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Abstract

We introduce a framework for learning Local-as-View (LAV)
source definitions for the operations provided by a Web Ser-
vice. These definitions can then be used tocomposethe op-
erations of the Web Service into query execution plans. In
order to learn the definition for a new service, we actively
invoke the service and compare its output with that of other
known services. We combine Inductive Logic Programming
(ILP) and Query Reformulation techniques in order to gen-
erate and test plausible source definitions for the operations
of the service. We test our framework on a real Web Service
implementation.

Introduction
New Web Services are being made available on the inter-
net all the time, and while some of them provide completely
new functionality, most are slight variations on already ex-
isting services. We are interested in the problem of enabling
systems to take advantage of these new services without the
need for reprogramming. An existing system can only make
use of the new service if it has some notion as to what func-
tionality the service provides. Once the system understands
this functionality it can compose the service to achieve user-
defined goals or incorporate the new service into an already
existing workflow. Broadly speaking, there are three ap-
proaches to gaining semantic knowledge regarding the func-
tionality of a new service. We call these approachesstan-
dardization, semantic markupandinduction, and summarise
them as follows:

• Standardisation:An industry consortium defines a set of
standard schemas (possibly in XML Schema) and opera-
tions (as WSDL service descriptions) for the information
domain. We then require that all service providers use
these schemas to describe their data, and those operations
to make their data available.

• Semantic Markup:Rely on service providers to annotate
their services with semantic labels, corresponding to con-
cepts from an ontology, and then employ semantic web
techniques to reason about mappings between ontologies
which are “understood” by the client, and those that are
used by the provider.
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• Induction:Place no requirements on the service provider,
but have the client employ schema matching (Rahm
& Bernstein 2001) and service classification techniques
(Heß & Kushmerick 2003) to hypothesize what function-
ality each service might provide.

We follow the third approach, taking the idea one step fur-
ther by actively querying sources to see if the output agrees
with that defined by our model of them. Moreover, we
searchnot only for identical services, but try to discern
whether a new service has a different scope, or indeed com-
bines the functionality of other known services. We restrict
the problem to that of dealing with those operations of a ser-
vice which only produce information and do not have any af-
fects which “change the state of the world”. For example, we
are primarily interested in modeling operations which pro-
vide access to “flight information” say, but not those which
allow the user to “buy a ticket”. Information providing Web
Services can be composed automatically using query refor-
mulation techniques as described in (Thakkar, Ambite, &
Knoblock 2004). We follow the Local-as-View (LAV) (Levy
et al. 1995) approach to modeling information producing
operations (also called sources) in which the information do-
main is modeled by a set of so-called “domain relations” or
“global predicates”, and each source is described as a view
over the domain relations. The problem of discovering the
functionality of a new service can thus be seen as the prob-
lem of discovering the LAV source description for each of
the operations it provides.

A Motivating Example
Before diving into a description of our source induction
framework, we analyse two examples which illustrate more
clearly the problem our framework is intended to address.
In this first example, we want to determine that the op-
eration provided by a newly discovered service is equiva-
lent to an already known currency exchange-rate operation.
The data model for this problem contains two “semantic”
data types, calledcurrency anddecimal. Example val-
ues for these datatypes, such as{EUR, USD, AUD, JPY} and
{1936.27, 1.30584, 0.531778} are available to the system.
The domain description also contains a single global rela-
tion, which is defined as:

exchange(currency, currency, decimal)
In addition to the domain model, the problem contains a de-



scription of the services which are known and available to
the system. In this case we have a single service which pro-
vides the following operation:
LatestRates(country1b, country2b, rate):-

exchange(country1, country2, rate)
The superscriptb on attributes in the head of a source de-
scription indicates that the attribute is an input and needs to
beboundbefore invoking the source. Given this background
knowledge, the problem is to discover a source description
for an operation provided by a newly discovered service. A
predicate denoting the “unknown source” is shown below:
RateFinder(fromCountryb, toCountryb, rate)

