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Abstract: Information integration applications combine data from heterogeneous sources to as-
sist the user in solving repetitive data-intensive tasks. Currently, such applications require a high
level of expertise in information integration since users need to know how to extract data from
an on-line source, describe its semantics, and build integration plans to answer specific queries.
We have integrated three task learning technologies within a single desktop application to assist
users in creating information integration applications. It includes a tool for programmatic access
to data in on-line information sources, a tool to semantically model them by aligning their input
and output parameters with a common ontology, and a tool that enables the user to create com-
plex integration plans using simple text instructions. Our system was integrated within the Calo
Desktop Assistant and evaluated independently on a range of problems. It enabled non-expert
users to construct integration plans for a variety of problems in the office and travel domains.
Key Words: Information extraction, web applications, assistants
Category: D.2.11, H.3.5, H.3.6, H.3.7

1 Introduction

To perform many everyday tasks, such as plan travel or manage equipment purchase, a
user has to combine and process data from a variety of heterogeneous sources, which
include web services and HTML-based on-line sources. For instance, when planning a
trip, the user may wish to gather data about flights and hotels and filter them as follows:
get the date and location of the meeting, find a convenient flight on those dates to that
location, find the list of hotels in the city of the meeting with the required amenities,
only consider hotels within three miles of the meeting site, only consider hotels with
rates within government-allowed per diem, book a hotel with the best reviews, rent a
car, and so on. Since these tasks are often repetitive, a user may wish to create an infor-
mation integration application to perform them automatically. This application would
even monitor information sources for changes in flight or hotel prices or changes in
flight schedules and notify the user accordingly.

On-line information integration applications, or mash-ups that run inside a browser,
have recently been popularised by companies such as Yahoo!, Intel, IBM or Microsoft.
Users have created a variety of mash-ups, e.g., to display apartments available for rent
on a map or show gas prices in a neighbourhood. Tools like Yahoo! Pipes and Mi-
crosoft Popfly enable non-programmers to create new mash-ups by reusing existing
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ones and modifying them to fit their needs. To create more advanced information inte-
gration applications, a user must be able to extract data from a source, specify its seman-
tics [Knoblock et al., 1998] [Arjona et al., 2007], and formulate and execute the appro-
priate integration plans. Currently, these steps require sophisticated technical knowl-
edge and familiarity with information integration systems [Thakkar et al., 2005], ex-
pertise that the average user cannot get without specialised training. It is an even more
challenging task to create components and plans that can be reused by other users,
because the users now need to share an agreement about the details of the seman-
tics of sources and integration plans. Various initiatives, most notably the Semantic
Web [Berners-Lee et al., 2001], have been advanced as a way to enable programmatic
access to new sources, but they are slow to be adopted, and offer only a partial solution
because information providers will not always agree on a common scheme.

Our goal is to automate the process of creating a new information integration ap-
plication to a degree that it can be done by non-expert users. We have integrated three
learning technologies within a single desktop tool to help users create applications that
integrate information from heterogeneous sources, namely: EzBuilder, a tool to cre-
ate information gathering procedures for programmatic access to on-line data sources;
Semantic Mapper, a tool that assists the user in constructing a model of the source by
mapping its input and output parameters to semantic types in a predetermined ontology;
and Tailor, a tool that assists the user in creating procedures, which are executable inte-
gration plans, based on short English instructions. The learned procedures are capable
of gathering and integrating information, monitoring the performance of the applica-
tion, communicating with the user about that progress and even taking world-changing
steps such as booking a hotel. We believe that our tool is more flexible and general than
recent task-learning systems like Plow [Allen et al., 2007] or Yahoo! Pipes.

In this article we describe our experiences integrating these tools within the desk-
top application developed by DARPA’s Calo project, cf. http://www.ai.sri.com/project/
CALO. The rest of the article is organised as follows: in Section 2, we describe the
architecture of the learning system and introduce an example problem that we use
throughout the article; in Sections 3, 4, and 5, we describe EzBuilder, Semantic Map-
per and Tailor, respectively; in Section 6, we discuss the test problems that were chosen
and describe several experiences in using the tool; in Section 7, we report on related
proposals; our conclusions and future research directions are presented in Section 8.

2 Architecture and Example Problem

The Calo Desktop Assistant includes a variety of components that help understand,
index and retrieve information from meetings, presentations and on-line sources, as
well as calendar and e-mail-based applications. Many of the actions taken by these
components are coordinated by the Spark agent framework [Morley and Myers, 2004],
which is designed to scale well to large domains with a large number of executable
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Figure 1: Diagram of the Calo architecture.

procedures while maintaining a simple semantics. Spark procedures describe how a
task may be performed or what to do when a relation with a given type signature is
added to its database. The body of the procedure may combine sequenced or unordered
tasks with conditions, simple iteration and constructs for waiting until a condition holds.
Steps in the body may also post goals to execute other tasks. One of Spark’s strengths is
that it can handle multiple threads, some of which may be waiting for information that
comes from external sources such as e-mail. Desktop components can cause complex
procedures to be executed by posting goals with Spark, and users can execute the same
procedures through an intuitive interface.

The combination of EzBuilder, Semantic Mapper and Tailor allows users to create
complex integration plans that use on-line information, allowing them to be invoked
by the user or by other components within the Calo Desktop Assistant. Figure 1 shows
a simplified view of the overall architecture, including the task executor and the task
learning components within the assistant. We illustrate the kind of problems in which
we are interested with the following scenario. The user is planning a trip and wishes
to use a new on-line site for hotel reservations. First he or she builds a procedure that
takes a city name as input and returns a list of hotels, each with a list of amenities;
next, he or she creates a procedure that uses the first one to find a set of hotels within a
fixed distance of a location available over a given time interval; the user would like to
be informed if the rate subsequently drops, so he or she creates another procedure that
the assistant will automatically invoke daily to check the rate against the booked rate,
and e-mail him or her if it has dropped. This example illustrates two motivations for our
proposal: first, users put the data to use in several different ways; second, the assistant’s
task involves more than simply data integration, in this case monitoring at fixed time
intervals, sending e-mail, and potentially re-booking the reservation.
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Figure 2: A query form and result pages.

