
Semantic Query Optimization for

Query Plans of Heterogeneous Multidatabase Systems �

Chun-Nan Hsu Craig A. Knoblock

Institute of Information Science Information Sciences Institute
Academia Sinica Department of Computer Science

128 Yan-Jiu-Yuan Road Section 2 University of Southern California
Nankang, Taipei City 115 4676 Admiralty Way

TAIWAN Marina del Rey, CA 90292, USA
chunnan@iis.sinica.edu.tw knoblock@isi.edu

Ph: +886-2-27883799 Fax: +886-2-27824814 http://www.isi.edu/�knoblock/

January 22, 1999

Abstract

New applications of information systems, such as electronic commerce and healthcare in-

formation systems, need to integrate a large number of heterogeneous databases over computer

networks. Answering a query in these applications usually involves selecting relevant information

sources and generating a query plan to combine the data automatically. As signi�cant progress

has been made in source selection and plan generation, the critical issue has been shifting to

query optimization. This paper presents a semantic query optimization (SQO) approach to

optimizing query plans of heterogeneous multidatabase systems. This approach provides global

optimization for query plans as well as local optimization for subqueries that retrieve data from

individual database sources. An important feature of our local optimization algorithm is that

we prove necessary and su�cient conditions to eliminate an unnecessary join in a conjunctive

query of arbitrary join topology. This feature allows our optimizer to utilize more expressive

relational rules to provide a wider range of possible optimizations than previous work in SQO.

The local optimization algorithm also features a new data structure called AND-OR implication
graphs to facilitate the search for optimal queries. These features allow the global optimization

to e�ectively use semantic knowledge to reduce data transmission cost. We have implemented

this approach into the pesto query plan optimizer as a part of the sims information mediator.

Experimental results demonstrate that pesto can provide signi�cant savings in query execution

cost over query plan execution without optimization.

Index terms: Semantic query optimization, heterogeneous multidatabase systems, relational

rules, joins, information mediators.

�The research reported here was supported in part by the National Science Foundation under Grant No. IRI-

9313993, and in part by Rome Laboratory of the Air Force Systems Command and the Defense Advanced Research

Projects Agency under Contract No. F30602-94-C-0210. We wish to thank the sims project members: Yigal Arens,

Wei-Min Shen, Andrew Philpot, Chin Y. Chee and Jos�e-Luis Ambite for their help on this work. This work was

partly done while the �rst author worked at USC/Information Sciences Institute and Arizona State University.

1

Contents

1 Introduction 3

1.1 Query Plans . 3

1.2 Semantic Query Optimization . 4

1.3 Illustrative Example . 5

1.4 Organization . 7

2 Terminology 7

2.1 Databases . 7

2.2 Queries and Subqueries . 7

2.3 Semantic Knowledge . 8

3 Semantic Query Optimization Using Relational Rules 10

3.1 Query Reformulation Based on Semantic Knowledge 10

3.2 Reformulation Based on Relational Rules . 11

3.3 Detecting Unnecessary Joins . 12

3.4 Using Partially Matched Relational Rules . 16

4 Local Optimization of Subqueries 16

4.1 Implication Closures . 17

4.2 Detecting Circular Implications . 17

4.3 The Local Optimization Algorithm . 19

5 Global Optimization of Query Plans 22

5.1 Forward Propagation . 22

5.2 Backward Propagation . 24

5.3 Analysis of the Query Plan Optimization . 26

6 Experimental Results 26

6.1 Setup of the Experiments . 27

6.2 Performance Report . 28

6.3 Utility of Relational Rules and Range Rules . 30

7 Related Work 31

7.1 Query Optimization for Information Mediators . 31

7.2 Semantic Query Optimization of Conjunctive Queries 32

7.3 Predicate Move-Around . 33

7.4 Semi-Joins . 33

8 Conclusions 34

2

1 Introduction

Integrating heterogeneous multidatabases is an important problem for the next generation of infor-

mation systems [1, 2, 3, 4, 5, 6]. A wide-area health-care information system, for example, would

require integrating many di�erent types of information for physicians in the course of their work.

Answering a query in these applications usually involves selecting appropriate information sources

from which to retrieve data and generating an e�cient plan to combine the data automatically. As

signi�cant progress has been made in source selection and plan generation, the critical issue has

been shifting to query optimization. Source autonomy and heterogeneity preclude the use of tradi-

tional techniques for distributed databases [7, 8]. Recent research focuses on techniques to prune

irrelevant source accesses [9, 10, 11], but it is still di�cult to reduce unnecessary data retrieval

and transmission from relevant sources. One reason for this di�culty is the lack of information

about intermediate data at query planning time. To address this issue, researchers have proposed

interleaving query planning and execution so that the query processor can use intermediate data

to re�ne the part of the query plan that has not been completely executed [9, 12, 13].

A relatively unexplored area is the use of semantic query optimization (SQO) [14, 15, 16, 17, 18,

19, 20, 21] for multi-source query plan optimization. The advantage of SQO is that the optimizer

can infer the information about intermediate data from semantic knowledge prepared prior to query

execution time. Another reason is that SQO supports the extensibility of multidatabase systems

because it minimizes the dependency on how individual sources execute a query. When a new

information source is integrated into the system, the optimizer can still be used with minimal

modi�cation. Many algorithms are available for learning useful semantic knowledge [16, 22, 19, 23,

24, 25].

1.1 Query Plans

A query plan is a directed acyclic graph with its nodes as plan steps and its edges as the ordering

constraints that specify data ow direction as well as the order in which the plan steps should

be executed. Query plans generated by existing multidatabase query processing systems di�er on

the granularity of their plan steps. In this paper, we consider query plans where each plan step

corresponds to a subquery that can be executed by a single database server.

For example, suppose we have a query as follows:

Example Query 1: Retrieve the classes of active ships with container capability that

can dock in the wharves with cranes at Long Beach seaport; list by ship class name and

wharf id.

Suppose the data required to answer this query are spread over two remote databases: Geo for

the data about geographical locations, seaports and wharves, and Assets for ships, ship classes,

3

sims(?ship_class,?wharf_id):−
 assets(?ship_class,?draft,?length),
 geo(?wharf_id,?depth,?wlength),
 ?depth > ?draft,
 ?wlength > ?length.

geo(?wharf_id,?depth,?wlength):−
 seaport("Long Beach",?glc_code,_,_,_,_),
 wharf(?wharf_id,?glc_code,?depth,?wlength,?crane,_),
 ?crane > 0.

subquery 1: subquery 2:

subquery 3:

assets(?ship_class,?draft,?length):−
 ship_class(?ship_class,?type,?draft,?length,"Y"),
 ship(_,?ship_class,"Active",_,_).

Figure 1: Example query plan that retrieves heterogeneous multidatabases

aircraft, etc. The source model of these databases is given in Table 1. Figure 1 shows a query plan

that answers the given query.

In a query plan graph, subqueries without a predecessor retrieve data from a remote information

source, while others combine or process the data transmitted from their preceding subqueries. In

this example, the �rst subquery retrieves data about ships from the remote database Assets, the

second subquery retrieves data about seaports and wharves from database Geo, and the third

subquery compares data retrieved by the previous subqueries and joins the results.

This query plan is optimal in terms of the number of subqueries because the desired data are

spread over two databases Assets and Geo and those subqueries cannot be merged. However, this

plan could still be expensive because the system needs to retrieve and transmit a large amount of

unnecessary ship class and wharf data that will eventually be discarded. Also in subquery 1, the

system needs to execute a join over the large ship relation. Conventional query optimizers [7, 8, 26]

can be applied to optimize individual subqueries, but still, the amount of unnecessary intermediate

data would not be reduced.

1.2 Semantic Query Optimization

Semantic query optimization can help in providing local optimization to subqueries as well as

reducing unnecessary data transmission. The essential idea of semantic query optimization is to

use semantic rules about data, such as all California seaports have railroad access, to reformulate

a query into a more e�cient but semantically equivalent query. Two queries are de�ned to be

semantically equivalent if they return identical answers from a database state that is consistent

with the semantic knowledge. With the given rule, suppose we have a query

Example Query 2: Find all California seaports with railroad access and 2,000,000

ft3 of storage space.

4

The system can reformulate the query into a new query

Example Query 2 (optimized): Find all California seaports with 2,000,000 ft3 of

storage space.

This optimized query is equivalent to the original query, because from the given rule there is no

need to check the railroad access of seaports in California. Executing the optimized query is less

expensive than executing the original query because the system saves the time for the unnecessary

comparisons.

Semantic query optimization is not widely used in practice largely because it is di�cult to encode

useful semantic knowledge. Several algorithms have been designed speci�cally for this purpose

previously [16, 22, 19]. Semantic knowledge used in our experiment is learned automatically by our

knowledge discovery system [23, 24, 25].

The optimization approach described in this paper extends previous work in SQO, which focuses

mainly on conjunctive queries in a stand-alone database. This approach provides global optimiza-

tion for query plans as well as local optimization for subqueries that retrieve data from individual

database sources. An important feature of our local optimization algorithm is that we prove neces-

sary and su�cient conditions to eliminate an unnecessary join in a conjunctive query of arbitrary

join topology. This feature allows our optimizer to utilize more expressive relational rules and thus

provide a wider range of possible optimizations than previous work in SQO. The local optimization

algorithm also features a new data structure called AND-OR implication graphs to facilitate the

search for optimal queries. These features allow the global optimization to e�ectively use semantic

knowledge to infer useful information about intermediate data to reduce data transmission cost.

1.3 Illustrative Example

We illustrate how our SQO approach can optimize the query plan in Figure 1. Suppose in the

beginning, the optimizer possesses the following semantic knowledge about the relevant databases:

� Possible range of attribute values that binds the variables: ?depth, ?draft, ?length

and ?wlength.