Guided by meta-data similarity (such as the edit distance be-
tween the input labels of the known and unknown sources1),
the system can hypothesize that the input fields of this new
service are of typecurrency. In order to test this hypothe-
sis, it can attempt to invoke the new service using examples
of this semantic type as input. Doing so generates tuples as
follows:
{〈EUR, USD, 1.30799〉, 〈USD, EUR, 0.764526〉, ....}

The fact that tuples are returned by the source means that the
classification of the input types is “probably” correct. To be
more certain, the system could attempt to invoke the service
using examples of the other type,decimal.2

Taking into account both the meta-data and the newly
generated tuples, the system can classify the output attribute
rate to be of typedecimal. With the type signature
complete, the system now needs to find a definition for
the new source. Based on the signature we have two
possibilities (labeleddef1 anddef2) for the definition, both
of which involve the predicateexchange:
def1(fromb, tob, rate):- exchange(from, to, rate)
def2(fromb, tob, rate):- exchange(to, from, rate)

To test which, if any, of these two source definitions is
correct, we need to generate tuples which adhere to each
definition and compare these tuples to those produced by
the new source. The system can generate tuples for each
definition by reformulating the definitions in terms of the
known serviceLatestRates, as follows:
def1(fromb, tob, rate):- LatestRates(from, to, rate)
def2(fromb, tob, rate):- LatestRates(to, from, rate)

Invoking the two reformulated definitions using the same
inputs as before produces the tuples in the table below:

input RateFinder def1 def2
〈EUR, USD〉 〈1.30799〉 〈1.30772〉 〈0.764692〉
〈USD, EUR〉 〈0.764526〉 〈0.764692〉 〈1.30772〉
〈EUR, AUD〉 〈1.68665〉 〈1.68979〉 〈0.591789〉

The tuples produced bydef1 are “very similar” although not
identical to those produced byRateFinder. Once the sys-
tem has seen a “sufficient” number of tuples, it will conclude
that the best definition for the new service is indeeddef1.

1See (Heß & Kushmerick 2003) for an approach to matching
input and output labels.

2The system knows that the examples ofdecimal are not plau-
sible values for the typecurrency, because they do not fit a gen-
eralised expression for examples of the latter, namely: [A-Z]3.

A More Complicated Example

We briefly describe a second example which motivates the
need for more expressive source descriptions, i.e. descrip-
tions involving joins over different relations. In the example
we have five semantic data types, namely:airport,
temperature, latitude, longitude, and zip code.
Examples of the first two types are{LAX, JFK, SFO, ORD}
and {15F, 12.4F, 70F, 27.8F} respectively. We also have
three domain predicates, which are defined as follows:
weather(latitude, longitude, temperature)
zip(latitude, longitude, zip code)
airport(airport, latitude, longitude)

These predicates are used in the definition of three different
sources which are available to the system:

Zip2Temp(zipb, temp):- zip(X, Y, zip), weather(X, Y, temp)
ZipFind(latb, lonb, zip):- zip(lat, lon, zip)
AirportInfo(iatab, lat, lon):- airport(iata, lat, lon)

The new service for which we want to discover a definition
is denoted: AirportWeather(codeb, temp). By first
hypothesizing that the input parameter to the new source
is of typeairport, the system can invoke the source and
produce the following tuples:
〈LAX, 63.0F〉, 〈JFK, 28.9F〉, 〈SFO, 60.1F〉, 〈ORD, 28.0F〉

As in the previous example, the system compares both the
meta-data and data of the output attribute and classifies it
to be of typetemperature. Having established the type
signature, the system can generate plausible definitions for
the new service, such as:
def1(codeb, temp):-
airport(code, Y, Z), weather(Y, Z, temp)

The description involves two domain relations, because
no single predicate takes both arguments. According to
the principle of Occam’s Razor the simplest model which
explains the data is assumed the most plausible. Here, the
simplest model would have been the Cartesian product of
the two relations. It is unlikely, however, that somebody
would create a service which returns the Cartesian product,
when they could provide access to the relations separately.
Thus the system starts its search with the more complicated
service description, in which attributes of the same type are
joined across relations.3 To test the new source definition,
the system reformulates it in terms of the known services as
follows:4

def1(A, B):-
AirportInfo(A, X, Y), ZipFind(X, Y, Z), Zip2Temp(Z, B)