3 Automating Access to Data Sources with EzBuilder

Many on-line information sources are designed to be used by humans, not computers.
This design affects the way the site is organised and how information is rendered. For
instance, the hotel reservations site in Figure 2 allows users to search for hotels available
in a specified city on specified dates: first, the user fills in the query form and presses
the search button; next, the site returns a list of hotels; and the user can then select a
hotel from the list to get additional details.

EzBuilder assists the user in creating information gathering procedures that can
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Figure 3: Scheme definition and data extracted from a page.

query and extract data from on-line information sources. To build an information gath-
ering procedure for the previous on-line reservations site, the user demonstrates how
to obtain the required information by filling in forms and navigating the site to the
detail pages. Using this information, EzBuilder constructs a model of the site, cf. the
right pane. Once the user has collected several detail pages, EzBuilder generalises the
learned model to automatically download detail pages from the site. During this step,
EzBuilder also analyses the query form and extracts the names the source has assigned
to the various input parameters. Furthermore, EzBuilder can extract a range of data
structures, including embedded lists, strings, and URLs. The user needs to specify the
scheme and name the attributes to be extracted; next, he or she trains EzBuilder to ex-
tract data by showing it where data examples are located, which is done by simply drag-
ging the relevant text on the page to its scheme instance, cf. Figure 3. Once the sample
pages have been marked up, EzBuilder analyses the HTML and learns the extraction
rules [Muslea et al., 2001].

Once the correct extraction rules have been learned, the user must name the newly
created information-gathering procedure, e.g., OnlineReservationZ, and deploy it to
a server that runs Fetch’s AgentRunner platform. The procedure can take user-supplied
input parameters, query the source and return data extracted from the web pages. To
expose the results to the caller, all of the extracted data is encoded within a single XML
string, with attributes defined according to the scheme specified by the user. We wrote
generic Spark functions to extract this data from the XML. These functions wrap Java
methods that implement XQuery calls. If the procedure returns a single tuple, request-
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ing the attribute with a given name or label is sufficient; if it returns a list of tuples,
the caller needs to iterate through the results, or fetch a given element and return the
corresponding named attribute. The names of attributes are registered for the procedure
by the Semantic Mapper, cf. Section 4.2.

EzBuilder is very flexible, and allows users to create procedures to extract data
from a wide variety of web sources without requiring them to be proficient with HTML,
scripting languages or even know how the data is rendered. However, it requires the user
to mark-up pages. If the pages are fairly regular, the user has to mark up one to three
samples; however, if there is some variation in the format or layout of the page, the user
may need to mark up additional samples so that the information gathering procedure
can learn general enough extraction rules. We are working on several tools that do
not require the users to label data [Gazen and Minton, 2005] [Tuchinda et al., 2008].
Although such tools will not be able to extract data from as wide a range of web sources
as EzBuilder, they will reduce the user effort in some cases.

4 Modelling Sources with Semantic Mapper

Although the newly created information-gathering procedure can now query informa-
tion sources, it cannot be used programmatically by other Calo components because
its data is not yet aligned with a common ontology. This is done by Semantic Mapper,
which assists the user in modelling the source by linking its input and output param-
eters to semantic types in a common Calo ontology. Semantic Mapper also registers
the procedure as a new primitive information-gathering task. This task can be automat-
ically composed in complex procedures by other Calo components. This also enables
information-gathering procedures created by one user to be reused by other users.

4.1 Semantic Labelling

We have developed a domain-independent data representation language that allows us
to model the structure of the data returned by an information source as sequences of
tokens or token types [Lerman et al., 2003]. Tokens are strings generated from an al-
phabet with character types such as alphabetic, numeric, or punctuation. We use the
token’s character types to assign it to one or more syntactic categories, e.g., alphanu-
meric (Alphanum), alphabetic (Alpha), capitalised (Caps), one-character capitalised
(1Upper), two-character capitalised (2Upper), all caps (AllCaps), numeric (Number),
one-digit number (1Digit), and so on. These categories form a hierarchy, which allows
for multi-level generalisation, i.e., token 90210 can be represented by a specific token
90210, as well as general types 5Digit, Number, and Alphanum. These general types
have regular expression-like recognisers, which simply identify the syntactic category
to which the characters of the token belong. Our symbolic representation is concise and
flexible since it can be extended with new semantic or syntactic types.
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Figure 4: Results of semantic labelling.

We have accumulated a collection of models for about 80 semantic data types using
examples extracted from a large number of online data sources by our group over the
years. We can later use these models to recognise new instances of the semantic type by
evaluating how well the model describes the instances of the semantic type. We have
developed a set of heuristics to evaluate the quality of a match, which includes how
many of the learned token sequences match data, how specific they are, how many to-
kens in the examples are explained by the model, and so on. We found that our system
can accurately recognise new instances of known semantic types from a variety of do-
mains, such as weather and flight information, yellow pages, people directories, finan-
cial or consumer product sites, and so on [Lerman et al., 2004] [Lerman et al., 2006]
[Lerman et al., 2007].

4.1.1 Simple Types

In [Lerman et al., 2003], we described an algorithm that learns the structure of seman-
tic types from positive examples. It finds statistically significant sequences of tokens,
i.e., those that occur more frequently than would be expected if the tokens were gener-
ated randomly and independently of one another. It estimates the baseline probability
of a type’s occurrence from the proportion of all types in the examples. For instance, if
we are learning a description of street addresses, and have already found a significant
sequence, e.g., the pattern consisting of the single token Number, and wish to deter-
mine whether the more specific pattern Number Caps is also significant. Knowing the
probability of occurrence of Caps, we can compute how many times Caps can be ex-
pected to follow Number completely by chance. If we observe a considerably greater
number of such sequences, we conclude that the longer pattern is also significant. An
unintended consequence is that even a small number of occurrences of a rare token
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Temperature Sky Windspeed Visibility

