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Abstract 

Vast amount of geospatial datasets are now 
available through numerous public and private 
organizations. These datasets usually cover 
different areas, have different accuracy and level 
of details, and are usually provided in the vector 
data format, where the latitude and longitude of 
each object is clearly specified. However, there 
are scenarios in which the spatial attributes of the 
objects are intentionally transformed to a 
different, and usually unknown, (alien) system. 
Moreover, it is possible that the datasets were 
generated from a legacy system or are 
represented in a native coordinate system. An 
example of this scenario is when a very accurate 
vector data representing the road network of a 
portion of a country is obtained with unknown 
coordinate. In this paper, we propose a solution 
that can efficiently and accurately find the area 
that is covered by this vector data simply by 
matching it with the (possibly inaccurate and 
abstract) data with known geocoordinates. In 
particular, we focus on vector datasets that 
represent road networks and our approach 
identifies the exact location of the vector dataset 
of alien system by comparing the distribution of 
the detected road intersection points between two 
datasets. Our experiment results show that our 
technique can match road vector datasets that are 

composed of thousands of arcs in a relatively 
short time with 91% precision and 92.5% recall 
for the matched road feature points.  

1. Introduction 
With the rapid improvement of geospatial data collection 
techniques, the growth of Internet and the implementation 
of Open GIS, a large amount of geospatial data are now 
readily available on the web. The examples of well-
known vector datasets are US Census TIGER/Line files1 
(covering most roads over the United States), 
NAVSTREETS from NAVTEQ,2 VPF data from NGA 
(U.S. National Geospatial-Intelligence Agency), 3  and 
DLG data from USGS (U.S. Geological Survey).4  The 
Yahoo Map Service, 5  Google Map Service, 6  Microsoft 
TerraService7 [1] are good examples of map or satellite 
imagery repositories. These datasets usually cover 
different areas, have different accuracy and level of 
details, and some of them are provided in the vector data 
format, where the latitude and longitude of each vector 
object is clearly specified. However, there are scenarios in 
which the spatial attributes of the vector objects are 
intentionally transformed to a different, and usually 
unknown, (alien) system. Moreover, it is also possible that 
the datasets were generated from a legacy system or are 
represented in a native coordinate system. 

Figure 1 illustrates a scenario where we want to locate 
the area of a USGS raster topographic map (as shown in 

                                                           
1 http://www.census.gov/geo/www/tiger/ 
2 http://www.navteq.com/ 
3 http://www.nga.mil/ 
4 http://tahoe.usgs.gov/DLG.html 
5 http://maps.yahoo.com/ 
6 http://maps.google.com 
7 http://terraserver-usa.com/ 
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Figure 1(a)). The map covers partial area of St. Louis 
County, MO in U.S.A., but its exact geocoordinates are 
inaccessible. The map is first processed to extract road 
network (as shown in Figure 1(b)) by using a 
text/graphics separation technique developed by us [2] . 
Obviously, the extracted road network is in a native 
coordinate system (i.e., raster pixel x/y in Cartesian 
system). Meanwhile, a larger road network covering this 
county is publicly available from US Census 
TIGER/Lines. By identifying matched features between 
the two road networks, the system can then automatically 
infer the geocoordinate of the extracted map road network 
(as the area highlighted in Figure 1(c)). 

There have been a number of efforts to automatically 
or semi-automatically detect matched features across 
different road vector datasets [3, 4, 5, 6, 7]. Given a 
feature point from one dataset, these approaches utilize 
different matching strategies to discover the 
corresponding point within a predetermined distance (i.e., 
a localized area). This implies that these existing 
algorithms only handle the matching of vector datasets in 
the same geometry system (i.e., the same coordinate 
system8). Hence, to the best of our knowledge, no general 
method exits to resolve the matching of two vector data in 
unknown geometry systems. Furthermore, processing 
large vector datasets often requires significant CPU time. 
Our methodology, described in this paper, is able to 
automatically and efficiently handle the matching of 
diverse and potentially large vector datasets, independent 
of the coordinate system used. In particular, we focus on 
vector datasets that represent road networks.  