� Semantic rules about ship classes and ships:

� if the maximum draft of a ship is less than 50 then its status is active.

� if a ship class has container capability, then there exists at least one ship of

that ship class.

Given the range information and semantic rules, our optimizer can reduce the intermediate data

and optimize subqueries with the following steps.

5

assets(?ship_class,?draft,?length):−
 ship_class(?ship_class,?type,?draft,?length,"Y"),
 ship(_,?ship_class,"Active",_,_).

geo(?wharf_id,?depth,?wlength):−
 seaport("Long Beach",?glc_code,_,_,_,_),
 wharf(?wharf_id,?glc_code,?depth,?wlength,?crane,_),
 ?crane > 0.

sims(?ship_class,?wharf_id):−
 assets(?ship_class,?draft,?length),
 geo(?wharf_id,?depth,?wlength),
 ?depth > ?draft,
 ?wlength > ?length.

subquery 1: subquery 2:

subquery 3:

?draft < 50.

Figure 2: Optimized query plan

� From range information, inferring that ?wlength > ?length is always true for this

query. Therefore, this literal can be deleted from Subquery 3. Also, since they are not

used as output, data about ?wlength and ?length are no longer necessary and can be

deleted from the heads of Subqueries 1 and 2.

� From range information again, deriving a more restrictive range of ?draft, which must

be less than 50 to satisfy ?depth > ?draft.

� Moving this newly derived literal ?draft < 50 to Subquery 2.

� Deriving that it is unnecessary to specify "Active" based on the semantic rules, a ship

is always "Active" if ?draft < 50.

� Removing the entire ship literal, because "Active" is redundant, and the semantic rule

states that if a ship class with container capability (speci�ed as "Y"), then there must

exist at least one ship that belongs to that ship class in the database. That is, the join

with ship is not necessary.

The resulting plan is shown in Figure 2, where terms in bold font are newly inserted terms,

and terms under shaded regions are deleted. This new plan will retrieve the same answer as the

original plan because the optimization process is logically sound, given that the semantic knowledge

is consistent with the database state. Since the system does not need to transmit ?wlength and

?length, and a more restrictive constraint ?draft < 50 will reduce the number of ?ship class

data retrieved, the intermediate data is reduced. Furthermore, the system does not need to access

and compute a join over the costly relation ship. Thus, Subquery 1 is also optimized. In our

experiments, it takes 3.17 seconds to execute the original plan and 1.78 seconds to execute the

optimized plan. This amounts to a 43.8 percent reduction. The execution time of the optimized

plan includes 0.03 seconds of overhead optimization time. Therefore, the optimizer e�ectively

optimizes this query and reduces the execution cost.

6

Assets database:

ship class(class,type,max draft,length,container cap),

ship(name,class,type,status,fleet,year built).

Geo database:

geoloc(name,glc cd,country,latitude,longitude),

seaport(name,glc code,storage,rail,road,anch offshore),

wharf(wharf id,glc code,depth,length,crane qty).

Table 1: Schema of example databases

1.4 Organization

The remainder of this paper describes our approach. The next section de�nes the terminology used

throughout this paper. Section 3 describes how to exploit general relational rules to delete unnec-

essary joins. Section 4 describes AND-OR implication graphs and how they facilitate search in the

local optimization algorithm for conjunctive subqueries. Section 5 presents the global optimiza-

tion algorithm. The approach has been implemented into a system called pesto and tested as a

component of the sims information mediator [2, 3] in a heterogeneous multidatabase environment.

Section 6 reports on the implementation and the experimental results. Section 7 compares our

approach with related work in query optimization. The last section concludes with a discussion of

the contributions and future work.

2 Terminology

2.1 Databases

In this paper, we consider information sources organized in the relational data model because it

is well-de�ned and widely used in practice. However, it should be emphasized that the approach

described in this paper applies to information sources in more expressive data models such as

the object-relational model with minor extensions. Table 1 shows the schema of two example

databases. In database Assets, the relation ship class stores information about ship classes, and

ship contains data about individual ships. The other database Geo provides geographic location

information. We list the schema of two relations on seaports and wharves related to our examples.

2.2 Queries and Subqueries

We assume that queries are expressed in terms of some uniform language and a query processor will

generate a query plan to answer an input query by decomposing an input query into subqueries

to relevant information sources and determining a correct and e�cient order to execute these

subqueries. In our approach, the optimizer takes the query plan as input instead of the query.

7

Typically, subqueries are expressed in conjunctive Datalog queries, which correspond to the

select-from-where subset of SQL.1 A subquery is of the form

S(�X) :� C(�Y); E1(�X1); : : : ; Ek(�Xk):

The head S is the ID of the subquery. Usually we assign the ID of the database site from which the

subquery retrieves data. The parameters �X; �Y ; �X1; : : : ; �Xk denote tuples of variables. Variables

always start with a ? mark (e.g., ?x), except anonymous variables \ ," which represent variables

that appear exactly once in the query and thus can be omitted. C(�Y) is a conjunction of built-in

predicates on the variables of the query. The Ej 's are relation names of the database from the

source model, or IDs of the predecessor subqueries. In the latter case, the literal represents the

tuples returned from the predecessor subquery. We refer to literals Ej(�Xj) as database literals. We

refer to literals on built-in predicates, such as > and member, between a single variable and one

or more constants as built-in literals (e.g., ?crane > 0). Literals on built-in predicates between

two or more variables are comparisons (e.g., ?depth > ?draft), however equalities are required to

be replaced with common variables in database literals. We allow negations and disjunctions in

built-in literals.

For example, Q1 in Table 2 is a subquery that begins with the site name assets followed by

arguments ?ship class,?draft and ?length. The literals in line 2 and line 3 are database literals,

while literals 4 to 6 are built-in literals. This subquery retrieves the ship classes and the maximal

draft of the ships in those classes which satisfy the following conditions: the ships in the class are

capable of carrying containers, their draft is less than 50 feet, and there is at least one active ship

in this class.

A query plan may have subqueries for disjunctions and set operators (e.g., union and intersect).

Since the cost to perform these operations is relatively expensive, usually a query processor will

separate ordinary literals and the set operations, and push the latter down the plan graph so that

they will be executed as late as possible. Therefore, we assume that the query processor will create

subqueries speci�cally for the set operations.

2.3 Semantic Knowledge

Our approach uses two forms of semantic knowledge: semantic rules and range facts. Semantic

rules, expressed in terms of Horn-clause rules, de�ne the regularity of data in an individual database.

We adopt standard Prolog terminology and semantics as de�ned in [28] in our discussion of rules.

Semantic knowledge is interpreted under the closed-world assumption. That is, a database literal

1In our implementation, however, queries are expressed in the loom knowledge representation language [27]. It is

also used as the representation language for database modeling. For the simplicity of presentation, we choose Datalog

to express queries because modeling is not the subject of this paper and Datalog is well-known to both databases

and AI research communities.

8

Q1: assets(?ship class,?type,?draft):-

1 ship class(?ship class,?type,?draft, ,?container),

2 ship(,?ship class,?type,?status, ,),

3 ?status = "Active",

4 ?container = "Y",

5 ?draft < 50.

Table 2: Example subquery

Semantic Rules:

R1: If the maximum draft of a ship is less than 50 then its status is active.

ship class(?class,?type,?draft, ,) ^ ship(,?class,?type,?status, ,) ^ ?draft < 50

) ?status = "Active"

R2: If a ship class has container capability, then there must exist some

ships that belong to that ship class in the database.

ship class(?class,?type, , ,?container) ^ ?container = "Y"

) ship(,?class,?type, , ,)

R3: If a ship is active, then it was built after 1945.

ship(, , , ,?status,?year-built) ^ ?status = "Active"

) ?year-built > 1945

R4: The depth of wharves at Long Beach is at most 50 feet.

seaport(?name,?code, , , ,) ^ wharf(,?code,?depth, ,) ^ ?name = "Long Beach"

) ?depth � 50

R5: The length of wharves with at least one crane at Long Beach is greater than 1200 feet.

seaport(?name,?code, , , ,) ^ ?name = "Long Beach" ^

wharf(,?code, ,?length,?crane) ^ ?crane > 0

) ?length � 1200

R6: For all the geographic location codes of wharves, there is a seaport with the same code.

wharf(,?code, , ,)) seaport(,?code, , , ,)

R7: If two seaports share the same geographic location code, than their names are also identical.

seaport(?name1,?code, , , ,) ^ seaport(?name2,?code, , , ,)

) ?name1 = ?name2

Table 3: Example semantic rules

is satis�able with regard to a database if and only if in the database there exists a tuple in the

corresponding relation. Semantic knowledge should be consistent with the database. To distinguish

a rule from a query, we show queries using Datalog syntax and semantic rules in a standard logic

notation. Table 3 shows some example semantic rules.

We make distinction between two classes of rules. The �rst class, referred to as a range rule,

contains rules with their consequent a positive built-in literal (e.g., R1). The second class consists of

rules with their consequent a database literal (e.g., R2), referred to as a relational rule. Relational

rules may be recursive, that is, the relation of the consequent appears in the antecedent. The

class of relational rules subsumes a variety of database integrity constraints. R6 is an example of

a referential integrity constraint, a special case of relational rule where only one condition in the

antecedent and only one shared variable on both sides of implication are allowed. A functional

dependency can also be expressed in a Horn-clause rule such as R7.

9

Range Facts:

F1: 12 � ship class.draft � 72.

F2: 325 � ship class.length � 950.

F3: ship class.container cap 2 f"Y","N"g.

F4: ship.status 2 f"Active","Inactive","Resigned"g.

F5: 7 � wharf.depth � 100.

F6: 580 � wharf.length � 2700.

F7: 0 � wharf.crane qty � 7.

