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Abstract 

Recent growth of the geo-spatial information on 
the web has made it possible to easily access 
various and high quality geo-spatial datasets, 
such as road networks and high resolution 
imagery. Although there exist efficient methods 
to locate road intersections from road networks 
for route planning, there are few research 
activities on detecting road intersections from 
orthoimagery. Detected road intersections on 
imagery can be utilized for conflation, city-
planning and other GIS-related applications. In 
this paper, we describe an approach to 
automatically and accurately identifying road 
intersections from high resolution color 
orthoimagery. We exploit image metadata as 
well as the color of imagery to classify the image 
pixels as on-road/off-road. Using these 
chromatically classified image pixels as input, 
we locate intersections on the images by utilizing 
the knowledge inferred from the road network. 
Experimental results show that the proposed 
method can automatically identify the road 
intersections with 76.3% precision and 61.5% 
recall in the imagery for a partial area of St. 
Louis, MO. 

1. Introduction 
Recent advances in remote sensing technology are making 
it possible to capture geospatial orthoimagery (i.e., 
imagery that created so that it has the geometric properties 
of a map) with a resolution of 0.3 meter or better. These 

images are available online and have been utilized to 
enhance real estate listings, military targeting 
applications, and other GIS applications. One of the key 
issues with these applications is to automatically identify 
man-made spatial features, such as buildings, roads and 
road intersections in raster imagery. Computer vision 
researchers have long been trying to identify features in 
the imagery [1].  While the computer vision research has 
produced algorithms to identify the features in the 
imagery, the accuracy and run time of those algorithms 
are not suited for these real-time applications. 

Integrating existing vector data, such as road network 
data, as part of the spatial feature recognition scheme 
alleviates these problems. For example, the spatial 
information of road network data represents the existing 
knowledge about the approximate location of the roads 
and intersection on imagery. In addition, the attribution 
information of road network data, such as road names and 
address ranges, can be utilized to locate and annotate 
buildings on imagery [2]. However, accurately and 
automatically integrating geo-spatial datasets is a difficult 
task, since there are often certain spatial inconsistencies 
between geo-spatial datasets. There are multiple reasons 
why different data products may not align: they may have 
been collected at different resolutions, they may use 
different spheroids, datums, projections or coordinate 
systems, they may have been collected in different ways 
or collected with different precision or accuracy, etc. 
Conflation is often a term used to describe the integration 
or alignment of different geospatial data sets. 

The conflation [3] process can be divided into 
following subtasks: (1) Feature matching: Find a set of 
conjugate point pairs, termed control point pairs, in two 
datasets, (2) Match checking: Detect inaccurate control 
point pairs from the set of control point pairs for quality 
control, and (3) Alignment: Use the accurate control 
points to align the rest of the points and lines in both 
datasets using the triangulation [4] and rubber-sheeting 
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Publisher PubDate OrdinateRes WestCoord EastCoord NorthCoord SouthCoord 
USGS 2003 0.3 -90.63578 -90.61862 38.38338 38.36987 
USGS 2003 0.3 -90.63534 -90.61818 38.39689 38.38338 
USGS 2003 0.3 -90.63490 -90.61773 38.41039 38.39689 
:                :              :                       :                    :                   :                         :                             : 

(a) Sample (partial) metadata of USGS high resolution color orthoimagery 
 

Source AreaCovered Projection Pub-
Date 

CFCC 
classification 

WestCoord EastCoord NorthCoord 

USGS 
1:100k 
DLG 

El Segundo, 
CA 

Lambert 
Conformal 
Conic 

1998 Secondary roads -90.44 -90.423 38.582 

USGS 
1:100k 
DLG 

St. Louis, MO Lambert 
Conformal 
Conic 

1998 Primary roads -118.4351 -118.3702 33.9164 

USGS 
1:100k 
DLG 

St. Louis, MO Lambert 
Conformal 
Conic 

1998 City streets -118.4351 -118.3702 33.9164 

:                :              :                       :                    :                   :                         :                             : 