Now, using the sameairport codes, the reformulated
query produces the following tuples:
〈LAX, 62F〉, 〈JFK, 28F〉, 〈SFO, 59F〉, 〈ORD, 28F〉

As in the previous example, the values returned by the
reformulated query are “similar” but not identical to those
returned by the new source. Thus the system can assume
that the definition is probably correct. Notice that the cov-
erage of the new source is different from the query over the
other sources, as it can provide weather information about

3This simple heuristic provides a kind of inductive search bias
(Nédellecet al. 1996) for the learning system.

4A functional dependency, which holdstemperature constant
over azip code is needed in order to generate this reformulation.



airports outside of the US. This means, that by inducing the
definition of a new source using our knowledge of existing
sources, we are not only discovering new ways of accessing
the same information, but are also expanding the amount of
information available for querying!

Problem Definition
We now outline our framework for automatically inducing
definitions for the operations of a web service. We first de-
fine an instance of theSource Definition Induction Problem
as a tuple〈T, P, S, n〉, whereT is a set ofsemantic data-
types, P is a set ofdomain predicates, S is a set ofknown
services, andn is anewly discovered service. In the follow-
ing sections we define each of the above.

Semantic Data-Types and Domain Predicates
A semantic typet ∈ T is described by a tuple:

〈parent, regex, Examples, metric〉
Semantic data-types are arranged in a taxonomy, with
parent being the super-type. The regular expressionregex
defines thecanonicalform of values of this type. We need a
reference format since different services may input or output
the same value in different formats. For example, one ser-
vice may output aUSTelephoneNumberas (213) 129 2333,
while another service outputs the same value as 213-129-
2333.Examples is a set of possible values for the semantic
type. Finally,metric is a function which returns similarity
scores for pairs of values of the type.

The set of predicatesP is made up of global rela-
tions (from the mediated schema) and interpreted pred-
icates. Interpreted predicates are predicates for which
the system has a local implementation. There will
be a number of such predicates available in the sys-
tem, such as inequality≤ and equality =, possibly
some mathematical functions (e.g.+), string transformations
such asconcatenate(s1, s2, s3), precision operators like
round(accuracy, v1, v2), and data-type specific transfor-
mations such asCelsius2Fahrenheit(t1, t2).

Each predicate has typed arguments and may respect
some functional dependencies. Functional dependencies ex-
press constraints over the data, stating that one or more at-
tributes of a predicate are determined by the values of other
attributes. They can be used to define transformations be-
tween different representations of the same information. For
example the predicateCelsius2Fahrenheit(t1, t2) has a
functional dependency:t1 ↔ t2, (stating that there is only
one Fahrenheit value for any given Celsius value and vice
versa). Knowledge of functional dependencies can be crit-
ical for query reformulation. In some cases functional de-
pendencies may not be given in the problem specification,
but may need to be mined from the data.

Service Descriptions
S is a set of known services. Each of the services has been
annotated with semantic information in terms of the domain
model (i.e. T andP ). An annotated services ∈ S can be
written as follows:

〈name, url, desc, Operations〉
The labelsname andurl are identifiers for the service,

whiledesc is a string in natural language describing its func-
tionality. The set ofOperations are the information sources
provided by the service. Each operation can be described as
follows:

〈name, desc, Inputs, Outputs, view〉
The labelsname anddesc are strings in natural language

describing the operation. Eachinput andoutput is a triple
〈name, type, transformation〉. Thename is the meta-data
describing the input, which may include a path through a
hierarchy of XML schema tags. Thetype field is the an-
notation of this input/output with a semantic data-type from
T . The transformation is a function for converting val-
ues to/from the reference format. In addition to the semantic
type annotation, each operation is associated with aview de-
finition which is a conjunctive query over the domain predi-
cates,P .