32 F Scattered Clouds 12 mph 7.00 mi

35.1Digit◦ F Sunny and Windy 12 mph/19 kph Unlimited

35 F Cloudy 12 MPH 10.0 miles

36◦ F Clear 9 mph 10.00 mi

36 F Light Snow 9 mph/14 kph 10.00 Miles

39◦ F Partly Cloudy 9 MPH

39 F A Few Clouds 22 MPH

41 F Overcast 2Digit mph

70◦ F Mostly Cloudy 2Digit mph/16 kph

70 F Fair 2Digit MPH

2Digit◦ F 1Digit mph/0 kph

2Digit F

Latitude Longitude Latitude2 Longitude2

34.3Digit -2Digit.0833 40 2Digit 00 N 40 2Digit 00 N

34.Number -2Digit.9167 42 2Digit 00 N 42 2Digit 00 N

2Digit.617 -2Digit.0333 38 2Digit 00 N 38 2Digit 00 N

2Digit.067 -2Digit.2667 45 2Digit 00 N 45 2Digit 00 N

2Digit.6 -2Digit.4Digit 30 2Digit 00 N 30 2Digit 00 N

2Digit.6333 -2Digit.1Digit 37 2Digit 00 N 37 2Digit 00 N

2Digit.75 2Digit.183 2Digit 30 00 1Upper 2Digit 30 00 1Upper

2Digit.95 2Digit.324 2Digit 45 00 N 2Digit 45 00 N

2Digit.4Digit 2Digit.883 2Digit 24 00 N 2Digit 24 00 N

2Digit.3Digit 2Digit.983 2Digit 38 00 1Upper 2Digit 38 00 1Upper

2Digit.1Digit 2Digit.3Digit 2Digit 2Digit 00 S 2Digit 2Digit 00 S

2Digit.Number 2Digit.1Digit 2Digit 2Digit 00 N 2Digit 2Digit 00 N

Table 1: Sample patterns in the weather and geospatial domains. (Token types are un-
derlined to distinguish them from regular text.)

will be judged significant. Furthermore, it is biased towards learning more specific se-
quences. For instance, when learning a model for Address from a set of addresses in
which many are located at Main St and Elm St, the algorithm constructs (i) Number
Alphanum St, (ii) Number Alpha St, (iii) Number Caps St, (iv) Number Main St
and (v) Number Elm St. It eliminates sequence (i) because all the examples that match
it also match the more specific sequence (ii); it eliminates sequence (ii) for the same rea-
son; if sequence (iii) explains significantly more examples than the specific sequences
(iv) and (v), it is kept and (iv) and (v) are deleted; otherwise, (iv) and (v) kept and (iii)
is deleted. This tends to produce data models consisting of many token sequences, but
the algorithm does not learn a complete model of the type, only of the common token
prefixes. Table 1 shows a subset of the data model learned for different semantic types
in the weather and geospatial domains. The learning algorithm learns, on average, about
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30 patterns for each of the 80 semantic types in the domain model. Here only a few of
the specific patterns are shown for each semantic type.

We can use the learned data models to recognise semantic types in new information
sources. The basic premise is to check how well each semantic type describes the data
based on the content of examples. We characterise how well a type matches data by
computing a match score. In a nutshell, our ad-hoc scoring algorithm gives more weight
to patterns that are longer or consist of more specific tokens. First, we assign a weight
to the tokens, which increases with token’s specificity. Thus, tokens such as AlphaNum
have weight one, while specific strings have the highest weight (12 in this work). We
calculate the score as follows: (i) calculate the pattern weight wp as the sum of the
token weights of a pattern’s constituent tokens; (ii) calculate the weighted number of
patterns matched as the sum of wp for all patterns that match a prefix of an example;
(iii) calculate the matching score, which assigns a higher score to more specific patterns
and includes a penalty, e.g., tokens not matched by the pattern. The final score for a
semantic type is the product of the weighted number of patterns matched and the mean
matching score. The scoring algorithm returns the highest scoring F types (4 in this
work), sorted by score, with the highest scoring match first.

Figure 4 shows the results of labelling several sources from a variety of information
domains, namely: flights sources returned flight status information, weather sources
returned current weather conditions at a particular location, directory sources returned
contact information for specified people; other sites provided information about elec-
tronics equipment and used cars for sale; we also used several travel sites that provide
hotels reservations and airlines partners information, and several sources from the of-
fice domain. The results are presented in terms of F-measure, a popular evaluation
metric that combines recall and precision. F1 refers to cases in which the top-scored
prediction of the semantic type was correct, whereas the correct type was amongst the
top-four predictions in results marked F4. In most cases, the semantic labelling algo-
rithm scores above 60% (for F4) and often above 80%. Some sources were difficult to
label. For instance, most of the fields in the electronics domain contained only numeric
tokens, e.g., 1024 for horizontal display size. The learned data model did not contain
units information; therefore, it could not discriminate well between fields. In the flights
domain, precision suffered because of non-standard capitalisation of text fields, e.g.,
FltStatus, and incompatible date formats in training and test data.

4.1.2 Complex Types

As the number of known semantic types grows, we are faced with a performance prob-
lem in both time and accuracy. For instance, Date is usually expressed as a combination
of three simple types, i.e., Day, Month, and Year, that can be represented as single or
double digits or even abbreviated names in the case of Month; furthermore, there are
several ways to combine them, e.g., using “/” or “,”; in addition, Year may be omitted,
when the current year is implied; other complications include reversal of Month and
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Flight Date Time FltStatus

Alaska 562 06/12/2005 9:20 pm on-time

United 1237 07/18/2005 8:30 am delayed

Northwest 1123 06/13/2005 3:35 pm on-time

Table 2: Examples of flight status data returned by a source.

Day, i.e., European versus American standards, and optional parts, such as the day of
the week. The system may not be able to recognise a new example of a Date in a format
it had not seen before. However, we can easily recognise the individual components of
a date as Month, Day and Year, and we may be able to deduce that the unknown data
type is Date, just because we have seen this combination used together in other sources.