The basic idea of our approach is to find the 
transformation T between the layout (with relative 
distances) of the feature point set on one road network 
and the corresponding feature point set on the other road 
network. This transformation achieves global matching 
between two feature point sets by locating the common 
point pattern among them. More precisely, the system can 
detect feature points from both road networks. The 
                                                           
8  In this paper, we use the terms “geometry system” and 
“coordinate system” interchangeably. 

distribution of detected feature points from each road 
network forms a particular (and probably unique) point 
pattern for the road network. In order to improve the 
running time, our approach exploits auxiliary spatial 
information to reduce the search space for the 
transformation T. Once the matched points across 
different road networks are identified, the system can then 
utilize this transformation to map the road network of 
alien geometry (coordinate) system into a known 
coordinate system (e.g., geodetic coordinate system).  

To illustrate the usefulness of our approach, consider 
the matching of two road networks: one is in an unknown 
coordinate system but with more accurate geometry and 
the other has rich attributes and a known coordinate 
system but with poor geometry. Applying our matching 
algorithm to these two road networks can result in a 
superior road network that combines the accuracy of the 
road geometry from one vector dataset and rich attributes 
from the other. Furthermore, these matched points can be 
used as control points to conflate these two road network 
datasets [6]. 

The remainder of this paper is organized as follows. 
Section 2 describes our approach in details. Section 3 
provides experimental results. Section 4 discusses the 
related work and Section 5 concludes the paper by 
discussing our future plans. 

2. Proposed Approach 
In this section, we first describe our overall approach to 
match two road networks. Then, we describe the details of 
our techniques. 

2.1   Approach Overview 

Intuitively, matching road networks relies on the process 
of matching the road segments from two vector datasets to 
find the corresponding road segments. However, this is a 
challenging task for two large road networks, especially 
when one of the road networks is in a different or 
unknown geometry system. To address this issue, we 
propose to match two datasets based on some feature 
points detected from the road networks. In particular, we 

  
 

(a) A USGS topographic map (b) The extracted road network in 
a native coordinate system 

(c) The U.S. Census TIGER/Lines road 
network 

Figure 1: Two road networks cover overlapping areas



utilize road intersections as the feature points. Road 
intersections are good candidates for being matched, 
because road intersections are salient points to capture the 
major features of the road network and the road shapes 
around intersections are often well-defined. In addition, 
various GIS and computer vision researchers have shown 
that the intersection points on the road networks are good 
candidates to be identified as an accurate set of matched 
points [7, 8, 9, 10]. 

After detecting a set of intersection points from each 
road network separately, the remaining problem is how to 
match these intersection points effectively and efficiently 
to locate a common distribution (or pattern) from these 
intersections. Our system perceives the distribution of 
detected intersections from each road network as the 
fingerprint of the road network. Then our system finds the 
transformation T between the layout (with relative 
distances) of the feature point set on one road network 
data and the feature point set on the other road network. 
This transformation achieves global alignment between 
two intersection point sets by locating the common point 
pattern among them. 

Figure 2 shows our overall approach. Using detected 
road intersections as input, the system locates the 
common point pattern across these two point sets by 
computing a proper transformation between them. The 
system can then utilize this transformation to map the 
road network in unknown geometry system into a known 
coordinate system. We describe our detailed techniques in 
the following sections. 

2.2   Finding the feature points from vector datasets 

The technique to detect road intersections from road 
network relies on the underlying road vector data 
representation. Typically, there are two common ways to 
represent the geometry of a road vector dataset: (1). The 
road network is composed of multiple road segments 
(polylines), and the line segments are split at intersections 
(as the example shown in Figure 3(a)). (2). The road 
network is composed of multiple road segments 

(polylines), but the line segments are not split (if not 
necessary) at intersections (see Figure 3(b)).  