The new servicen is defined in the same way as above,
except that its operations are not annotated with semantic
types, and it does not have a conjunctive query definition
associated with it. TheSource Definition Induction Problem
is to automatically generate the semantic annotation for this
new service, given the annotation of the known services.

The Algorithm
We separate the procedure for inducing source descriptions
into two phases. In the first phase each of the input and out-
put attributes of the new service are classified with a seman-
tic types. This step involves schema matching techniques
(Rahm & Bernstein 2001) as well as the active invocation of
services, as in (Johnston & Kushmerick 2004). In the second
phase, the new type signature is used to generate candidate
hypotheses for the Datalog description of the new source.
The space of such hypotheses is searched and candidate hy-
potheses are tested to see if the data they return agrees with
their description. The two phases of the algorithm can be
expressed as follows:

Phase I:
1. Generate hypothesis regarding input/output types

2. Attempt to invoke service using examples of input types

3. Repeat until valid hypothesis is found

Phase II:
1. Generate candidate hypotheses for new source definition

2. Reformulate hypotheses as queries over known sources

3. Execute queries and invoke source using randomly se-
lected input tuple5

4. Rank hypotheses according to output similarity

5. Discard poorly performing hypotheses

6. Add more complicated hypotheses and select next input

7. Repeat until best score converges on a single hypothesis
5Note that, when a source inputs a tuple of cardinality greater

than one it can be non-trivial to choose “valid” combinations of
input attribute values.



Assumptions Regarding Source Definitions
We make a number of assumptions regarding the definition
of the new source. These assumptions can be summarised as
follows:

1. Function-free safe Datalog queries (no aggregate opera-
tors)

2. No-recursion or disjunction6 (no union queries)

3. Negation-free (no set difference or6=)

4. Open-world semantics (sources are incomplete)

The first condition states that in order for the semantics of an
operation to be learnt it must be expressible in Datalog. The
second and third conditions represent simplifying assump-
tions which hold for most service operations, and which
greatly reduce the search space of possible definitions. In
contrast, the final condition regarding the incompleteness of
the sources actually complicates the problem. This assump-
tion is necessary, however, as it is frequently the case that
web services are incomplete with respect to the tuples that
fit their definitions.

Comparing Candidate Hypotheses
In the motivating examples, at most one output tuple was
produces for every input tuple. This was the case because
functional dependencies existed over the predicates which
defined the sources. In general, functional dependencies will
not necessarily exist, and multiple output tuples will be pro-
duced by each source for a given input tuple.

The problem of discovering which tuples from two
sources represent the same real world entity is referred to
as the duplicate detection problem in the record linkage lit-
erature. In general, one would need to employ such tech-
niques to compare the outputs of the new source and the
reformulated query to see which (if any) of the tuples are
the same. Note that both the new service and the existing
sources are assumed to be incomplete. Thus even if the hy-
pothesis regarding the description of the new source is cor-
rect, the set of tuples it returns will not necessarily be a sub-
set of those returned by the reformulation! The two sets may
simply overlap, which is a problem, given that we are trying
to show at this point that the hypothesis is contained in the
“true source description”. Assuming that we can count the
number of tuples that are the same, we need a measure which
tells us which of the candidate hypotheses best describes the
data returned by the new source. One such measure is the
following:

Score =
2
|I|

∑
i∈I

|On(i) ∩Od(i)|
|On(i)|+ |Od(i)|

whereI is the set of input tuples used to test the source.
On(i) denotes the set of tuples returned by the new source
when invoked with input tuplei. Od(i) is the correspond-
ing set returned by the reformulation of definitiond. If we
view this hypothesis testing as an information retrieval task,

6We plan to investigate definitions involving a limited form of
disjunction where source functionality depends on the value of an
input attribute of an enumerated type with low cardinality.

we can considerrecall (resp.precision) to be the number of
common tuples, divided by the number of tuples produced
by the source (reformulated query). Under this interpreta-
tion, the above score is the averageF1-Measureover the
input trials.