We succinctly represent composite (or complex) data types like Date as a collection
of simple types that can occur in any order. Thus, we keep track only of the observed
probabilities of occurrence of simple types within the complex type. During the training
step, we split the complex types into their constituent simple types, and label each
fragment accordingly. The system then learns the associated occurrence probabilities of
the simple types within the complex type. To keep the model simple, we do not allow
for recursion, i.e., a complex type cannot be a component of another complex type. For
instance, our system has learned the following occurrence probabilities from the known
sources of dates (for clarity, complex types are prefixed by “CT-”):

CT-Date {
Year Concrete 0.78 ()
Month Abstract 1.0 (MonthName MonthNumber)
Day Concrete 1.0 ()
DayOfWeek Concrete 0.1 ()

}

According to this model, complex type Date contains Year with probability 0.78,
which means that Date contained the type Year 78% of the time in the known sources.
The reason that year is not always included in the date is that some sources assume the
current year in the data they return. Month occurred in Date with a probability 1.0, Day
with probability 1.0, and DayOfWeek with probability 0.1. The model further encodes
the type Month as an abstract type whose instances can either be a MonthName or
MonthNumber. Each of the simple concrete types is modelled by a set of patterns.

4.1.2.1 Training phase

Consider the data returned by a source about the arrival dates and times for different
flights, cf. Table 2. To label the data, we split the columns with the complex data types
into their constituent simple types based on the following delimiters: “ ”, “,”, “/”, “:”,
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CT-Flt:Airline CT-Flt:FltNumber CT-Date:MonthNum CT-Date:Day CT-Date:Year

Alaska 562 06 12 2005

United 1237 07 18 2005

Northwest 1123 06 13 2005

CT-Time:Hours CT-Time:Minutes CT-Time:Meridian null:FltStatus

9 20 pm on-time

8 30 am delayed

3 25 pm on-time

Table 3: Complex types broken into their constituent simple types. (CT-Flt is an abbre-
viation for CT-Flight.)

Figure 5: Comparison of semantic labelling performance.

“-”, “(”, and “)”. We then label the columns as Complex-type:Simple-type. The re-
sulting decomposed fields for the flight status source are shown in Table 3. The type
null:FltStatus simply means that FltStatus is a simple type that does not belong to
any complex types. We label multiple data sources in the above manner and count the
number of occurrences of complex types and the number of occurrences of each simple
type within the complex type. We compute the probability of occurrence of a simple
type within a complex type from these figures. We then used the labelled examples to
learn the patterns associated with simple types.

4.1.2.2 Testing phase

To assign semantic types to data using a model, we parse data examples into sequences
of tokens using the same delimiters listed above. We attempt to match each example to
a different combination of simple types, scoring each combination on the fly. We start
by matching a sequence of tokens in the example to the learned model for simple types.
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Once we find a match ti, we compute its score ri using the heuristics in Section 4.1.1
and continue looking for other matches starting at the next non-punctuation token.

This procedure generates a sequence Mj of matched simple types ti and their
scores ri. We repeat this procedure iteratively, and generate all possible combinations
of matched simple types. Next, we score how well each combination of matched sim-
ple types, Mj , fits a complex type of the domain model. A complex type C is repre-
sented as {s1|p1|c1, s2|p2|c2, . . . , sn|pn|cn}, where si is a component simple type, pi

is the probability of occurrence of the simple type s i within the complex type C in the
known sources, and ci is a boolean indicator variable, with value 1 if s i ∈ Mj , i.e.,
si was one of the matched simple types in M , and 0 otherwise. The match M is itself
represented as a list {t1|r1|f1, t2|r2|f2, . . . , tm|rm|fm}, where ti is the matched sim-
ple type with score ri and fi is a boolean indicator variable with value 1 if t i ∈ Ck,
and 0 otherwise. The score for C = {s1|p1|c1, s2|p2|c2, . . . , sn|pn|cn} given M =
{t1|r1|f1, t2|r2|f2, . . . , tm|rm|fm} is calculated as follows:

S =
∑m

i=1 (fi × ri)( ∑m
i=1 !fi

)
+

(∑n
i=1 (!ci × pi)

)

(The notation !fi means that the boolean variable is negated.) The scoring equation
rewards the terms that match the complex type’s constituents and penalises the terms
from the complex type’s constituents that were not found, as well as extra terms that
were found but are not a part of the complex type. Each example generates a score for
the complex type; they are then summed up over the examples and normalised over the
number of examples. The type with the highest score most likely describes the data.

Figure 5 compares top-scoring semantic type prediction produced by the domain
model with simple types only and the model with both simple and complex types. In all
cases, the complex types model achieves at least as good a performance as the simple
types model, and it leads to some improvement in most cases. it was not as great as we
expected because introducing a large number of new simple types into the model led to
poorer matches in the components of a complex field.

4.1.3 Meta-Labelling

Many simple types in the domain model have the same learned representation, e.g.,
StreetNumber and FltNumber are both represented as 1- to 5-digit numbers. Given
a 4-digit number, it is difficult for the labelling algorithm to correctly identify its type.
However, if the semantic types of other fields are known, then a better match can be
found. For instance, if other fields being labelled are guessed to be Airline or Airport,
then the 4-digit number is likely to be a FltNumber. The meta-labeller uses the like-
lihood of co-occurrence of types to produce a better label. From a labelled corpus, it
computes the co-occurrence probability of each type with the other data types.

For instance, consider the data in Figure 2; for each field, we count the number of
occurrences of the field within the known sources and the number of co-occurrences
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(a) Correct type in the top prediction.

(b) Correct type within the top 4 predictions.

Figure 6: Results of using the meta-labeller.

of this field with other fields. Thus, in the example above, Airline was observed three
times. The field Airline was also observed three times each with fields FltNumber,
Date and FltStatus. We compute the probability of co-occurrence of each field with
other fields and store them in the domain model. Our algorithm computes the co-
occurrence probability of a type with all the complex types and their components. Here
for simplicity we do not break up Date and Time into their constituent simple types.
For instance, the data in Figure 2 leads to the following model:

Airline {
FltNumber 1.0
CT-Date 1.0
CT-Time 1.0
FltStatus 1.0

}
The co-occurrence probabilities can be used to enhance the matches produced by the

1823Blythe J., Kapoor D., Knoblock C.A., Lerman K., Minton S.: Information ...



semantic labeller. For each field, we generate a list of eight type predictions following
the methodology described above. A permutation across all fields within a source gives
all possible ways in which the top predictions can be combined. The co-occurrence
probabilities are then used to evaluate each permutation by computing its likelihood.
The scores of the individual matches are then modified so that they are the product of
the old scores and the permutation likelihoods, which eliminates unlikely combinations,
e.g., Airline and StreetNumber. Figure 6 reports on the results of applying the meta-
labeller. Note that it dramatically improved semantic labelling results as compared to
using simple types or complex types alone. With the exception of the especially difficult
electronics domain, using a combination of complex type labelling with meta-labeller
produced the best results. This combination raised the F-measure of the cases where the
correct type was the algorithm’s top prediction to at least 80% for 22 of the 36 sources.
The correct type was amongst the top four prediction for 27 of the 36 sources.