Table 4: Range facts state the range of attribute values

Range facts state the range of the values of a given database attribute. For numeral attributes,

the range facts show the minimal value and the maximal value. For string-typed attributes, their

range facts enumerate the possible values. In our implementation, range facts of a string-typed

attribute will not be used if there are more than 20 possible values. Table 4 gives some examples.

3 Semantic Query Optimization Using Relational Rules

Semantic query optimization involves two major phases. In the �rst phase, the optimizer locates

applicable semantic knowledge and proposes a sequence of one or more reformulation operations

(e.g., to delete a literal or insert a new literal) that preserve the semantics of the query. The second

phase is to evaluate the proposed reformulations and apply the best reformulation based on a

cost model of query execution. Relational rules are useful for the optimizer to detect and eliminate

redundant database literals in the �rst phase. This section �rst reviews the techniques for proposing

reformulations based on range rules, and then presents the techniques for using relational rules.

3.1 Query Reformulation Based on Semantic Knowledge

A semantic query optimizer proposes reformulations depending on the applicable semantic rules.

Possible reformulations are re�ning the range constraint speci�ed in a built-in literal (e.g., re�ning

?crane > 0 into more restrictive ?crane > 5), deleting a literal, inserting a new literal to the

query, and refuting the entire query (e.g., asserting that it will return an empty set). A rule is

considered applicable to a query if the antecedent part of the rule is a logical consequence of the

query body. For conjunctive queries and Horn-clause rules, this can be determined by computing

a containment mapping [26], which is a set of variable substitutions that unify the antecedent of

an applicable rule and the query body. Once an applicable rule is matched, the optimizer will

substitute the variables in the consequent of the rule using the variable substitutions.

If the applicable rule is a range rule, where the consequent is a built-in literal, then the optimizer

may propose inserting the consequent if there is no built-in literal de�ned on the same variable as

the consequent. Otherwise, the optimizer may propose deleting that literal from the query if

10

Q1.1: assets(?ship class,?draft):-

ship class(?ship class,?type,?draft, ,?container),

ship(,?ship class,?type,?status, ,),

?container = "Y",

?draft < 50.

Q1.2: assets(?ship class,?draft):-

ship class(?ship class,?type,?draft, ,?container),

ship(,?ship class,?type,?status, ,?year-built),

?status = "Active",

?year-built > 1945,

?container = "Y",

?draft < 50.

Q1.3: assets(?ship class,?draft):-

ship class(?ship class,?type,?draft, ,?container),

?container = "Y",

?draft < 50.

Table 5: Equivalent queries of Q1 deduced from semantic knowledge

the consequent implies it, or propose re�ning the range constraint of the literal. Because range

information is a special class of range rules whose antecedent is empty, the use of range information

in SQO is identical to that of range rules.

Consider the conjunctive query Q1 in Table 2 and the semantic knowledge given in Table 3.

Some of the equivalent queries of Q1 inferred from the semantic rules are shown in Table 5. The

optimizer deletes literal 3 on the variable ?status based on R1 and generates Q1.1. This is an

example of constraint elimination [15] reformulation. The optimizer can add ?year-built > 1945

to Q1 from R3 and yield another equivalent query Q1.2. Adding new literals could be useful in

many situations. One of them is when the added literal exploits an indexed attribute.

The optimizer can also refute a query, when it infers that the query literals contradict a rule

(or a chain of rules) and will not be satis�able by the data. Sometimes the optimizer can assert

the answer directly from semantic rules. In either case, there is no need to access the database to

answer the query and we could achieve close to 100 percent savings.

3.2 Reformulation Based on Relational Rules

When the applicable rule is a relational rule, and the consequent (in this case a database literal)

implies another database literal in the query, the optimizer may propose deleting that database

literal. This is referred to as join elimination [15] reformulation. For example, from R2, we can

infer that literal 2 of Q1 is implied by literal 1 and thus is redundant in the sense that the value

pairs (?ship class,?type) that satisfy literal 2 subsume the pairs that satisfy literal 1. Therefore,

there is no need to evaluate literal 2 because the system would not miss any desired value pair in

the retrieved answer.

However, in general cases, locating an applicable relational rule is not su�cient to validate the

11

deletion of a database literal because the resulting query may not be semantically equivalent to

the input query. The optimizer needs to assure that the resulting query is safe as de�ned in [26,

pages 104{105]. Queries are not safe unless all its variables are limited in the sense that their values

can be �nitely determined. Section 3.3 describes necessary and su�cient conditions to delete a

database literal.

Relational rules also allow the optimizer to insert a new database literal into the query (i.e.,

the join introduction reformulation [15]). The use of relational rules for this class of reformulation

is similar to that of using range rules to insert a new literal. However, this reformulation is seldom

found bene�cial in cost reduction. If a knowledge base contains recursive rules, the optimizer might

in�nitely introduce new database literals and never terminate. In this paper, we do not consider

introducing new database literals.

3.3 Detecting Unnecessary Joins

Eliminating a redundant database literal implies eliminating equi-joins implicitly speci�ed by the

variables that appear in both the target database literal and any other database literal in the query.

We call these common variables the comparand variables of a database literal. Previously, Sun and

Yu [21] identi�ed necessary and su�cient conditions for eliminating a database literal without

changing the answer of a query. Their conditions are adequate for optimizers using referential

integrity constraints but too strong for optimizers that can use general relational rules because

those conditions apply only to database literals with exactly one comparand variable.

We present the revised conditions for eliminating a redundant database literal with one or more

comparand variables using relational rules. Given a query, the problem is to determine whether a

target database literal can be deleted without changing its answer based on the available relational

rules. Formally, suppose the input query is of the form:

Q(�X) :� E1(�X1); : : : ; Ei(�Xi); : : : ; Ek(�Xk); Ce(�Ye); Ci(�Yi):

where Ei(�Xi) is the target database literal, Ci(�Yi) is a conjunction of related built-in literals de�ned

on the variables that appear only in �Xi, and Ce(�Ye) is a conjunction of the other built-in literals.

We use �Z = �Xi \ (
S
j 6=i

�Xj) to denote the tuple of the comparand variables in the target literal.

There may be one or more comparand variables. We also assume that Q is a safe query.

Let Q0 be the query obtained by deleting Ei(�Xi) and the related built-in literals Ci(�Yi) from Q:

Q0(�X) :� E1(�X1); : : : ; Ei�1(�Xi�1); Ei+1(�Xi+1); : : : ; Ek(�Xk); Ce(�Ye):

Our problem is to determine under what conditions Q0(�X) and Q(�X) will return the same answer

in all database states consistent with the semantic rules. Note that Ci(�Yi) needs to be eliminated

to make the query safe, because after Ei(�Xi) is deleted, the variables in �Yi will appear only in the

built-in literals and become not limited.

12

A database literal is considered redundant if and only if it satis�es all three conditions to be

speci�ed next. The �rst condition states that the target database literal is implied by the other

literals. That is, the tuples projected on the comparand variables that satisfy the target database

literal must subsume the corresponding tuples that satisfy the remaining literals. This condition is

satis�ed if the optimizer can locate an applicable relational rule that implies Ei(�Xi).

� �Z(�Ce(�Ye)
(E1(�X1); : : : ; Ei�1(�Xi�1); Ei+1(�Xi+1); : : : ; Ek(�Xk))) � � �Z(Ei(�Xi)) (1)

The second condition states that all related built-in literals must be implied by the other literals

and thus can be deleted without changing the answer. This condition can be veri�ed from range

rules.

� �Yi
(�Ce(�Ye)

(E1(�X1); : : : ; Ek(a
�
rXk))) � � �Yi

(�Ci(�Yi)
(Ei(�Xi))) (2)

The third condition states that if a variable in the target literal appears in the head of the

query, then it must also occur in some other database literals. Otherwise, deleting the target literal

may result in variables that are not limited.

8?x 2 �Xi (?x 62 �X _ ?x 2
[

j 6=i

�Xj) (3)

Proposition 1 Q0(�X) is semantically equivalent to Q(�X) if and only if Ei(�Xi) satis�es all three

conditions (1), (2) and (3).

Proof \If"(=: Let �XJ =
S
j 6=i

�Xj . By de�nition, �Z � �XJ . SinceQ is safe and thus �X �
S
allj

�Xj ,

by condition (3), we have �X � �XJ .

Next, we show that conditions (1) and (2) guarantee that eliminating Ei(�Xi) and Ci(�Yi) will

not change the answer of Q. Condition (1) implies that

� �Z(�Ce(�Ye)
(E1(�X1); : : : ; Ei�1(�Xi�1); Ei+1(�Xi+1); : : : ; Ek(�Xk))) = � �Z(�Ce(�Ye)

(E1(�X1); : : : ; Ek(�Xk)))

(4)

Let � be a tuple in the result of the projection onto �XJ of the expression at the left-hand side of

(4) before applying any projection. That is,

� 2 � �XJ
(�Ce(�Ye)

(E1(�X1); : : : ; Ei�1(�Xi�1); Ei+1(�Xi+1); : : : ; Ek(�Xk))):

Since the di�erence between the two sides of (4) is the join with Ei(�Xi) on �Z, and both projections

are applied onto �Z, if � �Z(�) does not match any tuple in � �Z(Ei(�Xi)), then � �Z(�) will not appear

in the result of the expression at the right-hand side of (4). But the expressions at both sides are

equivalent and � �Z(�) must be in the result of the left-hand side of (4). There must be a tuple in

the result of the right-hand side that is equal to � �Z(�) and matches a tuple in � �Z(Ei(�Xi)). This

leads to a contradiction. We can therefore conclude that

� 2 � �XJ
(�Ce(�Ye)

(E1(�X1); : : : ; Ek(�Xk))):

13

Meanwhile, since the expression at the right-hand side is more restrictive, its projection onto �XJ

must be a subset of the projection onto �XJ of the left-hand side of (4). As a result, we have

� �XJ
(�Ce(�Ye)

(E1(�X1); : : : ; Ei�1(�Xi�1); Ei+1(�Xi+1); : : : ; Ek(�Xk))) = � �XJ
(�Ce(�Ye)

(E1(�X1); : : : ; Ek(�Xk))):

Moreover, since �X � �XJ , we have

� �X(�Ce(�Ye)
(E1(�X1); : : : ; Ei�1(�Xi�1); Ei+1(�Xi+1); : : : ; Ek(�Xk))) = � �X(�Ce(�Ye)

(E1(�X1); : : : ; Ek(�Xk))):

(5)

Similarly, from condition (2), we have

� �Yi
(�Ce(�Ye)

(E1(�X1); : : : ; Ek(�Xk))) = � �Yi
(�Ce(�Ye)

(�Ci(�Yi)
(E1(�X1); : : : ; Ek(�Xk)))):

In a manner similar to the derivation of (5), we can show that

� �X(�Ce(�Ye)
(E1(�X1); : : : ; Ek(�Xk))) = � �X(�Ce(�Ye)

(�Ci(�Yi)
(E1(�X1); : : : ; Ek(�Xk)))): (6)

From (6) and (5), we have Q0(�X) � Q(�X).