Case Study and Experiments
In order to evaluate the feasibility of our proposal for in-
ducing source descriptions, we investigated a use-case in
which the user is currently annotating the operations of a
new service. Since the different operations of a given service
are usually closely related, it may be possible to induce the
source description for one operation using the same predi-
cates in the annotated operation. By concentrating on differ-
ent operations of the same service, we can to a large extent
ignore the problems of type matching and data reformating.

The service we investigated provides geospatial data and
is calledZipCodeLookup7. Three of the operations provided
by the service are shown below8:
1. getDistanceBetweenZipCodes(zip1b, zip2b, dist)
2. getZipCodesWithin(zip1b, dist1b, zip2, dist2)
3. getZipCodeCoords(zipb, lat, long, latR, longR)9

In our test case, the user is currently annotating the web ser-
vice description with a source definition for each operation.
She decides the best definition for the first operation will be:
getDistanceBetweenZipCodes(zip1b, zip2b, dist):-
centroid(zip1, lat1, long1),
centroid(zip2, lat2, long2),
distanceInMiles(lat1, long1, lat2, long2, dist)

Given this source description the system is now in a po-
sition to induce source descriptions for the other opera-
tions. It can attempt to “fill in” the missing source de-
scriptions automatically. The system can do this because
it has a set of typed predicates, namelycentroid and
distanceInMiles, which it can use to build source de-
scriptions for the other operations. The semantic types in
this domain arezipCode, distance, latitudeInDegrees, and so
on. In addition to the user defined predicates, we assume that
the system also has access to a definition for the inequality
predicate≤, which is typed to accept real valued attributes,
such asdistanceor latituteInDegrees. (Because of symme-
try, there is no need for the corresponding≥ predicate to be
made available.) The system will also have access to a defi-
nition for the equality predicate=, which can be applied to
attributes of the same type.

Generating Plausible Definitions
In order to induce a definition for the source predicate
getZipCodesWithin, the system first investigates the type
signature of the new predicate. Since the signature of this

7The WSDL file describing this service can be found at
http://www.codebump.com/services/zipcodelookup.asmx?WSDL

8The other operations provided by the service are either a) too
complicated for inclusion in the current use case, or b) involve
“world altering effects” (such as saving information on the server)
and cannot therefore be expressed in Datalog.

9lat andlong are short for latitude and longitudein Degrees,
while latR andlongR are short for the samein Radians



Possible Source Description Cumulative Scores
1 cen(z1, lt1, lg1), cen(z2, lt2, lg2), dIM(lt1, lg1, lt2, lg2, d1), (d2 = d1) 0.00, 0.00, 0.33, ....
2 cen(z1, lt1, lg1), cen(z2, lt2, lg2), dIM(lt1, lg1, lt2, lg2, d1), (d2 ≤ d1) invalid
3 cen(z1, lt1, lg1), cen(z2, lt2, lg2), dIM(lt1, lg1, lt2, lg2, d2), (d2 ≤ d1) 0.86, 0.88, 0.59, ....
4 cen(z1, lt1, lg1), cen(z2, lt2, lg2), dIM(lt1, lg1, lt2, lg2, d2), (d1 ≤ d2) 0.00, 0.00, 0.00, ....
5 cen(z1, lt1, lg1), cen(z2, lt2, lg2), dIM(lt1, lg1, lt2, lg2, d2), (d1 ≤ #d) 0.80, 0.82, 0.88, ....
6 cen(z1, lt1, lg1), cen(z2, lt2, lg2), dIM(lt1, lg1, lt2, lg2, d2), (lt1 ≤ d1) uncheckable

...
n cen(z1, lt1, lg1), cen(z2, lt2, lg2), dIM(lt1, lg1, lt2, lg2, d2), (d2 ≤ d1), (d1 ≤ #d) 0.86, 0.88, 0.92, ....

