://w w w .opensecrets.org/sector.asp?CID=N00006750&cy cle=2002

Table 3: The relationship between official name and the resulting OpenSecrets member and funding URLs

Oper at ion Concate nate s

Append String literal

Copy Tokens replicated f rom hint

Transduce Tokens transduced f rom hint

Table 4: Transformation operations

0 1 3?/?

m/t y/ �

u/e
5

r/r

a/o

s/s
4

?/?

2
m/c

?/?

#/#

Figure 4: Transducer for member URL to funding URL

Figure 5: Transducer that replaces spaces with plus signs

0

?/?

[] /+

1
#/#

`The second step of building a transformation rule is to
find an alignment between the tokenized hint tuple and
answer value. An alignment describes a mapping from hint
to answer value tokens, using one of two kinds of edges.
Exact edges are used to describe a complete replication of a
hint token while a close edge describes an approximate
replication. "Closeness" occurs when some hint and value
are not equal, but some threshold percentage � of characters
from the hint exist in the answer token. For example, one
possible alignment of the above hint/answer pair is:

In this example, "Marina del Rey" and "Marina+del+Rey"
are close in that the hint token contains all of the characters
in the answer value, but the two are not equal.

There may exist several possible alignments and thus
several possible transformation rule hypotheses. Any
method of choosing one hypothesis over another can be
used, since all are capable of generating the target value.
However, alternative alignments are not discarded; they
may be used later during refinement.

Once an alignment has been chosen, the transformation
rule can be built. This simply involves iterating through
each token of the answer value and adding one of the
operations in Table 4 to the rule, based on the alignment (or
lack of) with the tokenized hint. When a value token
cannot be aligned to a hint token, Append is chosen. When
an exact match exists, Copy is chosen. Finally, Transduce
is used for close matches. Each Transduce is associated
with a transducer that describes how to translate the hint
token into the value token. Learning a transducer can be
done via the approach suggested by (Oncina et al. 1993) or
by simpler, approximation algorithms.
Hypothesis refinement. When a predicted value does not
match the real value and the current method of prediction is
transformation, RETROSPECT can potentially repair the old
rule through hypothesis refinement. As described earlier,
building a transformation rule requires choosing from a set
of hypotheses H = (h0, h1,...hk). During refinement, a new
set H', is developed for the hint/answer example that
violates the existing rule and this new set is used to filter
out incompatible hypotheses from the previous set via H =
H � H'. If H <> � , a new hypothesis is chosen from the
resulting H, otherwise refinement is deemed impossible.

Example: Learning RepInfo Predictors. As another
example of RETROSPECT, let us consider how it learns the
latter two predictors in Figure 3. That is, we want one that
is able to predict member URL given the name of the
official and one that predicts the funding URL given
member URL. Our discussion will assume that the
examples seen during incremental learning are the same as
those in Table 3 (Boxer, Feinstein, and Harman).
 Consider the first predictor. For the first example, the
hint "Boxer" is followed by the member URL. As

RETROSPECT specifies, a transform rule is the form of the
initial predictor. However, since there is no alignment
between hint and answer tuples (i.e., they share no
common tokens) the resulting transformation rule is:
 1. APPEND ("http://...summary.asp...CID=N006692...2002")

The next example (Feinstein) violates this rule and, since
there are no alternatives that explain both, refinement is
impossible. Thus, the algorithm reverts to a decision tree
to learn the relationship between official name and URL.
 Now consider learning the predictor of funding URL
based on member URL. As with the previous predictor,
RETROSPECT first builds a transformation rule. However,
unlike the previous predictor, the alignment:

is possible and results in the (simplified) rule:
 1. COPY (hint tokens 0-2)
 2. TRANSDUCE (hint token 3, � 1)
 3. COPY (hint tokens 4-11)

In this case, the � 1 transducer is similar to the one in Figure
4. Future examples (Feinstein, Boxer, etc) validate this
rule and no further refinement is necessary.
 Thus, after learning the predictors for the data in Table
3, the system can then use the name of a federal official to
predict the member URL and subsequently use this
speculative member URL to predict the funding URL.
Thus, both predictions can be issued in parallel.

Preliminary Results

To begin evaluating the efficiency and accuracy of
RETROSPECT, we have initially compared it to a prediction
method based on caching for the modified RepInfo plan in
Figure 3. Specifically, we conducted three tests – one for
each speculative opportunity in Figure 3 – and compared
both approaches. These three tests are summarized below:

 Each test involved drawing strain training examples and
stest testing samples from the same larger pool of size spool.
The P1 pool consisted of 5000 addresses in a distribution
roughly equivalent to that of the US population (e.g., there
were more addresses from New York and California than
Wyoming). For P2, the pool was the set of all US senators
and representatives (435 + 100 = 535). The P3 pool
consisted of all 535 OpenSecrets member URLs. The
predictors learned by RETROSPECT were the same as
described earlier: P1 and P2 were decision trees while P3
was a transformation rule. Table 5 shows the accuracy and
efficiency of RETROSPECT as compared to caching.

Table 5: Preliminary results compar ing RETROSPECT to caching

Tes t Hin t Pr ed ict io n

P1 street address federal of f icial

P2 federal of f icial member URL

P3 member URL funding URL

hint tuple

answer va lue URL

http:// foo.com / bar.cgi ? s = Marina+del+Rey & s = CA

CITY STATE

Marina del Rey CA

| http:// | foo.com | / | bar.cgi | ? | c | = | Marina+del+Rey | & | s | = | CA |

| Marina del Rey | CA |

close exact

| http:// | www.opensecrets.org | / | sector.asp | ? | CID | = | N00006692 | & | cycle | = | 2002 |

| http:// | www.opensecrets.org | / | summary.asp | ? | CID | = | N00006692 | & | cycle | = | 2002 |

Caching Retrospec t

TEST sp o o l str ain stest Accuracy Size (bits) Accuracy Size (bits)

P1 5000 1000 1000 20.42% 458208 85.48% 113968

P2 535 100 100 17.07% 91840 16.07% 91840

P3 535 100 100 16.78% 117600 99.90% 10944

 For P1 and P3, RETROSPECT was substantially more
accurate and space efficient than caching. However, in P2
– where there was only one attribute by which to classify –
RETROSPECT degenerated into a tree with one branch. Even
under this worst-case classification scenario, however, use
of RETROSPECT was roughly equivalent to caching.