This generation of our system focus on handling 
vector data represented in the first way (i.e., the line 
segments are split at intersections), because most of the 
popular road vector datasets (such as US Census 
TIGER/Line files and NAVSTREETS from NAVTEQ) 
represent their datasets in such way. Based on this sort of 
road segment representation, the process of finding the 
intersection points from the road network is divided into 
two steps.  First, the system examines all line segments in 
the vector data to label the endpoints of each segment as 
the candidate intersection points.  Second, the system 
examines the connectivity of these candidate points to 
determine if they are intersection points.  In this step, each 
candidate point is verified to see if there are more than 
two line segments connected at this point.  If so, this point 
is marked as an intersection point and the directions of the 
segments that are connected at the intersection point are 
calculated. In practice, the search of road intersections 
from large road networks is supported efficiently by 
spatial access method  R-tree [11]. 

2.3   Finding the matched feature points by Point 
Pattern Matching (PPM)  

Now that we have described how to detect feature points 
from a road network, we now describe how this 

Detected intersectionsA road network with 
known coordinate system 

A road network with  
unknown coordinate system Detected intersections

Point Pattern 
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?

?

lat/long

lat/long Detected intersectionsA road network with 
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?

?
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Figure 2: The overall approach 

 
(a) Road segments are split at intersections 

 
(b) Road segments are not split at intersections 
Figure 3: Different ways to represent a cross-

shaped road network with one intersection 



information can be used to automatically match two road 
networks. Let U= {ui | ui= (xi, yi ), where (xi, yi ) is the 
location of intersections of the first road network} and  
V= {vj | vj= (mj, nj), where (mj, nj) is the location of 
intersections of the second road network}. Our objective 
is to locate the set: {RelPat={(ui,vj) | where ui is the 
intersection on the first vector dataset and vj is the 
corresponding intersection (if any) on the second dataset. 
That is, point ui and vj are formed by the same intersected 
road segments}. Consider identifying matched point 
pattern between two road networks. If the system can 
recognize the names of road segments that meet at 
intersections, it can use these road names to infer the set 
RelPat. However, road vector data may not include the 
non-spatial attribute, road name. Instead, we propose our 
approach that relies on some prominent geometric 
information, such as the distribution of points, the degree 
of each point and the direction of incident road segments, 
to locate the matched point pattern. In other words, the 
problem of point pattern matching is at its core a 
geometric point sets matching problem. The basic idea is 
to find the transformation T between the layout (with 
relative distances) of the point set U and V. 

The key computation of matching the two sets of 
points is calculating a proper transformation T, which is a 
2D rigid motion (rotation and translation) with scaling. 
Because the majority of vector datasets are oriented such 
that north is up, we only compute the translation 
transformation with scaling. Without loss of generality, 
we consider how to compute the transformation where we 
map from a fraction α of the points of U to the points of 
V. The reason that only a fraction α of the points of U is 
considered is that one road vector dataset could be 
detailed while the other one is represented abstractly or 
there may be some missing/noisy points from each road 
network. The transformation T brings at least a fraction α 
of the points of U into a subset of V. This implies: 

∃ T and U’ ⊆ U , such that  T(U’) ⊆ V , where | U’ | ≥  
α| U | and T(U’) denotes the set of points that results from 
applying T to the points of U’. Or equivalently, for a 2D 
point (x, y) in the point set U’ ⊆ U, ∃ T in the matrix form 


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






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





1
00
00

TyTx
Sy

Sx
 (Sx and Sy are scale factors along x and y 

direction, respectively, while Tx and Ty are translation 
factors along x and y directions, respectively), such that 
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Sx
 = [m , n, 1] , where  | U’ | ≥  