Table 1: Inducing Source Descriptions forgetZipCodesWithin(z1b, d1b, z2, d2)

predicate contains all of the types in the signature of the
known source predicategetDistanceBetweenZipCodes,
a valid starting point for generating plausible definitions
for the former is the definition of the latter. (It seems
a valid assumption that the structure of different sources
of the same service will share a similar Datalog struc-
ture, such as joins over existential variables likelt1 and
lg1.) The system can perform a local search starting from
this source description by adding, deleting and altering the
predicates it contains. Some plausible source descriptions
which result from adding new predicates to the definition of
getDistanceBetweenZipCodes are shown in table 1 in an
order in which they might be generated during search. (The
predicate and attribute names have been abbreviated to save
space.)

This first definition shown in the table returns all zip codes
which lie exactlyd1 miles from zip codez1. It also returns
the input distanced1 as the output distanced2. (Note, that
it is not uncommon for the operations of a service to “echo”
an input value as an output value.) A single equality pred-
icate has been added to the initial source description. This
predicate was needed to bind a value to the output attribute
d2.

The second definition has been inserted in the table to
show that not all possible predicate additions result in valid
definitions. This definition is invalid and would not be
generated by the search procedure, because the comparison
predicate≤ cannot be used to bind the variabled2 to a value.
Intuitively, if ≤ did bindd2 to a value, it would have to bind
it to every possible value less thand1, resulting in an infinite
set of output tuples.

In contrast, the third definition is valid, because the vari-
abled2 is already bound to a value (by the predicatedIM)
before being compared using the inequality predicate. Note
thatd1 is an input variable (bound attribute) of the unknown
source, so it does not need to be bound by the≤ predicate.
According to this definition, the source predicate returns all
zip codes which lie within the distanced1 of the zip z1.
It also returns the distance to each of the zip codes found.
Conversely, the fourth definition returns all zip codes which
lie outside of the aread1 miles fromz1, along with their
respective distances.

The fifth definition involves a comparison containing the
symbol#d, which represents a constant of typedistance.

The particular value for this constant will not be chosen until
after invoking the reformulated definition, and will be cho-
sen so as to maximise the score for this definition. Choosing
the value prior to executing wouldn’t make sense, as the con-
tinuous variable would mean that arbitrarily many hypothe-
ses of this type would need to be generated.

The sixth definition returns tuples where the latitude at-
tribute lt1 is less than the distanced1. This comparison
may seem odd given an intuitive notion as to the inher-
ent usefulness of a given query, but unless told otherwise it
makes perfect sense to the search procedure. Depending on
the domain, we might want to explicitly rule out such com-
parisons, thereby providing an “inductive language bias” to
the system. In order to check the correctness of each possi-
ble definition against the source, we must first reformulate
the definition into a Datalog query over the sources avail-
able. This new definition cannot be reformulated in terms of
the sources available, as the existential variablelt1 is not
accessible in the sourcegetDistanceBetweenZipCodes.
Thus the hypothesis is “uncheckable” and will be disre-
garded during the search.

The last definition shown on the table contains two addi-
tional predicates. It is in fact contained in both the third and
fifth definition, meaning it will only ever return a subset of
the tuples returned by those definitions. Contained queries
are useful whenever a definition is found to be too general
to fit the data, i.e. more tuples are returned by the definition
than the unknown source.

Testing the Definitions

We now proceed to the problem of testing the hypotheses
generated. The system has the following examples of the
type zipCode: {90292, 90266, 89101, 79936, 08008} (We
note that the larger and “more representative” the set of ini-
tial examples, the more likely the system is to discover the
correct definition for the service.) The system doesn’t have
any examples of the typedistance, which it needs in order
to invoke the unknown source. It can generate examples of
this type by executing the known source with (possibly all)
combinations of the example zip codes. Doing so produces
the following examples:{6.6, 241.9, 722.5, 2452.8, ...}10

10Values have been rounded from the 9-figure precision returned
by the service.