Related Work

Learning to speculatively execute programs has been well-
studied in computer science. Historically, computer
architecture research has largely focused on branch
prediction – which involves predicting control, not data.
Recently, hardware-level value prediction has received
some attention in the literature; both (Lipasti et al. 1996)
and (Sazeides and Smith 1997) provide good overviews of
current approaches. However, in general, the techniques
that can be used for hardware-level value prediction tend to
be limited by resource constraints.
 To the best of our knowledge, this is the first paper that
discusses learning value predictors for the speculative
execution of information gathering plans. (Hull et al. 2000)
describe use of speculative execution in a decision-flow
framework, but speculation in that system is control-based
and there is no learning involved. There is an interesting
relationship between our work and (Shanmugasundaram et
al. 2000), which describes how Niagara executes plans
based on partial results to combat the performance penalties
of blocking operators (like NEST). Both describe plan
execution based on unconfirmed results; however, the
partial results approach deals with data that has been
generated by other operators in the system (no learning
involved) and applies to consumers of aggregate operators,
whereas the approach here describes how to predict
intermediate data and can be applied anywhere within a
plan (although it would most commonly occur after a
network read). The partial results approach is also similar
to past work in optimizing aggregate queries (Hellerstein et
al. 1997) and approximate query answering. All of these
efforts are related to the notion of speculative execution in
that they attempt to increase performance by computing
based on unconfirmed results. However, unlike speculative
execution, none generate data predictions to accomplish
that execution (i.e., they leverage real results, but in partial
form) and thus none of them need to synthesize data.

Conclusion

Successful speculative execution of information gathering
plans is fundamentally linked with the ability to make good
predictions. In this paper, we have described how two
simple techniques – decision trees and transducers – can be
applied to the problem. Our initial experimental results
have shown that such predictors are not only more space
efficient than simple caching schemes but that they are also
capable of issuing predictions for novel hints. We believe
that a bright future exists for data value prediction at the
information gathering level, primarily because of the
potential speedup enabled by speculative execution and
because of the availability of resources (i.e., memory) that
exist at higher levels of execution, enabling more
sophisticated machine learning techniques to be applied.

References
Barish, Greg and Craig A. Knoblock (2002). Speculative
execution for information gathering plans. Proceedings of the 6th
International Conference on AI Planning and Scheduling.
Toulouse, France.

Friedman, Marc and Daniel S. Weld (1997). Efficient execution
of information gathering plans. Proceedings of the 15th
International Joint Conference on Artificial Intelligence. Nagoya,
Japan: 785--791.

Hellerstein, Joseph M., Michael J. Franklin, Sirish
Chandrasekaran, Amol Deshpande, Kris Hildrum, Sam Madden,
Vijayshankar Raman and Mehul A. Shah (2000). "Adaptive
query processing: technology in evolution." IEEE Data
Engineering Bulletin 23(2): 7--18.

Hellerstein, Joseph M., Peter J. Haas and Helen J. Wang (1997).
Online aggregation. Proceedings of the ACM SIGMOD
International Conference on Management of Data. Tuscon, AZ:
171--182.

Hull, Richard, Francois Llirbat, Bharat Kumar, Gang Zhou,
Guozhu Dong and Jianwen Su (2000). Optimization techniques
for data-intensive decision flows. Proceedings of the 16th
International Conference on Data Engineering. San Diego, CA:
281--292.

Ives, Zachary G., Daniela Florescu, Marc Friedman, Alon Levy
and Daniel S. Weld (1999). An adaptive query execution system
for data integration. Proceedings of the ACM SIGMOD
International Conference on Management of Data. Philadelphia,
PA: 299--310.

Knight, Kevin and Yaser Al-Onaizan (1998). Translation with
finite state devices. Proceedings of the 3rd Conference of the
Association for Machine Translation in the Americas. Langhorne,
PA: 421--437.

Lipasti, Mikko H., Christopher B. Wilkerson and John P. Shen
(1996). Value locality and load value prediction. Proceedings of
the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems. Cambridge,
MA: 138--147.

Naughton, Jeffrey F., David J. DeWitt, David Maier and et al.
(2001). "The niagara internet query system." IEEE Data
Engineering Bulletin 24(2): 27--33.

Oncina, Jose, Pedro Garcia and Enrique Vidal (1993). "Learning
subsequential transducers for pattern recognition." IEEE
Transactions on Pattern Analysis and Machine Intelligence
15(5): 448--458.

Quinlan, J.R. (1986). "Induction of decision trees." Machine
Learning 1(1): 81--106.

Sazeides, Yiannakis and James E. Smith (1997). The
predictability of data values. Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchitecture: 248-
258.

Shanmugasundaram, Jayavel, Kristin Tufte, David J. DeWitt,
Jeffrey F. Naughton and David Maier (2000). Architecting a
network query engine for producing partial results. Proceedings
of the ACM SIGMOD 3rd International Workshop on Web and
Databases (WebDB). Dallas, TX: 17-22.

Utgoff, Paul E. (1989). "Incremental induction of decision trees."
Machine Learning 4(2): 161--186.