α| U | and the 2D point (m, n) belongs to the intersection 
point set V on the second vector dataset.  With this setting, 
we do not expect point coordinates to match exactly 
because of finite-precision computation or small errors in 

the datasets. Therefore, when checking whether a 2D 
point p belongs to the point set V, we declare that p ∈ V, 
if there exists a point in V that is within Euclidean 
distance δ of p for a small fixed positive constant δ, which 
controls the degree of inaccuracy. The minimum δ such 
that there is a match for U’ in V is called Hausdorff 
distance. Different computations of the minimum 
Hausdorff distance have been studied in great depth in the 
computational geometry literature [12]. We do not seek to 
minimize δ  but rather adopt an acceptable threshold for δ. 
The threshold is relatively small compared to the average 
inter-point distances in V. In fact, this sort of problem was 
categorized as “Nearly Exact” point matching problem in 
[13]. 

Given the parameters α and δ, to obtain a proper 
transformation T, we need to compute the values of the 
four unknown parameters Sx, Sy, Tx and Ty. This implies 
that at least four different equations are required. A 
straightforward (brute-force) method is first choosing a 
point pair (x1, y1) and (x2, y2) from U, then, for every pair 
of distinct points (m1, n1) and (m2, n2) in V, the 
transformation T’ that map the point pair on U to the point 
pair on V is computed by solving the following four 
equations: 
Sx* x1  + Tx = m1   Sy* y1  + Ty = n1 
Sx* x2  + Tx = m2   Sy* y2  + Ty = n2 

Each generated transformation T’ is thus applied to the 
entire points in U to check whether there are more than 
α|U| points that can be aligned with some points on V 
within the threshold δ. This process is repeated for each 
possible point pair from U, which implies that it could 
require examining O(|U|2) pairs in the worst case. Since 
for each such pair, the algorithm needs to try all possible 
point pairs on V (i.e., O(|V|2 )) and spends O(|U| log|V|) 
time to examine the generated transformation T’, this 
method has a worst case running time of O(|U|3 |V|2 

log|V|). The advantage of this approach is that we can find 
a mapping (if the mapping exists) with a proper threshold 
δ, even in the presence of very noisy data. However, it 
suffers from high computation time. One way to improve 
the efficiency of the algorithm is to utilize randomization 
in choosing the pair of points from U as proposed in [14], 
thus achieving the running time of  O(|V|2 |U| log|V|). 
However, their approach is not appropriate for our 
datasets because it is possible one vector dataset is in 
detailed level while other vector dataset is represented 
abstractly.  

In fact, in our previous work [15], we utilized the 
similar technique to match two point sets detected from a 
raster map and an image. More precisely, in [15], we 
proposed an enhanced point pattern matching algorithm to 
find the overlapping area of a map and an imagery by 
utilizing map-scale to prune the search space of possible 
point pattern matches (by reducing the numbers of 
potential matching point pairs needed to be examined). In 
the following sections, we focus on finding the matching 



between different road networks and developing more 
efficient techniques by utilizing some additional spatial 
information that can be inferred from the road vector 
datasets. In addition, we also discuss how to prioritize the 
potential matching point pairs needed to be examined. 

2.4   Enhanced PPM Algorithm: Prioritized Geo-PPM 

Due to the poor performance of the brute-force point 
pattern matching algorithm mentioned in the previous 
section, PPM cannot be applied to large datasets where 
the number of points (or intersections) is in the order of 
thousands (such as the road networks covering large 
areas). Consequently, we utilize some auxiliary 
information that can be extracted from the road vector 
data to improve the performance of PPM for larger road 
networks. With the goal to reduce the numbers of 
potential matching point pairs needed to be examined, the 
intuition here is to exclude all unlikely matching point 
pairs. For example, given a point pair (x1, y1) and (x2, y2) 
in S1, we only need to consider pairs (x’1, y’1) and (x’2, 
y’2) in S2 as candidate pairs such that the real world 
distance and angle between (x1, y1) and (x2, y2) is close to 
the real world distance and angle between (x’1, y’1) and 
(x’2, y’2). In addition, (x’1, y’1) would be considered as a 
possible matching point for (x1, y1) if and only if they 
have similar connectivity and road directions. We 
categorize the auxiliary information we utilize to the 
following groups.  
1. Point connectivity: We define the connectivity of a 
point as the number of the road segments that intersect at 
that point. Clearly, if datasets S1 and S2 have very close 
densities (i.e., number of intersections per one unit of 
area), a candidate matching point P’1 in S2 for a point P1 
in S1 must have the same connectivity as P1. Note that if 
the densities of the datasets are different (i.e., one dataset 