The system can now proceed to pick an input tuple. In
theory the input tuple should be constructed by randomly se-
lecting values from the examples of each type. In practice,
since the number of valid input combinations may be low, it
could be best to select values that have “appeared” together
in a tuple before. Supposing the system were to “randomly”
chose the input tuple〈90292, 6.6〉, a call to the unknown
sourcegetZipCodesWithin produces 48 tuples. The sys-
tem now needs to compare this set with that generated by
each of the possible definitions. Generating tuples for each
definition is not a straightforward task however. Taking the
first definition as an example, the system can reformulate
this definition in terms of the source available as:
def1(z1b, d1, z2b, d2):-
getDistanceBetweenZipCodes(z1b, z2b, d1),
(d2 = d1)

We note that the binding pattern of the reformulated defi-
nition is different from that of the unknown source. This
means that the system cannot simply give the input tuple
〈z1, d1〉 to the reformulated definition. Instead, it also needs
to bind a value forz2 each time it calls the reformulation.
Since the system is interested in generating all tuples regard-
less of the value forz2, it should invoke the reformulation
for every possible valueof that attribute. This presents us
with two problems. Firstly, the system does not have a list
of all the values that a variable of typezipCodecan take. In
theory, it could attempt to generate such a list by repeatedly
invoking sources with output attributes of this type. Doing
so would consume a large amount of bandwidth and may re-
sult in the system being blocked from further use of the ser-
vice.11 Thus the set of example zip codes “discovered thus
far” is assumed to be a sufficiently large domain of values
for z2. Secondly, this domain of values may be very large,
(numbering in the thousands after a few iterations), resulting
in a large number of invocations to test each definition. To
limit the number of invocations, the system randomly sam-
ples values forz2 from the domain ofzipCodesand uses
the resulting tuples to approximate the score for the defini-
tion. (In the experiments, 20 samples were selected for each
iteration.)

In this way, each reformulated source definition is invoked
using the input tuple〈90292, 6.6〉 and known values forz2.
The score for each definition is the first value in the col-
umnCumulative Scoresof the table. The definitions are then
tested with other randomly selected input tuples, producing
the rest of the values in the column.

After a sufficient number of input tuples have been tested,
the algorithm converges on a definition for the unknown op-
eration. The convergence criterion we use is the statistical
significance of the difference between the scores of the best
and the second best definitions. The system stops generat-
ing input tuples when it becomes 95% confident that the best
definition is indeed the better than all of the other definitions
for the source. The actual definition found in this case is:
getZipCodesWithin(zip1b, dist1b, zip2, dist2):-
centroid(zip1, lat1, long1),

11Flooding a service with invocations could be misinterpreted as
a denial-of-service attack.

centroid(zip2, lat2, long2),
distanceInMiles(lat1, long1, lat2, long2, dist2),
(dist2 ≤ dist1),
(dist1 ≤ 243.3).

The “true” source definition has the range restriction
(dist1 ≤ 300). The accuracy of the definition produced
by the system, depends on the number ofzipCode exam-
ples made initially available to the system (as well as the set
of distance values generated during execution).

Reversing the Process for the Third Operation

In order to induce a definition for the third source pred-
icate, getZipCodeCoords, we must employ a slightly
different procedure from that used for the second predi-
cate. Firstly we need to assume that an additional domain
predicate,degrees2radians(latD, longD, latR, longR),
is available as an interpreted predicate in the system. Using
this predicate and taking the type signature into account, the
system can generatedef1 as a plausible definition for the
unknown source:
def1(zip, lat, long, latR, longR):-
centroid(zip, lat, long),
degrees2radians(lat, long, latR, longR).

Obviously, we cannot reformulate a query with this defini-
tion in terms of the known source predicate. It would ap-
pear, therefore, that we cannot check whether this definition
is correct or not. We can, however, test the approximate cor-
rectness of this operation by inverting our usual approach.
Instead of viewing this definition as a query against the
sources available, we can see if another source definition can
be reformulated in terms of this new definition. In particu-
lar, we can reformulate the definition for the known predi-
categetDistanceBetweenZipCodes in terms ofdef1, as
shown below:
getDistanceBetweenZipCodes(zip1, zip2, dist):-
def1(zip1, lat1, long1, latR1, longR1),
def1(zip2, lat2, long2, latR2, longR2),
distanceInMiles(lat1, long1, lat2, long2, dist).