4.2 Semantic Mapping Editor

Semantic Mapper uses semantic labelling to link a wrapper’s input and output parame-
ters to semantic types in the Calo ontology. It reads data collected by EzBuilder, which
includes the values the user typed into the HTML query forms as well as data extracted
from the result pages, and presents the user with a ranked list of predictions of the
semantic type for each parameter. The semantic labelling step for the OnlineReserva-
tionZ site is shown in Figure 7. The labels for the parameters are extracted from the
form (for inputs) or scheme names defined by the user (for outputs), although these
names are not used in the labelling step. The top scoring prediction for each semantic
type is displayed next to the parameter label. If the user does not agree, he or she can
select another choice or type in the correct type. Note that Semantic Mapper automati-
cally groups related fields into a complex type, e.g., the hotel street address, city, state
and zip code were combined into a single complex field. The user is given a choice to
ignore the automatic grouping with the check box next to it.

In addition to specifying the semantic types of the input and output parameters,
Semantic Mapper requires the user to provide a short description of the information
gathering task performed. After this has been done, the wrapper can be registered as a
new fully-typed primitive task with the Calo Task Interface Registry. The registration
defines how the procedure can be invoked, its functionality, what inputs it expects and
what data it returns as output. The Task Interface Registry has a library of not only
these primitive tasks, but other complex procedures created by Calo components. Once
a primitive task is registered, it can be invoked by any Calo component.

5 Learning Procedures with Tailor

Once the information-gathering procedures have been registered, they are available
through Spark and can be composed with other procedures to provide the desired func-
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Figure 7: Registering a wrapper with Semantic Mapper.

tionality. For instance, the user may wish to create a procedure to periodically check
hotels near a given location and send an e-mail message if the price drops by some
threshold amount. Tailor allows the user to create procedures, which may be viewed
as complex integration plans that use the newly registered tasks, by providing short
instructions about the steps, their parameters and conditions under which they are per-
formed. Tailor saves the user from needing detailed knowledge of the procedure syn-
tax and ontology by mapping instructions into syntactically valid fragments of code
that may compose several procedure calls, and describing the results using template-
generated text [Blythe, 2005a] [Blythe, 2005b]. Tailor relies on the semantic labelling
found by the Semantic Mapping Editor to find meaningful and useful combinations
of procedures and queries in response to the user’s instructions.Tailor uses two central
modules, namely: instruction interpretation, which processes a user instruction and pro-
duces a set of potential modifications, and code fragment search, that takes parts of a
user instruction and maps them to fragments of code that could match the text and that
are syntactically correct given the current procedure being modified. Tailor’s search also
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Figure 8: Tailor’s user interface.

allows it to incorporate procedures using complex types without extra user effort.
Before describing Tailor in more detail, we present a brief example in which it

is used to create a procedure to find available hotel rooms within a given distance of
a location. The procedure combines two primitive tasks built using the tools described
earlier: one that finds hotels given a city and dates for arrival and departure, and one that
finds the distance between two addresses, each given by a street address and zip code.
First, the user adds a step to find hotels into the new procedure; he or she just needs to
give Tailor the instruction “find hotels”, and it searches the Task Interface Registry for
procedures that use these words. In this case, the hotel procedure shown in the previous
section is found; it requires three inputs, i.e., the two dates and a city. Normally, Tailor
would search for queries or procedures that produce variables of the required types
using other input variables. However the procedure does not yet have any inputs, so
Tailor suggests adding them as input variables. Next, the user chooses the hotelName
field of the hotel record to be returned, from a menu. Since the procedure produces a
list of hotels, Tailor automatically creates an iteration over the list in response to this
choice. Finally, the user gives the instruction “get name if hotel distance less than
2 miles”. Tailor recognises this as an instruction to make the step to return hotel names
depend on some condition. It searches for hotel distance and finds the procedure to
get the distance between two addresses. The word hotel is matched by using the street
address and zip code from the hotel record returned by the procedure to find hotels.
(Figure 8 shows the tool after matching this instruction. The window at the bottom
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Instruction Template
task before|after|while task add-task-with-ordering

remove condition condition delete-condition

remove task delete-task

change argument arg in task to object change-arg-in-task

task if|unless condition add-condition-to-task

wait for condition then task add-condition-to-task (rendered as a wait clause)

Figure 9: Tailor’s set of modification templates and keyworded instruction templates.

shows a description of the steps using templates; some steps are omitted for the sake of
clarity.) The full procedure contains steps to map data between different representations,
e.g., from the string that represents a distance in a web page into a number that is used
as a threshold, or from the complex address type into a simpler street–zip code form
that is required by the distance procedure. In interpreting the second instruction, Tailor
recognises that a test is being added, but also that several steps must be added to the
procedure to enable it. While searching to match the phrase hotel distance, Tailor
finds a sequence of steps to extract an address and uses it in the distance information
gathering procedure; it also recognises that it can apply a projection between complex
types to compose the steps. Tailor uses an efficient search method that allows it to
compare many such compositions of code in real time.

5.1 Interpreting Instructions

Tailor helps a user create or modify a procedure in three steps: modification identifi-
cation, modification detail extraction, and modification analysis. In modification iden-
tification, Tailor classifies a user instruction as one of a set of action types using key
word analysis, e.g., adding a new substep or adding a condition to a step. The instruc-
tion “only list a hotel if the distance is below two miles”, for instance, would be
classified as the latter. Figure 9 shows a representative list of the instruction key words
used and the corresponding templates to make the modification; symbols task and con-
dition in the text indicates that text found in this position in the instruction will be used
by modification detail extraction to identify matching steps or conditions through search
as described below. In [Blythe, 2005a], we show that a similar set of templates is com-
plete in the sense that any procedure may be built using templates from that set.