is detailed and the other one is represented abstractly), 
this condition will not be valid for a large portion of the 
intersections and may only be valid for major roads’ 
intersections. 
2. Angles of the point: The angles of a point are defined 
as the angles of the road segments that intersect at that 
point. Similar to the connectivity, a point P’1 in S2 can 
only be considered as a candidate for point P1 in S1 only if 
the two points have similar angles, or the difference 
between their angles is less than a threshold value. To 
illustrate, consider comparing two road networks as the 
example shown in Figure 4(a). Whenever the system 
chooses a point (as the point shown in the left figure of 
Figure 4(b)) in one road network, it only has to consider 
the candidate matched points with same connectivity and 
similar directions of intersected road segments from the 
other network (as some possible candidates marked in the 
right figure of Figure 4(b)). Note that if the densities of 
the datasets are different (i.e., one dataset is detailed and 
the other one is represented abstractly), this condition will 
not be valid for a large portion of the intersections and 
may only be valid for major roads’ intersections. 
3. Angle between the points: The angle between two 
points is defined as the angle of the straight line that 
connects the points. Clearly, a pair (P’1,P’2) can be 
considered as a possible candidate for the pair (P1,P2) only 
if the angle between P’1 and P’2 is similar to the angle 
between P1 and P2, or the difference between their angles 
is less than a threshold value. Note that this feature can 
only be utilized when the second dataset is not rotated and 
has the same direction as the first dataset. Consider the 
example shown in Figure 4(c). Whenever the system 
chooses a point pair (as the point pair shown in the left 
figure of Figure 4(c) and the angle between these two 
points is about 110 degree) in one road network, it only 
has to consider the candidate matched point pairs with the 

 

 

(a) The two networks to compare 

 
 

(b) Using Point connectivity and Angles of the point to prune the search space 

(110)(110)

 
 

(c) Using Angles between the points to prune the search space 
Figure 4: Comparing two road networks by using Geo-PPM 



similar angle (as some possible candidate point pairs 
marked as dash lines in the right figure of Figure 4(c)). 
4. Distance between the points: The distance between 
two points is defined as the length of the straight line that 
connects the points in Euclidean space. Similar to the 
previous case, a pair (P’1,P’2) can be considered as a 
possible candidate for the pair (P1,P2) only if the length of 
the line connecting P’1 and P’2 is similar to the length of 
the line connecting P1 and P2, or the difference between 
the lengths is less than a threshold value. Note that this 
feature can only be utilized when the relationship between 
the geometry of the datasets is known and hence, the 
distances between objects in two datasets are comparable. 

By applying the above conditions simultaneously, the 
Geo-PPM approach can be defined as a specialization of 
PPM where only the candidate pairs that have similar 
point connectivity, angles of the point, angles between the 
points, and distances between the points, will be 
considered. This will greatly reduce the size of the search 
space. However, this is still a very complex approach 
when the number of points in the datasets is in the order 
of thousands. Hence, we propose prioritized Geo-PPM 
that can dramatically reduce the complexity of Geo-PPM 
for large networks by examining the points that have the 
minimum number of candidates. 
Prioritized Geo-PPM 
The intuition behind prioritized Geo-PPM is to increase 
the possibility of examining the correct matching pair 
from the candidates by first examining the pairs of points 
that have the minimum number of candidates. Suppose 
that there are n1, n2, n3 and n4 points in the pool of 
candidates for points P1, P2, P3, and P4, respectively. This 
means that the number of possible candidate pairs for (P1, 
P2) and (P3, P4) that must be examined by Geo-PPM is 
n1n2 and n3n4, respectively. Note that the values of n1 to n4 
could be very large, especially for urban areas where the 
road networks follow a grid pattern and hence, a large 
portion of the intersections have the same connectivity 
and angles. Also note that from these possible candidate 
pairs, only (a maximum of) one pair is the correctly 
matching one. Hence, by first examining the combination 
that contains the minimum number of points, we can 