\Only if" =): We �rst show that if Q � Q0 then condition (3) holds. This is the case because

otherwise, there will be variables in �X not limited in Q0 while all variables are limited in Q.

Next we show that if Q � Q0 then conditions (1) and (2) hold by reducing the problem to the

case of a single join. Then we can apply Sun and Yu's Proposition 1 [21, page 141] to establish

the case. Table 6 shows the construction of this proof. We construct two views and a new query

Qnew such that our problem (=) marked by a \?") can be reduced to the case of a single join. By

establishing (a) and (b), we can complete the proof.

To concisely de�ne the views that will be used in the proof, we de�ne a predicate composite(x; x1; : : :)

such that a tuple satis�es this predicate if and only if x = hx1; : : :i, where x has a composite value

of the rest of the variables. For instance, composite(h1; 2; 3i; 1; 2; 3) is true.

The views are de�ned as follows:

Z 0(�Z; zc) :� E1(�X1); : : : ; Ei�1(�Xi�1); Ei+1(�Xi+1); : : : ; Ek(�Xk); Ce(�Ye); composite(zc; �Z):

E0
i(
�Xi; zc) :� Ei(�Xi); composite(zc; �Xi):

In the �rst view Z 0, a tuple consists of attribute values from a �Z tuple that satis�es Q0 and an

additional composite attribute zc. Each zc is the combination of the rest of the attribute values in

the tuple. The second view E0
i is a duplicate of Ei except for an additional composite attribute zc.

Based on these new views, we can construct a new query Qnew as below:

Qnew(�X) :� E1(�X1); : : : ; Ei�1(�Xi�1); Ei+1(�Xi+1); : : : ; Ek(�Xk); Ce(�Ye); Z
0(�Z; zc); E

0
i(
�X 0
i; zc); Ci(�Y

0
i):

14

?
(Q � Q0) =) Q and Ei satis�es conditions (1) and (2)

(a)+ * (b)

(Qnew � Q0
new) () Qnew and E0

i satis�es (1),(2),(3) of Proposition 1 in [21]

from [21]

Table 6: Constructions of the proof of Proposition 1.

where �X 0
i =

�Xi� and �Y 0
i =

�Yi�. � is some variable substitution such that �X 0
i \

�Xi = ;. Clearly, for

E0
i, there is exactly one single join from E0

i to Z 0 over zc in Qnew. If this join is unnecessary, we

can remove the literals E0
i(
�X 0
i ; zc) and Ci(�Y

0
i) to obtain a semantically equivalent query:

Q0
new(

�X) :� E1(�X1); : : : ; Ei�1(�Xi�1); Ei+1(�Xi+1); : : : ; Ek(�Xk); Ce(�Ye); Z
0(�Z; zc):

Now, we are ready to establish (a) and (b) in Table 6. For (a), the di�erence between Q0 and

Q0
new is the additional literal Z 0(�Z; zc) in Q

0
new, whereas for each

�Z tuple that satis�es Q0, there is

a corresponding tuple in Z 0. Therefore, a �X tuple satisfying Q0 must also satis�es Q0
new, and vice-

versa. Similarly, we can show that a �X tuple satisfying Q must also satisfy Qnew, and vice-versa.

This follows that if Q � Q0 then Qnew � Q0
new.

For (b), assuming that Qnew � Q0
new, then from Sun and Yu [21], the following three conditions

must be satis�ed:

1. �zc(E
0
i) � �zc(Z

0),

2. Ci(�Y
0
i) = ; or Ci(�Y

0
i) is redundant under the set of semantic rules,

3. �X \ (�X 0
i [fzcg) � fzcg.

The �rst condition implies that � �Z(E
0
i) � � �Z(Z

0). Replacing E0
i and Z 0 with their de�nitions and

removing the predicate composite leads to our condition (1). From the second condition, Ci(�Y
0
i)

is redundant in Qnew. Therefore, the set of E
0
i tuples that satisfy the join condition with Z 0 must

be a subset of those E0
i tuples that satisfy Ci(�Y

0
i). From the de�nitions of E0

i and Z 0, the set of Ei

tuples that satisfy the literals de�ned on other literals in Q must be a subset of those Ei tuples

that satisfy Ci(�Yi). This is equivalent to our condition (2). Consequently, (b) is established. 2

An example redundant database literal is literal 2 of Q1 in Table 2. This literal speci�es an

implicit equi-join from relation ship to ship class over two comparand variables | ?ship class

and ?type. Literal 2 is redundant because it satis�es all three conditions. Condition (1) is satis�ed

because from the relational rule R2, the value pairs for ?ship class and ?type that satisfy literal 1

15

must also satisfy literal 2. Since literal 3 is the only built-in literal that involves a variable in literal

2, and literal 3 is implied by other literals, as inferred from R1, (2) is also satis�ed. For condition

(3), though ?ship class in literal 2 is used in the query head, this variable also occurs in literal

1 and thus is limited by relation ship class. Therefore, literal 2 satis�es all three conditions and

the optimizer can delete literal 2 and the related built-in literal 3 to obtain the reformulated query

shown as Q1.3 in Table 5.

These new conditions are more general than Sun and Yu's [21] three conditions in two respects.

First, our conditions can be applied to joins with an arbitrary number of comparand variables,

while theirs can be applied only to joins with a single comparand variable. Second, our conditions

allow the optimizer to use general relational rules while their conditions are restricted to referential

integrity constraints. We note that general relational rules include recursive rules, and our three

conditions allow the optimizer to detect unnecessary recursive joins [29, pages 140{143] using

recursive rules. As a result, our optimizer can detect more opportunities to delete unnecessary

joins for a wider range of queries.

3.4 Using Partially Matched Relational Rules

In general, verifying condition (1) requires the optimizer to locate a chain of one or more applicable

rules entailing that a target literal is implied. In some case, a partially matched rule combined

with functional dependency knowledge may also allow this inference. Suppose we have a relational

rule R8 in Table 7. This rule is similar to R2 in Table 3 except that the variable ?type is replaced

by an anonymous variable \ ." The antecedent of this rule implies Q1 but its consequent partially

matches literal 2 of Q1 at the variable ?class but misses ?type because of the anonymous variables.

We call this rule a partially matched rule.

This rule may become fully matched if we bring to bear the functional dependency rules.

Suppose we know that the ship classes functionally determines the ship types as shown in Table 7,

and that the functions underlying these two dependencies are identical, then the example rule will

become applicable to Q1. This is because we can rewrite the anonymous variables for ship types as

foo(?class) for some function foo. This entails that the consequent of the example rule implies

literal 2 of Q1.

This inference enhances the utility of a relational rule, but to avoid increasing optimization

overhead, we can compute this inference for all relational rules prior to the query optimization.

4 Local Optimization of Subqueries

The local optimization algorithm in our approach is an improved version of the state-of-the-art

SQO algorithms for optimizing a conjunctive query in a stand-alone database environment [14,

16

R8: ship class(?class, , , ,?container) ^ ?container = "Y"

) ship(,?class, , , ,)

ship class.class �! ship class.type

ship.class �! ship.type

Table 7: Partially matched rule and functional dependencies

15, 16, 17, 18, 19, 20, 21]. In addition to the capability of exploiting general relational rules, the

improvement includes new features to facilitate the search and produce useful information for global

optimization. This section describes these features and presents the complete local optimization

algorithm.

4.1 Implication Closures

An intuitive search algorithm for SQO is to repeat proposing and applying reformulations to the

query until the optimal equivalent query is found [15, 17, 16]. However, such a generate-and-

test algorithm might miss applicable rules and hence miss optimization opportunities because an

applicable rule to a query may become inapplicable if some literals are deleted from the query.

To address this problem, when the optimizer detects a redundant literal, instead of deleting the

literal immediately, it should retain the literal and delay the deletion until all applicable rules

have been located. This can be achieved by computing an implication closure [21, 30, 18, 19] of

semantic knowledge to propagate the results of rule applications. An implication closure contains

all redundant literals in an input query that are implied by other literals and all of the new built-in

literals derived from semantic rules.

For example, the implication closure of Q1 given R1, R2 and R3 is indicated by the literals

underlined in Q1.2 (see Table 5). R3 may not be considered applicable if the optimizer commits the

deletion when it matches R1 to generate Q1.1. Implication closures allow the optimizer to consider

all possible literal deletions and insertions implied by the semantic rules. This way, the optimizer

will not miss any optimization opportunities.