A template for each modification type includes the fields that need to be provided
and the words in the instruction that may provide them. Modification detail extraction
uses this information as input to search for modifications to procedure code. For in-
stance, the phrase “if the distance is below two miles” will be used to provide the
condition that is being added to a step. Once mapped into a procedure modification, the

1827Blythe J., Kapoor D., Knoblock C.A., Lerman K., Minton S.: Information ...



Figure 10: Part of the code search graph for expression “the name of the hotel”.

condition may require several database queries and auxiliary procedure steps. For in-
stance, a separate procedure that finds distances based on two addresses from an on-line
source may be called before the numeric comparison that forms the condition. Tailor
finds potential multi-step and multi-query matches through a dynamic programming
search [Blythe, 2005a]. This ability to insert multiple actions and queries is essential to
bridge the gap between the user’s instruction and a working procedure, and is used in
most instructions. As another example, suppose the user types “find hotel to meeting
distance” before adding the hotels to the procedure. Tailor finds the distance proce-
dure, and knows that meeting addresses can be found by querying the desktop database,
while the hotel address can be found through a procedure that accesses the XML data
returned by the procedure that invokes the hotel wrapper. Tailor inserts the correct code,
and the user does not need to know these details. This capability depends on the correct
alignment of the wrappers into the ontology, found by the Semantic Mapping Editor.

In the final step, modification analysis, Tailor checks the potential procedure change
indicated by the instruction to see if any new problems might be introduced with the
set of procedures that are combined within the new procedure definition. For instance,
deleting a step, or adding a condition to its execution, may remove a variable that is
required by some later step in the procedure. If this is the case, Tailor warns the user and
presents a menu of possible remedies, such as providing the information in an alternate
way. The user may choose one of the remedies or can ignore the problem. In some
cases, Tailor’s warning may be incorrect because it does not have enough information
for a complete analysis of the procedure, and in some cases the user may remedy the
problem through subsequent instructions.
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5.2 Code Fragment Search

Tailor uses a dynamic programming approach on a graph of data types, with queries,
procedures and iteration represented as links in the graph. We improved performance by
dynamically aggregating groups of partially matched code fragments based on the user
instruction. We also improved navigation of the results through grouping, highlighting
and hierarchical menus, and gave the user more feedback and control over synonyms
that are used in matching. Depending on the context of the request, the fragments may
be constrained to be a single task or query, or a sequence of tasks and queries supporting
a final condition. The type of the final value produced may optionally be constrained.
For each of these variations, the basic search is performed in the same way.

Before learning begins, Tailor creates a graph whose nodes represent the data types
present in the conceptual domain of the task, e.g. hotel and distance. A node exists for
the input and output arguments of every procedure or relation in the domain, creating
parametric nodes to represent lists of objects, e.g., list(hotel), and also for each complex
type. The process is finite since it is driven by the finite set of procedures and predicates
known to the primitive tasks. Each predicate or procedure is represented in the graph
as a multi-link, linking the set of input types to each possible output type. Search is
begun when the user indicates a new subtask to be added or condition to be applied
at some point in the current task definition. Given an expression like “list each hotel
name”, Tailor searches for a step or condition that can be legally inserted at the point
in the process and whose English description matches the words used, allowing for
synonyms. During the search, Tailor generates candidate expressions by traversing the
links in the graph of data types: each time a new set of objects becomes available at
the set of input nodes for a link, we create a new object at each of the output nodes
that represents the application of the related query or procedure to the input types.
Whenever a new object is created, its description is checked against the search terms.
Links are examined in sequence, so the first match found is the shortest in terms of links
traversed. Relatively large code fragments may be built up in a few iterations; however,
since intermediate results are cached at each node and re-combined, so the size of a
fragment may grow exponentially in the number of iterations. The condition or step
may refer to any variables that are bound at the point in the process where it is inserted,
or to constants known to the system, i.e., the graph is initially seeded with objects that
represent the programming context for the desired code fragment.

Figure 10 shows an example of searching to find matches for instruction “the hotel
name”; only nodes that contribute to a match are shown. Ovals represent data types in
the static graph, linked by queries or procedures that can create new terms; the boxes
show terms that are created during search, along with the iteration at which terms are
first created for the data type. Initially, two input variables are available, one for the
distance in miles and one for the meeting, which is shown as the ?m term next to data
type meeting. After the first iteration of search, terms are available at the date and city
data type nodes, e.g., city(?m) represents the application of a query to find the city in
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which a meeting takes place. Two terms are available with data type date, and they
correspond to the start and end dates of the meeting. On the next iteration, a list of hotel
records is available, and it represents the application of a web procedure to find hotels
based on a city, check-in, and check-out dates. Four such terms are available due to
the possible combinations of dates, though only one leads to a reasonable procedure.
This is the first term that matches any of the words in the user’s instruction. Subsequent
iterations convert the XML into a regular list of hotel records, iterate over them and
retrieve their names. This term, which is a procedure fragment, matches all the words
in the user’s instruction and is shown as a possible match. Note that a new term should
be propagated even if it does not match any part of the search string, because it may
lie along a path to more complex terms that do match. This is the case for city(?m).
However, once a term has been generated with a fragment that matches a subset of
the search words, it is wasteful to propagate the same term and subset again, since all
matches found using the fragment must have the same structure as those found with
the original fragment. Instead, we add them to the set of fragments that have the same
type and match set. If this set of fragments is later found to be part of a solution, Tailor
generates the cartesian product of all such fragments as part of its solution set.