(b) Sample (partial) metadata of U.S. Census Bureau TIGER/Lines 
 

Table 1: Sample metadata of orthoimagery and road networks 

hniques. One major difficulty with current conflation 
hniques is that they require the manual intervention 
en including identification of a set of control points for 
ture matching to properly conflate two data sets.  
Various GIS researchers and computer vision 

earchers have shown that the intersection points on the 
d networks provide an accurate set of control point 
rs [5, 6, 10]. One cannot rely on a manual approach to 
ate road intersections to perform conflation, as the area 
interest may be anywhere in the world and manually 
ding and filtering road intersections for a large region, 
h as, the continental United States, is very time 
suming and error-prone. Moreover, performing 
flation offline on two geo-spatial datasets is also not a 
ble option in online applications as both datasets may 
obtained by querying different information sources at 
-time. Therefore, an automatic approach to identifying 
d intersections in diverse geo-spatial datasets, 
ecially in orthoimagery, is needed. Moreover, road 

ersections can not only be used for geo-spatial data 
ion, but can also be utilized for transportation-related 
S [7], city-planning and GIS data updating, etc. 
In this paper, we propose an approach to automatically 
ntify and annotate road intersections on high resolution 
or imagery. In particular, we utilize road network data 
 imagery metadata to both improve the accuracy and 
uce the running time of image analysis techniques. 
nsequently, the entire road detection process can be 
ne without any manual intervention in real time. 
perimental results show that our proposed method can 
omatically identify the road intersections with 76.3% 
cision and 61.5% recall in the imagery for a partial 

area of the county of St. Louis, MO. To the best of our 
knowledge, automatically exploiting these auxiliary 
structured data to improve the image recognition 
techniques has not been studied before.  

The remainder of this paper is organized as follows. 
Section 2 describes our overall approach. Section 3 
illustrates the techniques to label image pixels based on 
imagery metadata and Bayes classifier. Section 4 presents 
an image processing technique utilizing knowledge 
inferred from road network data to detect road 
intersections on imagery. Section 5 provides experimental 
results. Section 6 discusses the related work and Section 7 
concludes the paper by discussing our future plans. 

2. Overview 
Recently, metadata (i.e., information about data) is used 
increasingly in geographic information systems to 
improve both availability and the quality of the spatial 
information delivered. Table 1 shows sample metadata 
about USGS high resolution color orthoimagery1 and the 
road network U.S. Census Bureau TIGER/lines2. We 
exploit metadata from both imagery and road network 
data to perform the automatic road intersection detection 
procedure. 

For the imagery, we can exploit the ground resolution 
and geo-coordinates to measure real world distance 
between any two spatial objects or perform image 

 
________________________________________________
1 http://seamless.usgs.gov 
2 http://tiger.census.gov/cgi-bin/mapsurfer  

http://seamless.usgs.gov/
http://tiger.census.gov/cgi-bin/mapsurfer


processing techniques (such as edge-detection, region-
segmentation and histogram-based classification) at the 
pixel level to extract primitive entities, such as corners, 
edges and homogeneous regions, etc. For vector data of 
roads, we can exploit metadata about the vectors, such as 
address ranges, road names, or even the number of lanes 
and type of road surface.  In addition, we can analyze the 
road network to determine the location of intersections, 
the road orientations and road shapes around the 
intersections. This inferred knowledge from road network 
data can then be augmented with information retrieved 
from imagery. For instance, we can find the approximate 
location of intersections on the images from the metadata 
of vector data, while the information (such as edges or 
pixel intensity) on imagery can be utilized to locate the 
exact location of intersections nearby the approximate 
locations. In sum, these automatically exploited 
information are dynamically exchanged and matched 
across these geospatial datasets to accurately identify road 
intersections. 

Figure 1 shows our overall approach. Using 
chromatically classified image pixels as input, we locate 
intersections on the images by utilizing the image 
metadata and the information inferred from vector, such 
as approximate location of intersections, road-directions, 
road-widths, and road-shapes. In addition, identified 
intersections could be annotated with the vector 
information, such as road names and zip code. 