Another advantage of implication closures is that since an implication closure contains all literals

implied by other query literals given the semantic knowledge, we can extract the most restrictive

ranges of variables from the implication closure and use it to reduce the data transmission cost in

the global optimization.

4.2 Detecting Circular Implications

After proposing reformulations based on semantic knowledge in the �rst phase, the second phase of

SQO is to search for a subset of literals in the implication closure that is provides the greatest cost

17

ship_class(?ship_class,?type,?draft,_,?container)

?status = "Active"

?year−built > 1945

?container = "Y"?draft < 50

ship(_,?ship_class,?type,?status,_,?year−built)

R1

R2

R3

Figure 3: AND-OR implication graph

reduction. Literals not in the implication closure cannot be deleted because they are not implied

by other literals, but not all literals in the implication closure can be deleted. For database literals,

the optimizer must also verify if they satisfy the three conditions of redundancy. Other than that,

literals in an implication closure might imply each other (based on the semantic knowledge) and

form a cycle. If this is the case, and the optimizer has committed deleting all literals but one in

the cycle, then the remaining literal might not be implied by any literal in the resulting query and

thus cannot be deleted. To deal with this problem, we introduce a data structure called AND-OR

implication graphs to keep track of the implication of literals after deletions.

An AND-OR implication graph (V;A) for a given query and semantic knowledge is a pair of

vertices V and AND-arcs A. V is the set of the literals in the query including its implication

closure. An AND-arc (u; fv1; : : : ; vkg) that points out of u is in A if and only if there exists a

semantic rule in the knowledge base entailing that v1; : : : ; vk imply u. It follows that a literal u is

in the implication closure if the out-degree of u is greater than zero. Figure 3 shows the AND-OR

implication graph of Q1 given the semantic rules R1,R2, and R3.

Algorithm 1 updates an AND-OR implication graph when a literal u is eliminated. This al-

gorithm maintains the implication chains of literals by computing the inheritance of AND-arcs if

the inheritance does not lead to a reexive AND-arc, or returns fail if the out-degree of u is zero.

Figure 4 illustrates how Algorithm 1 works. Figure 4(i) shows the initial graph of a query where

the diamond is about to be eliminated. The diamond implies the triangle and jointly implies box A

with box B. The triangle and box A inherit the AND-arc of the diamond as shown in Figure 4(ii).

Suppose next the optimizer decides to delete the triangle which is implied by the circle. In this

case, no inheritance will be constructed because otherwise there will be a reexive AND-arc to the

circle, as indicated in dash lines in Figure 4(iii).

The condition at line 7 excludes the construction of reexive AND-arcs so that the optimizer

can always assure that in an AND-OR implication graph, if the out-degree of a literal is greater

18

Algorithm 1 (Updating AND-OR implication graph)

1 INPUT G = (V;A) an AND-OR implication graph; u 2 V a target literal to be eliminated;

2 IF no (u; S) is found in A THEN u is not implied RETURN FAIL;

3 FOR all (u; S) 2 A

4 LET A = A � f(u; S)g;

5 FOR all (w;U) 2 A such that u 2 U

6 LET A = A � f(w; U)g;

7 IF w 62 S THEN LET A = A [f(w; (S [U � fug))g;

8 LET V = V � fug; RETURN G;

(I) (II) (III)

A

B

C

A A

B

C C

B

Figure 4: Updating AND-OR implication graph after literal elimination

than zero, it is implied by the other literals in the current reformulated query. This is useful because

the optimizer can e�ciently determine whether a literal is implied without the need to repeatedly

match the knowledge base of semantic rules.

The number of iterations at lines 3 and 5 is bounded by the maximal number of AND-arcs of a

literal, and this number is bounded by the number of applicable rules. Hence the time complexity

of Algorithm 1 is polynomial with regard to the number of applicable rules. The number of AND-

arcs usually shrinks after consecutive invocations but may grow moderately in some cases. In

our experiments, we have not encountered any performance problem due to the size of AND-OR

implication graphs.

AND-OR implication graphs allow an optimizer to separate rule matching and optimization

search so that there is no need to repeatedly match applicable semantic knowledge. The optimiza-

tion is therefore more e�cient than previous work [18, 19, 21]. This data structure also allows the

optimizer to abort the optimization and return an executable correct query at any time if necessary.

This feature is important in a dynamic heterogeneous database environment.

4.3 The Local Optimization Algorithm

Algorithm 2 lists the top level steps of our local optimization algorithm of conjunctive subqueries.

The algorithm computes the implication closure and builds the AND-OR implication graph, and

then searches for an optimal subset of literals in the implication closure to delete from the query.

19

Algorithm 2 (Local optimization)

1 INPUT Q = conjunctive query; KB = semantic knowledge;

2 LET I = implication closure; G = AND-OR implication graph (both initially empty);

3 derive the most restrictive ranges of the variables in Q using the range facts in KB;

4 update I and Q with the derived range constraints;

5 IF a literal in Q contradicts a range fact THEN RETURN NULL;

6 FOR all applicable rules in KB

7 LET A ! B be the applicable rule after variable substitution;

8 IF Q refuted THEN RETURN NULL;

9 ELSE add B to I; add AND-arc (B;A) to G; LET Q = Q [fBg;

10 search for a subset D of literals in I, so that Q0 = Q � D is optimal;

11 RETURN Q0

and I;

Q1.4: assets(?ship class,?draft):-

ship class(?ship class,?type,?draft,?length,?container),

ship(,?ship class,?type,?status, ,?year-built),

?length >= 580,

?length <= 950,

?status = "Active",

?year-built > 1945,

?draft >= 12,

?container = "Y",

?draft < 50.

Table 8: Equivalent query with implication closures

We illustrate how this algorithm works using the semantic knowledge in Table 3 and the example

query Q1 in Table 2 as input. Initially, the optimizer uses range facts and the literals in the query

to derive the most restrictive ranges of the variables in the query (lines 3 to 5). For example, from

the range fact F1 and the literal ?draft < 50, the optimizer derives that the most restrictive range

of the variable ?draft is the interval [12; 50) and inserts a new literal ?draft >= 12 to the query.

Similarly, the optimizer derives ranges of other variables and inserts two new literals on ?length

to the query. The optimizer also saves the derived literals in the implication closure I.

Next, from the semantic rules, the optimizer derives new literals as well as redundant literals

and saves the results in the implication closure (lines 6 to 9). In this example, the optimizer

matches applicable rules R1, R2 and R3 in Table 3, and updates the implication closure I and

reformulates the query as described in the previous section. As the optimizer matches rules, it

builds a corresponding AND-arc in the AND-OR implication graph. The resulting query is given

as Q1.4 in Table 8, where the underlined literals are those derived from the semantic knowledge

and saved in the implication closure.

When the optimizer applies semantic knowledge, it also checks whether there exists any literal

that is not satis�able. If this is the case, the optimizer can conclude that the entire query is not

20

satis�able and return NULL as the answer of the query without accessing the database at all (line 5

and 8).

The optimizer then searches for a subset of the literals in the implication closure to delete from

the partially reformulated query (line 10). The search starts from the reformulated query and

proceeds to assess literals for deleting from the query one at a time until a more e�cient query is

obtained.

The search procedure is outlined as follows. The optimizer selects a target literal with a none-

zero out-degree in the AND-OR implication graphG. This literal is implied by the other literals and

thus can potentially be deleted from the query. If this literal is a built-in literal, then the optimizer

proceeds to delete it from the query, and updates G using Algorithm 1. If this literal is a database

literal, then the optimizer checks whether it satis�es the three conditions described in Section 3.3.

Since the target literal is implied, we can infer that condition (1) is veri�ed. To check condition

(2), the optimizer makes a copy of G and iteratively invokes Algorithm 1 to simulate deleting the

related built-in literals of the target literal. The optimizer then checks if the invocations complete

successfully. If this is the case, the built-in literals do not form a circular implication and thus are

implied as a conjunction. The optimizer then checks the variables in the target literal to verify

condition (3). If all three conditions are satis�ed, the optimizer commits deleting this database

literal and its related built-in literals. Otherwise, the target literal will be retained. The search

continues as the optimizer selects the next literal.

Assuming that literals are equally expensive, then the optimal query is the one with a minimal

number of literals. This search problem is equivalent to the minimum axiom set problem, which

is shown to be NP-complete [31, pages 263]. Searching for equivalent queries with a minimal

number of joins is also NP-complete [21]. The search problem would be at least equally hard for

more complex cost model. To constrain the optimization cost, we use a greedy search procedure

which applies an evaluation heuristic to guide the deletion of literals. One source of the heuristics

is the information on the execution cost for various query operations from the technical manuals

of DBMS. In our implementation, we use a set of heuristics derived from Table 13-1 of [32] for

oracle
TM databases.

Returning to our example, since there is no circular implication, the optimizer can commit

deleting all of the implied literals and optimize the input query into Q1.3 in Table 5. The algorithm

also returns the implication closure that contains the most restrictive ranges of the variables in the

query. The global optimization algorithm relies on this information to reduce data transmission

cost, as described in the next section.