If we assume, that an implementation for the predicate
distanceInMiles is made available (via a local routine or
another service), then the system can execute this reformula-
tion. By comparing the tuples produced by the reformulation
to those produced by the first source, it can check whether
the first predicatecentroid of the new source definition is
correct.

The story does not end here, however, as the second pred-
icate in def1 was not needed in order for the above re-
formulation to hold. Thus the system still needs to check
whether the second part of the definition is correct. Since
a local definition is available for the interpreted predicate
degrees2radians, the system can perform the same trick
as before, reformulating the known predicate in terms of
def1 as follows:
degrees2radians(lat, long, latR, longR):-
def1(zip, lat, long, latR, longR).

Then by invoking the new service using different zip codes
as input, it can verify that the relationship between the co-
ordinates is in fact the same as that predicted by the known



predicate, meaning thatdef1 is indeed the correct definition
for the operation.

Related Work
This work is closely related to the category translation prob-
lem defined in (Perkowitz & Etzioni 1995). Our approach
differs in that we focus on a relational modeling of the
sources, and on inducing joins between domain relations,
rather than nested function applications. Nonetheless, strate-
gies they apply for choosing the most relevant values to give
as input may apply directly to this work. This work also
relates to that of (Johnston & Kushmerick 2004), who ac-
tively query sources to determine whether schema matching
performed over the input/output datatypes was correct. The
difference between their work and ours, is that instead of
just learning how the input/output types map to some global
schema, we are trying to learn the the source description it-
self, i.e. how the input and outputrelate to each otherin
terms of the domain model.

Our work also relates to the schema integration system
CLIO (Yanet al. 2001), which helps users build queries that
map data from a source to a target schema. If we view the
source schema as unknown sources, and the target schema as
global relations, then CLIO generates Global-as-View (not
LAV) integration rules. In CLIO, the integration rules are
not generated automatically, although some prompting from
the system is provided. The iMAP system (Dhamankaet al.
2004) tries to learn the complex (many-to-one) mappings be-
tween the concepts of a source and target schema automat-
ically. It uses a set of “special purpose searchers” to learn
different types of mappings. In our work we concentrate on
developing a more general framework employing Inductive
Logic Programming (ILP) techniques. A second difference
between our work and theirs, is that they assume to have in-
stances (sets of tuples) of the source and target schema avail-
able. In our work we need also to deal with the problem of
generating such data, i.e. deciding when and how to invoke
the sources available.

Discussion
In this paper we have introduced a framework for auto-
matically learning definitions for newly discovered services
based on knowledge of the services already available. The
definitions learnt can then be used tocomposethese services
into query execution plans.

Our work builds on ideas from Inductive Logic Program-
ming (ILP), but is complicated by the fact that in contrast to
ILP, the extensions of the domain predicates are not directly
accessible. Instead, the domain relations must be accessed
via the sources available, making query reformulation an in-
tegral aspect of the problem. Furthermore, as is generally
the case for LAV models, we cannot assume sources to be
complete with respect to their source definitions. Thus we
must use an approximate measure to compare candidate de-
finitions with one another.

This work is preliminary, and the framework described is
missing certain details. One such detail is the size of the
search space that needs to be explored before we can apply

the convergence criterion. In other words, how many can-
didate hypotheses need to be generated before we can be
confident the “correct” definition is amongst them? Heuris-
tics for guiding the search through the space of source def-
initions are also important as the search space is very large.
Finally, we need to incorporate techniques from record link-
age (Michalowski, Thakkar, & Knoblock 2005) for test-
ing whether two sources are producing the same tuples,
and grammar induction algorithms (Lerman, Minton, &
Knoblock 2003) for learning data-type descriptions from ex-
amples, for use in classifying inputs and outputs.
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