3. Labeling imagery using Bayes classifier 
Towards the objective of identifying road intersections, 
the first vital step is to understand the characteristics of 
roads on imagery. On high resolution imagery, roads are 
exposed as elongated homogeneous regions with almost 
constant width and similar color along a road. In addition, 
roads contain quite well defined geometrical properties. 
For example, the road direction changes tend to be 
smooth, and the connectivity of roads follow some 
topological regularities. Road intersection can be viewed 
as the intersection of multiple road axes and it is located 
at the overlapping area of these elongated road regions. 
These elongated road regions form a particular shape 
around the intersection. Therefore, we can match this 

shape against a template derived from road network data 
(discussed next) to locate the intersection. Based on the 
characteristics of roads, the formation of this shape is 
either from detected road-edges or homogeneous regions. 
However, on high resolution imagery, more detailed 
outlines of spatial objects, such as edges of cars and 
buildings, are considered as noisy edges. This makes 
perceptual-grouping based method used for road-edges 
linking a difficult task. 

In contrary to edge-detection, we propose a more 
effective way to identify intersection point on color 
imagery by using Bayes classifier, a histogram based 
classifier [8, 9], to classify images’ pixels around road 
network data as on-road or off-road pixels. The 
classification is based on the assumption of consistency of 
image color on road pixels. That is, road pixels can be 
dark, or white, or have color spectrum in a specific range, 
but still we expect to find the same representative color on 
close by road pixels. We construct the statistical color 
distribution (called class-conditional density) of on-
road/off-road pixels by utilizing histogram learning 
technique as follows. We first randomly select a small 
partial area from the imagery where we intend to identify 
road intersections. Then, we interactively specify on-road 
regions and off-road regions respectively. From these 
large amount of manually labeled training pixels, we learn 
the color distribution (histograms) for on-road and off-
road pixels. Hence, we can construct the on-road and off-
road densities.  

Figure 2 shows the hue probability density and 
saturation probability density3, after conducting the 
learning procedure on nearly 50,000 manually picked 
pixels of 2% of a set of USGS 30cm/pixel imagery 
(covering St. Louis County in Missouri of the United 
States). To illustrate, consider the hue density function on 
Figure2(a). It shows the conditional probabilities 
Prob(Hue/On-road) and Prob(Hue/Off-road), 
respectively. The X-axis of this figure depicts the hue 
value grouped every 10 degrees. The Y-axis shows the 
probability of on-road (and off-road) pixels that are within 
the hue range represented by X-axis. For a particular 
image pixel, we can compute its hue value h. Given the 
hue value h, if the probability for off-road is higher than 
on-road, our system would predict that the pixel is an off-
road pixel. As shown in Figure 2, these density functions 
depict the different distribution of on-road and off-road 
image pixels on hue and saturation dimensions, 
respectively. Hence, we may use either of them to classify 
the image pixels as on-road or off-road. In our 
experiments, we utilized hue density function for 
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Figure 1: Overall approach 

______________________ 
3 Due to lack of space, we eliminated the intensity (i.e., brightness
of HSV model) density function. In fact, there is no obvious
difference between the brightness distribution of on-road and off-
road pixels, since these images were taken at the same time (i.e.,
under similar illumination conditions). 
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Figure 2: Learned density function on HSV color space for On-road/Off-road pixels  
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(a) Layout (left) of the original road network 
data around an intersection point and template 
(right) inferred by using the road network data 

(b) Original image (c) Road-labeled image (White pixels: labeled road 
pixels; Black lines: existing road network data;  

 Black circles: intersections on vector data, implying 
approximate location of intersections on imagery ) 

Figure 3: An example of the localized template matching 
classification. In general, we can utilize the two chromatic 
components, hue and saturation, together. 

Based on the learned hue density functions, an 
automated road-labeling is conducted as follows. A 
particular image pixel whose hue value is h is classified as 
road if 

θ≥
− )/(

)/(
roadnonhp

roadhp , where θ is a threshold. θ 

depends on the application-specific costs of classification 
errors and it can be selected using ROC technique 
discussed in  [9]. 

Since we know the approximate intersection locations 
on the images from the road network data (discussed 
next), the road-labeling procedure is applied only to 
image pixels within a radius of potential intersections. 