5.3 Complex Types in Tailor

Complex types are important both from the user’s point of view and in Tailor’s search
algorithm. For the user, complex types can make a procedure more understandable by
reducing the number of variables to interpret and putting them at a level that is closer to
the user’s viewpoint, e.g., the hotel’s address rather than its street, city and zip code. For
Tailor, complex types play an important role in reducing the number of parameters to
consider during search; for instance, the procedure to find hotels available for a meeting
requires a check-in date and check-out date, but the meeting object provides the meet-
ing start and end dates. There may also be other procedures available to manipulate
dates, e.g., to find the date some number of days before or after another date. Given the
user instruction “get hotels for meeting” to add a step to a procedure that declares a
meeting, Tailor searches for ways to fill the parameters of the primitive task for check-
in and check-out date. Using primitive types, the hotel procedure has six parameters
dealing with dates: a day, month and year for each of the check-in and check-out dates.
Tailor has no information that these parameters are connected, and considers the two
simple candidate options for each one, based on the start and end dates of the meeting.
Thus it would find 26 potential solutions for the hotel procedure. When Tailor composes
fragments of code, it bundles alternative paths that are equivalent in their input-output
specification and in how they match the users instruction. Because of this, the 2 6 al-
ternative steps using primitive types will not noticeably slow Tailor’s search. However
the user would have to choose between picking values for each of the six independent
parameters, or look through all 26 alternative steps. Note that many of the alternative
steps use irrelevant or even impossible dates, e.g., a combination of the day of a date
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Question
List hotels within ?Number miles of a ?Location

List hotels within ?Number miles of a ?Location with ?FeatureSet

Rank hotels within ?Number miles of a ?Location based on ?FeatureSet

List hotels within ?Number miles of an ?Address

Rank ?CityList based on likelihood of weather delays on ?Date

List hotels within ?Number miles of an ?Address that give frequent flyer miles on ?Airline

List hotels in ?City with a swimming pool and free internet

Find the role ?Person plays in ?Institution

Build a contact sheet containing names, e-mail addresses and phone numbers for the attendees of ?Meeting

Notify the attendees of ?Meeting about a room change

List purchases due to be completed in the next month for ?Person

List people travelling to the same ?Location on the same day as ?Person

List people who will be at ?Conference on ?Date, based on travel plans

List grad students going to ?Conference

Table 4: The test questions used to validate the tool.

with the month of another. Using complex types, the two dates are represented as two
parameters rather than six. There are two simple candidates for each parameter: the start
and end times of the meeting; thus, Tailor suggests four possible steps to the user rather
than 26, or the user can independently select values for two parameters rather than six.

Tailor is also able to offer higher-level help based on common operations with com-
plex types. For instance, after a step that produces a complex type has been added to
a procedure, Tailor provides menu options for returning or collecting individual com-
ponents of the complex type, and assists the user with projections of complex types.
This is done with the same general mechanism used for adding transformations and
pre-processing steps needed for steps or conditions requested by the user. For instance,
the hotel procedure returns an address for each hotel, as a complex type with five fields
including the street, city, state and zip code. Another procedure that returns the distance
between two addresses uses complex types that require only two fields for each address,
the street and zip code. Tailor automatically adds code to create a new instance of the
required input type from the hotel address when the user asks to compute the distance
of the hotel. In some implementations of complex types in Spark, the larger address
object can still be given to the distance-getting procedure as an input. When this is true,
Tailor removes the extra steps from the procedure before sending it to Spark.

6 Validation

We used our system to build procedures for a variety of test problems in the office and
travel domains. Typical problems in these domains include “List hotels within ?Num-
ber miles of the ?Meeting that have the features ?Feature, . . . , and ?Feature” or
“Notify the attendees of ?Meeting of a room change”. We used EzBuilder to wrap
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Figure 11: Number of steps and instructions required.

eleven information sources that provided the data necessary to solve these problems.
The results of applying the semantic labelling algorithm to label the input and output
parameters used by these sources are included in the results in Figures 5 and 6. For the
sources used in the office and travel domains, the correct semantic type was often the
top prediction, it was amongst the top four predictions for more than half of the sources.

The tool was used to successfully build procedures for the test questions in Table 4,
with Tailor using the information gathering procedures aligned with the ontology. How-
ever, the training requirements for users are currently higher than we would like: users
need on the average ten hours of practice in order to build procedures of this complexity.
The number of steps in the procedures ranges from 2 to 35, with an average of 16.6. The
number of instructions required to create the procedures ranged from 2 to 9, with an av-
erage of 4.6. Tailor is handling instructions that refer to several steps and conditions at
once, with an average of 3.6 steps added per instruction. This factor comes from a com-
bination of Tailor’s search, which may compose several steps in response to a query,
and automated help for iteration, including gathering the results in a list. The number of
alternative interpretations for instructions ranged from one to around 100, with three or
four in most cases. In approximately 40% of cases, Tailor’s first choice was correct. We
are researching ways to provide more support for harder cases, including a checklist of
relations and procedures used to more easily remove unwanted matches.

Furthermore, SRI International carried out an independent evaluation of our tool as
part of its overall evaluation of the Calo system. Sixteen test subjects, software pro-
fessionals from SRI with no specific training in information integration, participated
in the study. Most of the subjects worked on the Calo project but did not work on
EzBuilder, the Semantic Mapper or Tailor. In this study, the subjects used the combina-
tion of EzBuilder and Semantic Mapper to retrieve and model data relevant to answering
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the questions “find the role ?Person plays in ?Institution” and “list people travel-
ling to ?Location on the same day as ?Employee”. Each subject then used Tailor to
answer three instantiations of each question. The answers were evaluated according to
how closely they matched the known answers to these questions. For the first question,
all subjects achieved perfect scores, exactly matching the expected answer. The subjects
were able to generate correct answers for two of the three instantiations of the second
question. The misses were explained by the fact that for one employee mentioned in
the question instance, the travel location was entered as New York, NY and for another
it was entered as New York City, NY. At this time, our system does not resolve refer-
ences to handle such variations of target strings. Although this study is quite limited,
we believe it offers support for the utility and ease-of-use for our tool.

7 Related Work

Our system is similar to information mediators. Such systems provide uniform access
to heterogeneous data sources, and require the user to define a domain model (scheme)
and to relate it to the predicates used by the source. The user’s queries, posed to the me-
diator using the domain model, are reformulated into the source schemes. The mediator
then generates an execution plan and sends it to an execution engine, which sends the
appropriate sub-queries to the sources and evaluates the results [Thakkar et al., 2005].
Our system is different since it attempts to automatically model the source by inferring
the semantic types of its inputs and outputs; furthermore, instead of a query, the system
assists the user in constructing procedures that may contain world-changing steps or
steps with no effects known to the system.