21

Algorithm 3 (Global optimization)

1 INPUT P = query plan; KBd = semantic knowledge learned from databases;

2 LET KB = KBd, Sb = an empty stack;

3 LET Sf = a stack of subqueries in the data flow order specified in P

4 WHILE Sf is not empty DO

5 LET s = pop(Sf);

6 optimize s by calling Algorithm 2 with input s and KB;

7 update KB with newly inferred more restrictive ranges of variables;

8 push optimized s into Sb;

9 WHILE Sb is not empty DO

10 LET s = pop(Sb);

11 IF s is a subquery that combines or manipulates intermediate data THEN

12 determine required variables V ;

13 extract and move newly inferred literals to L;

14 ELSE (s is a subquery that retrieves data from a remote database)

15 remove variables not in V from the parameter list of s;

16 insert literals in L to s if they are defined on variables in s;

17 IF s is changed THEN

18 optimize s by calling Algorithm 2 with input s and KBd;

19 push s onto Sf;

20 update P with Sf; RETURN P;

5 Global Optimization of Query Plans

The global optimization algorithm reduces irrelevant data retrieval and transmission in query plan

execution. A query plan may have conjunctive subqueries as well as comparisons, set operations,

and disjunctions. Algorithm 3 gives the top level algorithm for the global optimization. The

algorithm takes a query plan and semantic knowledge about relevant databases as input and tra-

verses the input query plan twice in their data ow order. The optimizer maintains two stacks of

subqueries for the traversal. In the �rst traversal, the algorithm optimizes each subquery and prop-

agates inferred range information forward in the data ow order. The second traversal propagates

backward the insertions and deletions of query literals made by the optimizer in the �rst traversal

to perform global optimization. We explain the algorithm for the example query plan in Figure 1

and the semantic knowledge shown in Table 3 and Table 4 as input.

5.1 Forward Propagation

In the �rst traversal, that is, the loop from line 4 to line 8, the plan graph is traversed forward

in the data ow order. During the traversal, each conjunctive subquery is optimized by calling

Algorithm 2, the local optimization algorithm, which also infers the most restrictive ranges of the

variables in the head of the subquery from the implication closure. The inferred ranges will be

propagated forward for the optimization of the succeeding subqueries (line 7).

This step is illustrated in Figure 5. Subquery 1 is optimized but no reformulation is found to

22

7 wharf.depth 100
580 wharf.length 2700
R4: if Long Beach seaport
 wharf depth 50
R5: if Long Beach crane > 0
 wharf length 1200

 ≤ ≤
 ≤ ≤

⇒ ≤
 ∧
⇒ ≥

12 ?draft 72
325 ?length 950 7 ?depth 50

1200 ?wlength 2700

12 ship_class.draft 72
325 ship_class.length 950

assets(?ship_class,?draft,?length):−
 ship_class(?ship_class,_,?draft,?length,"Y"),
 ship(_,?ship_class,"Active",_,_).

geo(?wharf_id,?depth,?wlength):−
 seaport("Long Beach",?glc_code,_,_,_,_),
 wharf(?wharf_id,?glc_code,?depth,?wlength,?crane,_),
 ?crane > 0.

subquery 1: subquery 2:

sims(?ship_class,?wharf_id):−
 assets(?ship_class,?draft,?length),
 geo(?wharf_id,?depth,?wlength),
 ?depth > ?draft,
 ?wlength > ?length.

subquery 3:

?draft < 50

 ≤ ≤
 ≤ ≤

 ≤ ≤
 ≤ ≤

 ≤ ≤
 ≤ ≤

Figure 5: Propagating inferred range information forward to optimize subqueries

be appropriate. However, based on the range facts, the ranges of variables ?draft and ?length

are inferred and propagated to subquery 3. Similarly, the optimizer does not reformulate subquery

2, but it uses semantic knowledge and the constraints speci�ed in the subquery to infer the most

restrictive ranges of ?depth and ?wlength, and propagates the results to optimize subquery 3.

For subqueries with special literals that Algorithm 2 cannot optimize, such as comparisons

between two variables (e.g., ?depth > ?draft), set operators (e.g., intersection and union),

and other data manipulation operators, the optimizer applies a set of axioms to optimize these

operators. Table 9 gives the axiom for the operator >. Given the ranges of the variables occurring

in a special literal, the optimizer will propose one of the following four reformulations using the

axioms:

� deleting the literal when the literal is found redundant,

� adding new built-in literals when more restrictive range is inferred,

� refuting the literal when the given ranges show that the literal is unsatis�able,

� no action.

In our example, when optimizing subquery 3, the optimizer infers that ?wlength is always greater

than ?length because the minimal value of ?wlength is greater than the maximal value of ?length.

23

Given L =?x1 >?x2 in a query:

1 IF min(?x1) > max(?x2) THEN delete L.

2 IF (max(?x1) = max(?x2)) ^ (max(?x1) > min(?x2) > min(?x1))

THEN insert ?x1 > min(?x2).

3 IF (max(?x2) > max(?x1) > min(?x1)) ^ (min(?x1) = min(?x2))

THEN insert ?x2 < max(?x1).

4 IF max(?x2) > max(?x1) > min(?x2) > min(?x1)

THEN insert ?x1 > min(?x2) and insert ?x2 < max(?x1).

5 IF max(?x2) > min(?x2) > max(?x1) > min(?x1)

THEN refute L.

6 IF max(?x2) > max(?x1) > min(?x1) > min(?x2)

THEN insert ?x2 < max(?x1).

7 IF max(?x1) > max(?x2) > min(?x2) > min(?x1)

THEN insert ?x1 > min(?x2).

8 IF (max(?x2) > min(?x2) > min(?x1)) ^ (min(?x2) = max(?x1))

THEN refute L.

9 IF (max(?x1) = min(?x1) = max(?x2)) ^ (min(?x1) > min(?x2))

THEN insert ?x2 < max(?x1).

10 IF (max(?x1) = max(?x2) = min(?x2)) ^ (max(?x1) > min(?x1))

THEN refute L.

11 IF (max(?x1) = min(?x1) = min(?x2)) ^ (max(?x2) > min(?x2))

THEN refute L.

12 IF (max(?x2) > min(?x2) > min(?x1)) ^ (max(?x1) > min(?x1))

THEN insert ?x1 > max(?x2).

13 IF (max(?x1) > min(?x1)) ^ (max(?x2) > max(?x1) > min(?x2))

THEN insert ?x2 < max(?x1).

14 IF (max(?x2) > min(?x2)) ^ (max(?x1) > max(?x2) > min(?x1))

THEN insert ?x1 > max(?x2)

15 IF max(?x1) = max(?x2) = min(?x1) = min(?x2) THEN refute L.

16 OTHERWISE no action.

Table 9: Axioms for ?x1 >?x2

Therefore, the literal ?wlength > ?length is redundant and can be deleted (from Axiom 1 in

Table 9). Meanwhile, for the literal ?depth > ?draft, the optimizer inferred a new literal ?draft

< 50, because the maximal value of ?depth is 50. This inferred literal is inserted into the subquery

(from Axiom 13).

5.2 Backward Propagation

After the optimizer �nishes optimizing a subquery and inferring ranges of variables, it pushes the

subquery into another stack Sb for the second query plan traversal (line 9 to line 19). The optimizer

pops out subqueries from Sb during the traversal, which corresponds to a backward traversal in the

data ow order of the query plan. Each subquery is processed di�erently depending on whether

it is to retrieve data from a remote database site or to process intermediate data. This step is

illustrated in Figure 6.

The �rst case (line 11 to 13) is when the subquery is to combine or process intermediate data

(e.g., subquery 3). The optimizer examines the optimized subquery and determines the required

24

subquery 1: subquery 2:

subquery 3:

?draft < 50.

?draft < 50.

assets(?ship_class,?draft,?length):−
 ship_class(?ship_class,?type,?draft,?length,"Y"),
 ship(_,?ship_class,"Active",_,_).

geo(?wharf_id,?depth,?wlength):−
 seaport("Long Beach",?glc_code,_,_,_,_),
 wharf(?wharf_id,?glc_code,?depth,?wlength,?crane,_),
 ?crane > 0.

sims(?ship_class,?wharf_id):−
 assets(?ship_class,?draft,?length),
 geo(?wharf_id,?depth,?wlength),
 ?depth > ?draft,
 ?wlength > ?length.

Figure 6: Propagating newly derived literals backward to optimize query plan

variables (line 12). Since some literals were deleted by the optimizer during the forward traversal,

there is no need to retrieve or compute the values of the variables occurring in those literals.

The optimizer can propagate this information to optimize the preceding subqueries that retrieve

data values of those variables. In our example, the optimizer takes optimized subquery 3 and

determines that in this subquery, all the variables are required except ?wlength and ?length,

because the literal ?wlength > ?length has been deleted from subquery 3 and neither variable is

used for output or in any other constraints. The optimizer saves the required variables in V and

removes the references to the two unnecessary variables from the database literals in subquery 3.

Next, the optimizer extracts newly inserted built-in literals from the optimized subquery if the

values of their variables are retrieved in one of preceding subqueries. If a built-in literal satis�es

this condition, then the optimizer will move the literal from the subquery to a set L temporarily

so that later in the traversal, the optimizer can insert it into an appropriate preceding subquery.

This allows the system to evaluate the literal as early as possible to reduce intermediate data. In

subquery 3 there is a newly inserted built-in literal ?draft < 50, which involves a variable initially

de�ned in subquery 1. The optimizer thus moves this literal to L for further processing.

The second case (line 14 to 18) is when the subquery is to retrieve data from a remote database.

The optimizer �rst removes any variable in the head not in the set V of the required variables,

and then inserts literals collected in L previously into the subquery if the literals involve variables

generated in this subquery. In our example, when the optimizer encounters subquery 2 | a

subquery that retrieves data from a remote database, the optimizer �nds that the variable ?wlength

is not a required variable and removes it from the head, as well as the reference to this variable

in the database literal on wharf. The optimizer continues its traversal and encounters subquery 1.

Similarly, it �nds that ?length in this subquery is not required and removes the variable from the

subquery. The optimizer also �nds that in the set L, there is a literal ?draft < 50 involving the

25

variable ?draft that is de�ned initially in subquery 1. Therefore, the optimizer moves the literal

to this subquery and completes the traversal.