significantly increase the possibility of finding the correct 
matching pair sooner. Consider the example shown in 
Figure 5. Our system can start the matching process by 
first examining the combination that contains the 
minimum number of points. As the point pair chosen in 
the left figure of Figure 5(b), it has less potential matching 
point pairs as shown in the right figure of Figure 5(b), 
comparing to the point pair examined in the left figure of 
Figure 5(a). 

3.   Evaluations 
We performed several experiments with real world 
datasets to examine the performance of our prioritized 
Geo-PPM. We used three road networks obtained from 
USGS, NGA and US Census, covering the streets in the 
area of (-122.5015, 37.78) to (-122.3997, 37.8111). Figure 
6(a) shows USGS road network with accurate geometry 
but with poor attributes. Figure 6(b) shows the US Census 
TIGER/Lines road network with rich attributes (e.g., road 
names, road classifications) but with poor geometry. 
Figure 6(c) shows the NGA road network with some 
specific attributes (e.g., road surface type). Also note that, 
as shown in the figure, while the data from USGS and US 
Census have almost similar granularity, the NGA data is 
an abstract level data (i.e., only major roads are stored). 
We manually transformed each dataset to unknown 
geometry systems by multiplying and subsequently 
adding different values to latitudes and longitudes of the 
vector objects in each dataset.  Moreover, we filtered the 
south west quarter of the datasets to generate datasets with 
smaller sizes to examine how our approach behaves for 
different sizes of data. 

Figure 7 shows the partial result of matched feature 
point sets for the USGS and US Census road networks. 
We also performed a quantitative analysis to measure the 
performance of our approach. Toward that end, we 
developed two metrics, precision and recall, to measure 
the performance of our Geo-PPM technique, since the 
accuracy of the matched points significantly affects the 
matching of the two road networks. Let the point pattern 
generated by Geo-PPM be defined as a set: 

 

 

(a) A bad starting point pair candidate (several potential point pairs needed to be examined in the other 
road network) 

 

 

(b) A better starting point pair candidate (only two potential point pairs needed to be examined in the 
other road network) 

Figure 5: Picking up proper point pair by using Prioritized Geo-PPM 



RetPat={(mi, sj) | where mi is the intersections on the 
first vector dataset and sj is the corresponding 
intersections located by prioritized Geo-PPM} 

To measure the performance of Geo-PPM, we need to 
compare the set RetPat with respect to the real matched 
point pattern set RelPat (defined in Section 2.3). 

Using this term, we define 

||
||

 Precision 
pat

patpat

Ret
RelRet h

=
   

    

 ||
||

 Recall
pat

patpat

Rel
RelRet h

=
 

Intuitively, precision is the percentage of correctly 
matched road intersections with respect to the total 
matched intersections detected by prioritized Geo-PPM. 
Recall is the percentage of the correctly matched road 
intersections with respect to the actual matched 
intersections. Table 1 shows the results of our 
experiments for three combinations of these datasets. As 
shown in the table, the average number of candidates (i.e., 
the number of points in the second dataset with the same 
connectivity and angles as compared to a point in the first 
dataset) varies between 371 and 637. This shows that the 
possibility of selecting 2 pairs from the candidate pool 
which are exactly matched to 2 points selected from the 
first dataset is very low, meaning that random selection of 
points in Geo-PPM will result to a very large number of 
possibilities and hence, to a very large processing time. 
For example, for the USGS+US Census combination, the 
possibility that randomly selected pair of points from the 
pool of candidates is exactly matched to the pair of points 