Semantic modelling is similar to the schema matching problem that occurs when
several databases must be integrated. Researchers have developed a number of methods
to automate the schema matching process, including those that rely on the contents of
data fields [Rahm and Bernstein, 2001]. In [Doan et al., 2001] and [Doan et al., 2003],
the authors use machine learning to learn data source descriptions. In their system, a
user labels data from a few sample sources, and the system then trains a suite of special-
purpose classifiers to recognise some features of the data and the schema. Each of the
classifiers have shortcomings, and require the use of a suite of learners to compensate.
Although our approach is similar in spirit, we believe that it is more flexible since it
relies on patterns that capture significant structure in data. This allows us to recognise
fields regardless of their length, as well as frequently occurring specific data instances.
We also have a unified probabilistic description of sources that allows us to handle both
the hard and the soft constraints described in [Doan et al., 2001].

Most work in procedure learning relies on user demonstrations [Lieberman, 2001]
[Oblinger et al., 2006] [Lau et al., 2004]. The user steps through solving a task and the
system captures the steps of the procedure and generalises them. This is intuitive for
users, but in some cases several examples may be required to find the correct gener-
alisation, and some aspects of a scenario may be hard to duplicate for demonstration.

1833Blythe J., Kapoor D., Knoblock C.A., Lerman K., Minton S.: Information ...



Tailor requires instructions, which forces the user to articulate the general terms of the
procedure, but can be faster and requires less set-up. One of the earliest such systems
was Instructo-Soar [Huffman and Laird, 1995], which learned rules for the Soar system.

A task learning system called Plow was recently shown to successfully learn exe-
cutable information integration tasks by combining demonstration, natural language ex-
planation and dialogue [Allen et al., 2007]. It relies on the DOM model to extract data
from web pages. Our system can extract data from a wider variety of web sources be-
cause it tolerates noise and format inconsistencies by using machine learning tools. Fur-
thermore, our system semantically models data sources and enables their reuse. Finally,
our system offers the user the ability to learn and modify Spark procedures through
short natural language instructions. These procedures may have been originally built by
knowledge engineers or learned, by our own tool or by others. It is therefore able to
modify a much wider range of existing procedures than Plow.

Recently, companies such as Yahoo! and Intel unveiled tools to help users create
simple on-line information integration applications known as mash-ups, e.g., to com-
bine apartments listings with maps. Yahoo! Pipes offers an intuitive visual interface to
aggregate and manipulate web content. Users build a pipe (mash-up) by linking prede-
fined widgets together, e.g., a widget may fetch an RSS feed and pass it on to another
that filters it using key words. Although users can create new pipes by modifying the ex-
isting ones, they cannot reuse existing pipes within other pipes. The widgets that extract
web content are similar to our wrappers, whereas widgets that manipulate content are
similar to Tailor operations. Although there are a significant differences in how a pipe
is constructed (visually) and how a procedure is created by Tailor (natural language),
they share the same goal, i.e., composing and manipulating web information. Note, too,
that any user can create a new information-gathering procedure with EzBuilder, but it
is not clear how to create new widgets using Yahoo! Pipes. We also attempt to alle-
viate the need for the user to understand the semantics of data provided by web sites,
while Yahoo! Pipes requires the user to model the on-line data source. Intel’s Mash-
Maker helps non-expert users create widgets that perform tasks such as extracting data
from a web page or filtering. Although users need some degree of expertise to create
widgets, non-expert users can then reuse them to create new integration applications.
Unlike our system, in which the reuse of learned procedures is driven by their semantic
definitions, in MashMaker, widget’s reuse is driven by key words in its description and
the context of the operation the user is performing. Users construct queries by example
while browsing the data, rather than by explicit instructions as in Tailor. Since there is
no empirical evaluation, it is difficult to say how well MashMaker works.

Karma is a recent system that simplifies mash-up creation by moving away from
the widget paradigm [Tuchinda et al., 2008]. It seamlessly combines information re-
trieval, cleaning, modelling, and integration via a demonstration paradigm in which a
user shows the system the data in which he or she is interested by copying it from a
web page into a table. Karma relies on the DOM model to extract data from web pages,
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as well as to assign similar data to the same column of the table. Therefore, it cannot
extract data from as wide a variety of web pages as EzBuilder. Unlike in our system,
semantic modelling of data sources is done manually. Creation of data integration plans
is driven by demonstration, as in MashMaker: the user assembles data from multiple
pages into a single table, linking it through constraints imposed by the table. In con-
trast, our system creates integration plans by instruction.

8 Conclusions and Future Work

We have described a system that uses learning to assist a user in creating information
integration applications. We evaluated the system on a range of real-world problems
related by a common domain and found robust performance. With the aid of our system,
users who had no previous experience with information integration tools were able
model new sources, to extract data, and construct integration plans to solve a wide
range of problems. Our system allows users to re-use learned procedures to build ever
more complex and powerful information integration applications.

Future work includes a more top-down integration in which the user starts by con-
sidering the overall capability to achieve, and creates information-gathering procedures
as part of that, rather than our current bottom-up approach. An interesting issue con-
cerns the dynamic extension of the ontology based on the behaviour of the information-
gathering procedures. For instance, assume that the main ontology does not support zip
codes, which is one of the outputs of the hotel procedure and an input to the distance
procedure. Initially, the output can be mapped to a number, but more information is
required for systems that compose procedures to know that this is a number that can be
used with the primitive task that extracts distance from a web source. Such distinctions
may not be needed in the rest of the system, however. In our current implementation
we build a small auxiliary ontology of these terms that was shared between Semantic
Mapper and Tailor. In future work, we will investigate how to support this dynamically.
Regarding Tailor, we are working on the use of analogy to find similar procedures and
offer ways to incorporate parts of them into the one currently being built. This includes a
smart drag-and-drop feature that will recheck parameter bindings as a substep is copied
from another procedure to the current target. Users often create procedures by copying
from existing ones, and analogy will support this effort. It will also improve Tailor’s rate
of choosing the correct interpretation of an instruction by exploiting prior experience.
We would like to improve semantic labelling performance on numeric types, which
are currently treated as text strings. We also plan to automate primitive task recogni-
tion, based on the methods described in [Carman and Knoblock, 2007]. Concurrently,
planned improvements in EzBuilder will reduce the time it takes the train wrappers.
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