Therefore, we do not need to exhaustively label each pixel 
on the entire image. 

4. Analyzing imagery using road network 
data 

Using the classfied image (an example is shown in Figure 
3(b)(c)) as input, we can now match it with a template 
inferered from the road network data to identify 
intersections. We term this procedure as localized 
template matching (LTM). First, our LTM technique finds 
the geo-coordinates of all the intersection points on the 
road network data. Since we also know the geo-
coordinates of the images (from image metadata), we can 
obtain the approximate location of intersections on the 
imagery (as in Figure 3(c)). For each intersection point on 



the road network data, LTM determines the area in the 
image where the corresponding intersection point should 
be located. The area size can be determined based on the 
accuracy and resolution (such as ground resolution from 
image metadata) of the two datasets. One option is 
conducting experiments using various sizes and selecting 
the size that has better performance (discussed in Section 
5).  

For each intersection point detected from the road 
network data, LTM picks a rectangular area in the image 
centered at the location of the intersection point from the 
road network data. Meanwhile, as an example shown in 
Figure 3(a), a template around an intersection on road 
network data is generated by the presence of regions 
inferred from the road network data using information, 
such as the road directions and road widths. LTM will 
then locate regions in the road-labeled image (see Figure 
3(c)) that are similar to the generated template (as in 
Figure 3(a)) as follows. Given a template T with w x h 
pixels and road-labeled image I with W x H pixels, we 
move the template around each pixel at the image and 
compare the template against the overlapped image 
regions. Our adapted similarity measure is a normalized 
cross correlation defined as: 
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where T(x,y) equals one, if (x,y) belongs to a road region, 
otherwise; T(x,y) equals zero. I(x,y) equals one, if (x,y) is 
pre-classified as a road pixel, otherwise; I(x,y) equals 
zero. C(x,y) is the correlation on the pixel (x,y). 

The highest computed correlation C(x,y) implies the 
location of the best match between the road-labeled image 
and template. In addition, an intersection will be 
identified, if C(x,y) is greater than a threshold t (0 <= t 
<=1.0). We set the threshold t to 0.5. Hence, the best-
matched point will be characterized as an intersection 
only if it is at least quasi-similar to the vector template.  

The histogram-based classifier as illustrated in 
previous section may generate fragmented results, due to 
some noisy objects, such as cars, tree-clusters and 
building shadings on the roads. Furthermore, some non-
road objects whose color is similar to road pixels might be 
misclassified as roads. However, LTM can alleviate these 
problems by avoiding exhaustive search of all the 
intersection points on the entire image and often locates 
the intersection point on the image that is the closest 
intersection point to the intersection point detected from 
the road network data.  Moreover, this technique does not 
require a classifier to label every pixel for the entire 
region. Only the areas near the intersections on the image 
need to be pre-classified. 

Figure 4 shows an image indicating the intersection 
points on road network data and the corresponding 
intersection points identified on imagery. One of the 
accurately identified intersections is annotated with the 
road network information, such as road names and zip 
code. 

5.   Performance Evaluation 
We conducted several experiments to evaluate our 
approach by measuring the precision and recall of the 
identified road intersections against real road 
intersections. For our experiments, we used a set of 
0.3m/pixel resolution color orthoimagery (covering St. 
Louis County in Missouri of the United States) from 
USGS and road network data from NAVTEQ4 and U.S. 
Census TIGER/Lines. In general, both road network data 
have rich attribution but TIGER/Lines has poor positional 
accuracy and poor road shapes. We learned the histogram 
(as shown in Figure 2) from nearly 50,000 manually 
picked pixels of 2% of these images. Then, we applied 
our approach to identify intersection points on randomly 
selected areas of these images (about 9% of this imagery). 
There are about 1200 intersections in total on these tested 
areas. Figure 5 shows 8% of the NAVTEQ road network 
data and 0.48% of the image area used in our 
experiments. The off-line learning process requires 
manual intervention to obtain conditional density 
functions, but it is performed only when new imagery 
dataset is introduced to the system. In addition, we can 
apply the learned results to automatically identify 
intersections of the area that is much larger than the area 
we learn from. 