If a subquery is modi�ed in the previous steps (line 15 and 16), the optimizer invokes the basic

semantic query optimization algorithm to optimize this subquery again to see if there are additional

optimization opportunities. Since both subquery 1 and 2 are modi�ed, the optimizer will invoke

Algorithm 2 to optimize both of them. At this point, subquery 1 is the same as the example query

Q1 in Table 2. The optimization for subquery 1 is also similar to that for Q1 as we have discussed

in the previous section. The resulting plan is the one already shown in Figure 2 in Section 1.3.

5.3 Analysis of the Query Plan Optimization

The rationale of the forward-propagation is to use literals speci�ed in subqueries to specialize the

semantic knowledge as much as possible for more e�ective optimization on succeeding subqueries.

The backward-propagation step attempts to detect unnecessary data retrieval and move newly

derived literals to subqueries that retrieves data from remote databases so that the literals can be

evaluated as early as possible in a query plan and reduce intermediate data.

Since the loop for each traversal repeats in time proportional to the number of subqueries, and

in each repetition, the time required for the basic SQO is the dominant factor, the time complexity

of Algorithm 3 is O(2 �n � Tlocal), where n is the number of subqueries in the input query plan, and

Tlocal is the maximal time required to perform the local optimization for each subquery.

The correctness of Algorithm 3 can be veri�ed as follows. In each step, the inferred ranges of

variables propagated forward are always larger than the ranges of variables in the answers; and

therefore, no data will be lost due to the modi�cations to subqueries. Since the inferred ranges of

variables are always at least as restrictive as the literals speci�ed in the query, no undesired data

will be retrieved due to the modi�cations to subqueries. We can also establish that moving literals

backward will not change the semantics of a query plan. The proof is similar to the proof for the

correctness of the predicate push-down techniques [26, 33]. Consequently, the resulting query plan

of Algorithm 3 will return the same answer as an input query plan, as long as the given database

state is consistent with the semantic knowledge.

6 Experimental Results

This section describes the empirical evaluation on our optimization approach. For this purpose,

the optimization approach was implemented in a query optimization system and incorporated with

an information mediator that integrates heterogeneous databases. The evaluation consists of two

experiments. The �rst experiment evaluates the e�ectiveness of the optimization approach. The

second experiment is to demonstrate the utility of relational rules in semantic query optimization.

26

Rule Bank

query Geo

Assets

Optimized
query plansQuery

Optimizer
PESTO

Rule Learner
 BASIL

Query
Planner
SAGE

Oracle
Servers

Databases
Range
Information

Transaction
log data

SIMS Information Mediator

training queries

Figure 7: Complete organization of sims with basil and pesto

6.1 Setup of the Experiments

The query plan optimizer pesto
2 is an implementation of our optimization approach. pesto

uses semantic rules learned by the rule induction system basil
3 [25] to optimize query plans for

an information mediator. These systems were developed to empirically evaluate the approaches

developed in this research. They are incorporated into the sims information mediator [2, 3, 10].

sims invokes pesto to optimize query plans, and pesto in turn invokes basil to discover the

required semantic rules. Figure 7 shows the organization of sims with the query plan optimizer

and the learner.

sims takes as input a query expressed in the loom knowledge representation language [27],

which is also used as the representation language to build the domain model and the source model

of databases. To optimize queries for sims, pesto has a component to translate a loom subquery

into an internal representation similar to Datalog to facilitate optimization, and a component

to translate the result back to loom. The semantic rules are expressed in the same internal

representation. By attaching a di�erent translation component, pesto can optimize queries in

other query languages.

For the purpose of our experiments, sims was connected with two remote oracleTM relational

databases via the Internet. These databases originally were part of a real-world transportation

logistic planning application. Table 10 summarizes the contents and the sizes of these databases.

Together with the databases, there were 29 sample queries written by the users of the databases.

We also had 3 queries written for the purpose to test di�erent functionalities of the sims query

planner, and 4 queries to test pesto, especially to test its ability to detect null queries (i.e.,

queries that return an empty set). That is a total of 36 queries. Among these 36 queries, 18 are

multidatabase queries that require access to multiple databases to retrieve the answer. Table 11 lists

2Plan Enhancement by SemanTic Optimization.
3BAyesian Speedup Inductive Learning.

27

Databases Contents Relations Tuples Size(MB) Server

Geo Geographical locations 15 56124 10.48 HP9000s

Assets Air and sea assets 16 4881 0.51 Sun SPARC 4

Table 10: Sample databases in a transportation logistic planning domain

Number of Query Size of

ID Short description Subqueries Length Answer

205 T-countries' airports, by name, 3 22 7

where C-5 aircraft can land at wartime

206 T-countries' airports, by name, where fully 3 22 1

loaded DC-8-61s can takeo� at wartime

213 wharves with container cranes at Long Beach,

by pier name and berth ID, where slow 3 51 108

Container/Breakbulk ships can dock

214 wharves at Long Beach with RORO ramps, 3 43 54

by pier name and berth ID where

METEOR ships can dock

215 For each ship class-subclass with LASH cargo

capacity, list all wharves at Long Beach, 3 51 864

by pier name and berth ID, where such class

of ship can dock

216 ships which can handle RORO cargo and can dock 3 30 3

in T-country

217 ship classes, by ship class name, seaport name,

and berth-type name which can handle container 3 25 272

and can dock at S-port or T-port

218 ship classes, by ship class name, seaport name,

and berth-type name which can handle container 3 27 360

and can dock at S-port or T-port

226 low-altitude airports where a C5 can land 3 21 4

227 airports in T-country where a C5 can land 3 19 9

Table 11: Multidatabase queries used in the experiments

some properties of the multidatabase queries. To train the learner, basil, 23 queries were selected

to serve as the training queries. The selection is based on the similarity of queries. Because we

found that basil learns nearly identical sets of rules using similar queries, to save experimentation

time, we removed some similar queries from the training set. pesto used about 110 semantic rules

and 271 range facts compiled from the databases for the optimization. sims, pesto and basil were

running on a Sun sparc-20 workstation during the experiments.

6.2 Performance Report

This experiment evaluates whether pesto can produce signi�cant cost reduction using machine

learned semantic rules. This experiment applied a k-fold cross validation [34] so that each training

query may have a chance to be used for training as well as testing. In this procedure, queries are

divided into k equal-sized subsets. In each iteration of learning and testing, one subset is chosen

28

Test Average hand-coded

1 2 3 4 savings rules

All 28.99% 31.60% 33.94% 29.86% 31.07% 25.84%

s=2.20%

Multidb 39.43% 42.51% 42.61% 39.63% 41.05% 36.19%

s=1.75%

of Rules 101 119 106 118 111 112

s=91

opt time (s) 0.038 0.047 0.041 0.054 0.045 0.044

s=0.007

Table 12: Percentage savings performance of learned rules and hand-coded rules

as the test set and the union of the other k � 1 subsets serves as the training set. In this case,

the 23 training queries were randomly divided into four sets, three of them contain 6 queries, and

one contains 5 queries. For each set of queries, basil took the remaining three sets of queries

as training queries and learned a set of semantic rules. The selected set of queries was combined

with the 13 additional queries to form the test set of queries. Next, sims took the test set as

input and invoked pesto to optimize the queries using the learned semantic rules. After collecting

performance data, the learned rules were discarded and the process repeated for the next set of

queries. The experiment thus generated four sets of performance data.

Prior to this experiment, we hand-crafted a set of 112 semantic rules for the purpose of com-

parison. These rules were carefully designed after several iterations of debugging and modi�cations

to allow the optimizer to explore as many optimization opportunities as possible for the sample

queries.

The performance data contains the total elapsed time of each query execution, which includes

the time for database accesses, network latency, as well as the overhead for semantic query opti-

mization. To reduce inaccuracy due to the random latency time in network transmission, all elapsed

time data were obtained by executing each query 10 times and then computing their medians. Then

for each query, the percentage time savings were obtained by computing the ratio of the total time

saved due to the optimization over the total execution time without optimization.

Table 12 shows the average of the savings for all queries, the average of savings for multidatabase

queries and the standard deviations. The data shows that pesto can produce a signi�cant savings

on the test queries, with a ten percent higher savings for multidatabase queries. The data also

shows that the learned rules outperform hand-coded rules in all four tests. This result is signi�cant

given that the standard deviations are low, and because all tests use about the same number of

rules and optimization time.

Table 13 shows the detail performance data of the selected best, median and the worst cases.

For some expensive multidatabase queries, the savings can reach as high as 70 to 90 percent. Some

29

exec. time exec. time % opt. time

Query ID w/o opt (s) w/ opt. (s) savings (s)

304 0.74�0.00 0.02�0.00 97.0% 0.02�0.00

Best 215 8.53�0.07 2.46�0.06 71.0% 0.09�0.04

308 1.00�0.09 0.58�0.02 44.0% 0.03�0.02

2 1.04�0.01 0.71�0.05 32.0% 0.04�0.04

Medium 201 0.87�0.02 0.77�0.03 12.0% 0.03�0.00

32 0.66�0.03 0.61�0.04 8.0% 0.03�0.04

200 0.67�0.02 0.69�0.02 -3.0% 0.03�0.02

Worst 233 0.67�0.02 0.77�0.03 -15.0% 0.04�0.00

216 1.15�0.04 1.49�0.06 -30.0% 0.05�0.00

Table 13: Detail performance data in the best, medium and worst cases

exec. time exec. time opt. Avg # of

w/o opt. (s) w/ opt. (s) time (s) Savings rules used

range rule 1.34 1.18 0.03 13.22% 49

relational 1.34 0.95 0.03 26.28% 52

Table 14: Performance data for range rules and relational rules

of our test queries are already very cost-e�ective, and there is not much room for optimization

for those queries, The worst case where we have -30 percent savings is because the cost of data

transmission cut down by the new literal inserted by pesto is not enough to compensate the cost

to evaluate that new literal. This shows the importance to include data distribution information

in the cost model. We also found that oracleTM contributes to some negative savings because it

fails to optimize some sequence of joins in some cases.