selected from the first dataset is 405769
1

637
1

637
1 =×

. 
However, as shown in the table, by utilizing prioritized 
Geo-PPM we could achieve an acceptable precision (i.e., 
over 80% for USGS+NGA data and over 90% for other 
cases) and recall (i.e., over 90%) by examining between 
33 and 52 candidate pairs. This means that using the 
prioritized Geo-PPM, the possibility of selecting the 

actual matching pair is between 100
3

to 100
2

, which is 
up to 4 orders of magnitude better than that of Geo-PPM. 

4.   Related Work 
There have been a number of efforts to automatically or 
semi-automatically detect matched features across 
different road vector datasets [3, 4, 5, 6, 7]. Given a 
feature point from one dataset, these approaches utilize 
different matching strategies to discover the 
corresponding point within a predetermined distance (i.e., 
a localized area). This implies that these existing 
algorithms only handle the matching of vector datasets in 
the same geometry systems (i.e., the same coordinate 
system). Hence, to the best of our knowledge, no general 
method exits to resolve the matching of two vector data in 
unknown geometry systems. In addition, various GIS 
systems (such as ESEA MapMerger 9 ) have been 
implemented to achieve the matching of vector datasets 
with different accuracies. However, most of the existing 
systems require manual interventions to transform two 
road networks into same geocoordinates beforehand. 
Thus, they are not suitable for handling road networks in 
unknown geometry systems, while our approach can 
match two road networks in unknown geometry systems. 

Finally, our approach discussed in this paper utilizes a 
specialized point pattern matching algorithm to find the 
corresponding point pairs on both datasets. The geometric 

                                                           
9 http://www.esea.com/products/ 

Datasets USGS+ 
 US Census 

USGS+ 
NGA 

USGS+ 
 US Census 

Number of 
Intersections 

2367 + 2456 2367 + 
133 

920 + 1035 

Average 
Number of 
Candidates 

637 514 371 

Point Pairs 
Examined 

43 52 33 

Processing 
Time  

946 sec. 48 sec. 132 sec. 

Precision 91% 82% 95.8% 
Recall 92.5% 96.5% 95.8% 

Table 1: Experimental Results (on a PC with 3.2GHz CPU) 

 
(a) USGS road network (b) US Census road network (c) NGA road network 

Figure 6: Different road networks used in the experiments 



point set matching in two or higher dimensions is a well-
studied family of problems with application to area such 
as computer vision, biology, and astronomy [12, 14].  

5.   Conclusion and Future Work 
In this paper, we proposed an efficient and accurate 
technique, termed prioritized Geo-PPM, to locate the 
matched points between two road network datasets when 
the spatial attributes of the datasets are in unknown 
systems. In our solution, we first select pairs of points in 
the first dataset with the minimum number of candidates 
(i.e., point with similar connectivity and angles) in the 
second dataset, and then perform our PPM method on 
these pairs. Although our technique matches road 
networks at the point level (not at the road segment level), 
it takes the road connectivity, road directions and global 
distribution of road intersections into consideration. Our 
experiments show that this approach provides acceptable 
precision and recall values by only examining a very 
small number of pairs.  

We plan to extend our approach in several ways. First, 
we plan to examine prioritized Geo-PPM for even larger 
road networks and for different patterns of road networks 
(e.g., rural roads and urban roads), and consider the 
orientations of the road networks as well. Second, we 
intend to investigate the appropriate order of utilizing the 
auxiliary information described in Section 2.4. Third, we 
would like to perform comprehensive comparisons 
between our approach and the related techniques 
described in Section 4. Finally, we also plan to use these 
matched points as control points to integrate different 
road network datasets. 
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(a) USGS road network (b) U.S. Census road network
Figure 7: The partial result of matched points from two road networks (some matched points are labelled in 

order to show the corresponding points) 