We applied a “buffer method” to evaluate recall and 
precision. When multiple elongated road regions merge at 

Road names:
Dougherty Ferry Rd
Applewood Dr
ZipCode: 63122,MO

Road names:
Dougherty Ferry Rd
Applewood Dr
ZipCode: 63122,MO

 
Figure 4: The intersections (circles) on road network data 

and the corresponding intersections (rectangles) on imagery.

________________________________________________ 
4 http://www.navteq.com/ 



an intersection, their overlapping area at the intersection is 
a polygon (called buffer). Identified road intersections 
that fall within the buffer are considered as “accurately 
identified intersections”. Using this term, we define: 

 

image in the onsintersecti  ofNumber 
onsintersecti identified  accurately ofNumber Recall =

 

onsintersecti identified  ofNumber 
onsintersecti identified accurately ofNumber Precision =

 
For each type of road network data, the area radius, a 
fixed constant used in LTM, was determined by 
conducting experiments using various sizes. An 
experimental result for NAVTEQ data (on an area with 
106 intersections) is shown in Figure 6. In Figure 6, we 
also demonstrate the normalized intersection detection 
running time (with respect to the running time of using 
180m as radius) to show that the detection time 

dramatically increases as area size increases. We selected 
90m as our area radius for the rest of experiments. When 
setting the radius to 90m, we achieved 88% precision. 
Although it is less than the precision obtained using 180m 
as radius, we have much better recall (70% v.s. 40%) and 
20 times better running time. 

For the overall tested area, on the average, we 
obtained 76.3% precision and 61.5% recall with 
NAVTEQ data and 62% precision and 39.5% recall with 
TIGER/Lines. If we exclude the intersections detected on 
highways where the road widths vary and difficult to 
predict, we achieved 83% precision and 65% recall with 
NAVTEQ data. In order to explain our experiments, we 
show the performance of a sub-area (with 106 
intersections) of the larger tested area in Table 2. As 
shown in Table 2(a), there are originally more than 30 
intersection points on the NAVTEQ vector that match 
with the corresponding intersections on images, while 
there are only about four of these intersections on the 
TIGER/Lines. This is because the NAVTEQ vector data 
has a very high accuracy. Nevertheless, we significantly 
improved the precision and recall of both vector data.  

Now, suppose we want to use our detected 
intersections as control points for a matching problem, 
such as the vector to imagery conflation problem 
described in Section 1. The conflation process does not 
require a large number of control point pairs to perform 
accurate alignment. In fact, a smaller set of control points 
with higher accuracy would serve better for the conflation 
process [10].  Therefore, for the conflation process higher 
precision is more important than higher recall. Towards 
this end, we can use a filter to eliminate misidentified 
intersections and only keep the accurately identified 
intersections, hence improving the precision with the cost 
of reducing the recall. VMF [10] is an example of such 
filter. As shown in Table 2, the VMF filter improves the 
precision, although it reduces the recall. 

The VMF filter works based on the fact that there is a 
significant amount of regularity in terms of the relative 
positions of the intersections on the vector and the 
detected (corresponding) intersections on the imagery 
across data sets. More precisely, first the geographic 
coordinate displacement between the intersections on the 
road network and detected (corresponding) imagery 
intersections is modeled as 2D vectors. Next, for a small 

 
(a) Road network (NAVSTREET) 

 

 (b) USGS Orthoimagery 
Figure 5: A partial area of tested data  
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Figure 6: The impact of area radius  

(Radius is increased by 30 meters, i.e. 100 pixels on imagery)

 Precision Recall 
Original NAVTEQ 31.2% 31.5% 
Localized Template Matching (LTM) 88% 69% 
LTM with VMF filter 98% 53% 

(a) Identified Intersections using NAVTEQ road network 
 Precision Recall 
Original TIGER/Lines 4.1% 3.5% 
Localized Template Matching (LTM) 71% 41% 
LTM with VMF filter 91% 27.4% 

(b) Identified Intersection Points using TIGER/Lines 
Table 2: Road Intersection Identification Evaluation 



area, the vectors whose directions and magnitudes are 
significantly different from the median vector are 
characterized as inaccurate vectors. By eliminating these 
vectors, we can filter out their corresponding 
misidentified intersections. Before applying VMF, there 
are three misidentified intersections (marked as 1, 2 and 
3) of 21 intersections in Figure 7(a). The displacement 
between these 21 road network intersections and detected 
(corresponding) imagery intersections is shown with the 
arrows (Figure 7(b)).  The thickest arrow is the vector 
median among these displacement vectors.  After 
applying VMF, the eleven (half of the identified 
intersections) closest vectors to the vector median were 
kept. As shown in Figure 7(c), the three misidentified 
intersections are filtered out. 
6.   Related work 
Automatic identification of road intersections is a 
complex procedure that utilizes work from a wide rage of 
subjects, such as knowledge discovery from metadata of 
vector and raster data, spatial (geometric) pattern 
recognition and digital image processing. 

Many studies have been focussed on road or man-
made object extractions from images [5, 11]. In particular, 
an on-road/off-road histogram is learned for black-white 
images in [12], while we deal with color images. Flavie et 
al. proposed techniques in [5] to find the junctions of all 
detected lines on images, then matched the extremities of 
the road vector with detected image junctions. Their 
method suffers from the high computation cost of finding 
all possible junctions. Road intersections are salient and 
useful features, particularly in solving matching problems, 
such as conflation [10, 13], GIS data correction [14] and 
imagery registration [15]. Most of the research activities 
in spatial data and GIS are centered around issues such as 
data representation, storage, indexing and retrieval. 
However, recent growth of the geospatial information on 
the web has made geospatial data conflation one of central 
issues in GIS [16]. In addition to efficiently storing and 
retrieving diverse spatial data, the users of these geo-
spatial data products often want these different data 
sources displayed in some integrated fashion. Figure 8 
shows the conflation results utilizing LTM detected 
intersections as control points and the conflation 
techniques proposed in [10]. Moreover, the intersections 
detected on images can match with the intersections 
detected on maps [6, 17] for the measure of the similarity 
of different spatial scenes. In addition, road intersections 
have been utilized for many transportation-related 
systems such as [7]. To the best of our knowledge, 
automatically exploiting these auxiliary structured data to 
improve the image recognition techniques has not been 
studied before. 

7.   Conclusion and future work 
In this paper, we focus on the two commonly used spatial 
data storage and display structures: vector and raster. 
(a). The intersection points (rectangles) on vector data  and 
the corresponding intersection points (circles) on imagery. 
k control-p oint ve ctors 
Vector median

(b). The distributions of twenty-one displacement vectors 

(c). The intersections left after applying vector median 
filter on Figure 7(a). 

Figure 7: VMF filter 



There have been a number of efforts to efficiently 
determine all intersection points from large number of 
line segments [18] of vector data (e.g., road networks), 
while there is little work on efficiently and accurately 
identifying road intersections from raster data (e.g., 
satellite imagery). The main contribution of this paper is 
the design and implementation of a novel approach to 
automatically identify and annotate road intersections on 
high resolution color orthoimagery. Our approach utilizes 
Bayes classifier, road network data and image metadata to 
detect road intersections. Although our histogram-based 
classifier requires extra operations to learn the conditional 
density functions, we can apply the learned results to 
automatically identify intersections of the area that is 
much larger than the area we learn from. Moreover, our 
approach is the first that exploits the metadata of imagery 
and vector data to take full advantage of all the available 
information from both datasets to achieve the automatic 
road intersection detection. We have also demonstrated 
the utility of our approach through several empirical 
experiments.  

The accurately identified and annotated intersections 
can not only be utilized for geo-spatial data fusion, but 
can also be used for transportation, city planning and 
spatial data mining, etc. For example, the identified 
intersections on image are annotated with vector 
attributes, such as road names, road directions and zip 
codes. We can then build an approximate zip code map on 
the image, using these intersections and the technique 
proposed in [19]. In future, we plan to utilize the similar 
techniques to identify road intersections on maps. 
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Figure 8: Vector-Imagery conflation (White lines: 
original road network; Black lines: after applying 

conflation using identified intersections) 