6.3 Utility of Relational Rules and Range Rules

One of the important features of pesto and basil is their capability to learn and use relational rules.

The second experiment compared the utility of relational rules and range rules. This experiment

aimed to verify our claim that in general, relational rules are more widely applicable and produce

higher savings. This section describes an empirical comparison between relational rules and range

rules to verify our assumption.

Table 14 shows the average performance data and the standard deviations. The average savings

data were obtained using a k-fold cross-validation as described in Section 6.2, except that before

pesto optimized the test queries, a �lter was used to remove range rules or relational rules from

the rule bank. The data shows that using only relational rules yields about twice as much savings

as using only range rules.

30

7 Related Work

The query plan optimization approach described in this paper is elaborated from our prototype

approach described previously in [30]. This section compares our approach with related work

in intelligent information mediators, the most closely related work on traditional semantic query

optimization, predicate move-around, and semi-joins.

7.1 Query Optimization for Information Mediators

A promising approach to integrating heterogeneous databases is through the use of information

mediators(or brokers) [1, 2, 3, 4, 5, 6]. Clients of information mediators can access heterogeneous

databases without knowing their implementation details such as their locations, query languages,

platforms, etc. A variety of work on query optimization for information mediators has been devel-

oped for optimizing di�erent aspects of query plans. Levy et al. [9, 11] provided an approach to

pruning irrelevant and redundant source selection based on view integration. Kwok and Weld [35]

generalized the work of Levy et al. to support binding patterns in the source selection process. In

contrast to their work, our approach covers more aspects of query plans. Our global and local algo-

rithms can prune redundant and irrelevant source (by asserting that a subquery will return empty),

reduce unnecessary data transmission from relevant sources, as well as provide local optimization

to subqueries.

Another line of research is interleaving query planning and execution. The idea is to allow

the query planner to gather useful run-time data to guide the planning process. There are two

important uses of run-time data. First, run-time data can be used to retrieve information from

one source and that information is then used to formulate subqueries to other sources. Second,

run-time data can be used to retrieve information which is then used in the selection of the most

appropriate information sources. Levy et al. [9] presented a specialized algorithm for the �rst

accompanying their source selection algorithm. Knoblock and Levy [12] described the second use.

An issue that arises in the use of run-time data is that until desired information is available,

the planning may have to be postponed or a plan with all possible contingencies will have to be

produced in order to deal with the possible returned values. Knoblock [13] has developed a exible

planning algorithm called sage that supports parallel planning and execution to address this issue.

Semantic knowledge is analogous to run-time data because it allows the optimizer to infer useful

information to reformulate query plans. Since semantic knowledge is prepared prior to the run-time,

inference results of semantic knowledge can be propagated forward and backward along the data

ow order, while run-time data can only be propagated forward. However, since it is di�cult to

store semantic knowledge that covers all possible queries, run-time data are useful to compensate

for missing semantic knowledge. In addition, interleaving planning and execution also supports

31

replanning in case of a source failure, which is crucial in dynamic environments where information

sources may become temporarily unavailable. An interesting direction of research on information

mediators is to interleave planning, execution and semantic query optimization.

Recently, Stonebraker et al. proposed a new architecture called Mariposa [6] which supports

an economic paradigm for query and storage optimization. The idea is to use market forces to

achieve high performance while maintaining the autonomy of each database site. In the architecture

described in [6], like most of the information mediators, there is a query planner that generates a

query plan for an input query, but the query plan will not be executed directly. Instead, a broker

is used to send out subqueries in the plan as bids to each remote database server, which contains

a bidder to respond to requests for bids. The broker then decides which remote servers win the

bids and assigns them to execute the subqueries. In other words, their system optimizes a query

plan by optimizing the selection of servers rather than performing global and local optimization for

query plans as in our approach. It would be interesting to investigate whether the market economic

paradigm can be applied to perform other types of optimization.

7.2 Semantic Query Optimization of Conjunctive Queries

Traditional semantic query optimization has focused mainly on optimizing conjunctive subqueries

in a stand-alone database environment. Our local optimization algorithm is also aimed at this

problem. The most closely related work of our algorithm is the SQO algorithm developed by Yu

and Sun [19, 21]. Yu and Sun's algorithm makes two critical improvements over the previous work

in SQO. The �rst improvement is the introduction of necessary and su�cient conditions to delete

a single join. The second is that their algorithm can match all applicable rules in optimization by

computing a closure of restrictions.

Their algorithm starts by generating a restriction closure of all implied built-in literals. Mean-

while it also generates a core query that consists of the database literals that cannot be deleted.

Then their optimizer selects the implied database literals to insert back to the core query until the

resulting query is semantically equivalent to the input query.

The restriction closures are similar to our implication closures, but they do not include database

literals that are implied. To test the equivalence of a partially optimized query, their algorithm

needs to repeatedly match applicable rules to compute the restriction closures. This could be

expensive if we have a large number of semantic rules. The use of the AND-OR implication graphs

in our algorithm avoids this unnecessary overhead.

The main weakness of Yu and Sun's algorithm is that it does not allow variables in their

queries and semantic rules. As a result, their algorithm works only for tree queries [21], where joins

form a tree graph. Moreover, all equi-joins of two relations are required to be on a pair of single

attributes. The same weakness precludes their algorithm from using general relational rules to

32

detect unnecessary joins. Since our local optimization algorithm can optimize conjunctive queries

of any join topology using general relational rules, it can detect more unnecessary joins and achieve

higher savings.

7.3 Predicate Move-Around

Optimizing a query plan by moving literals has been previously studied in predicate push-down [26],

performing group-by before join [36], and predicate move-around [33].

Predicate push-down is a commonly used query optimization technique. By pushing data se-

lection predicates down the hierarchical access graph of a query, predicate push-down allows the

selections to be applied as early as possible during query execution. A similar idea is to push the

group-by operation past one or more joins in order to reduce the amount of data participating

in joins. Yan and Larson [36] proved necessary and su�cient conditions for deciding when this

transformation is valid. Predicate move-around is a generalization of predicate push-down. This

technique optimizes queries that involve views by moving predicates across subqueries in a query

graph. Similar to the forward and backward propagations in our global optimization algorithm,

predicate move-around moves predicates up in a query graph as an intermediate step before pushing

them down.

Our approach di�ers from those techniques in the use of semantic knowledge. Since semantic

knowledge may enlarge the search space of optimization, the potential savings of their knowledge-

free techniques may not be as large as what our optimizer can achieve. Though predicate move-

around does not apply semantic rules in optimization, it can apply functional dependencies of

attribute values to infer new literals to reduce intermediate data. Our approach uses functional

dependencies di�erently, as described in Section 3.4. Since Horn-clause rules can express functional

dependencies, it should be straightforward to extend our approach to apply functional dependencies

in this manner.

7.4 Semi-Joins

Compared to the traditional query optimization techniques for distributed database systems, such

as semi-joins [7, 8, 26], our approach is more appropriate in a heterogeneous environment. Semi-

joins requires the optimizer to move data from one remote database to the other. However, in many

applications of heterogeneous information systems, database servers might have write-protection

against external data and prohibit an optimizer from computing semi-joins. Even if there is no

write-protection, in a heterogeneous environment, servers need wrappers for communication. This

implies that we need to build wrappers between each pair of databases integrated, which amounts

to n2 translators if there are n databases. Our approach does not move data between database

servers and requires only n wrappers for n databases. The overhead at run time for our approach

33

is thus smaller. By the same token, our approach applies to the applications that involve databases

with write-protection.

8 Conclusions

This paper presented a novel query optimization approach to reducing the cost of query plans gen-

erated by an information mediator. Our approach optimizes a query plan by modifying subqueries

in the query plan using semantic knowledge about data. To e�ciently execute a complex multi-

database query, it is important to reduce unnecessary intermediate data. The approach presented

here can use rich semantic knowledge to infer the ranges of intermediate data accurately and yield

arbitrarily large additional savings for complex multidatabase queries.

In addition to its e�ectiveness, the approach is more general and exible than previous work in

semantic query optimization in many aspects. This approach optimizes a larger class of queries,

exploits more expressive semantic knowledge, and detects more optimization opportunities than

previous work. This optimization approach can be implemented on top of existing query optimizers

in a heterogeneous environment and hence supports the extensibility of information mediators.

Limitations of this approach include that to optimize aggregate operators such as group-by,

the optimizer may need additional information other than the ranges of variables to derive e�ective

cost-reducing reformulations. Also, it may be necessary to extend the cost models. An interesting

future direction is to extend this approach to optimize query plans in an information mediator that

integrates semi-structured information sources such as Web pages, text and multimedia data.

References

[1] G. Wiederhold, \Mediators in the architecture of future information systems," IEEE Computer, March

1992.

[2] Y. Arens, C. Y. Chee, C.-N. Hsu, and C. A. Knoblock, \Retrieving and integrating data from multiple

information sources," International Journal of Intelligent and Cooperative Information Systems, vol. 2,
no. 2, pp. 127{159, 1993.

[3] C. A. Knoblock, Y. Arens, and C.-N. Hsu, \Cooperating agents for information retrieval," in Proceedings
of the Second International Conference on Intelligent and Cooperative Information Systems (Coopis-94),
(Toronto, Ontario, Canada), 1994.

[4] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava, \The Information Manifold," in Working Notes
of the AAAI Spring Symposium on Information Gathering in Heterogeneous, Distributed Environ-
ments,Technical Report SS-95-08, (Menlo Park, CA), AAAI Press, 1995.

[5] J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom, \Information

translation, mediation, and mosaic-based browsing in the TSIMMIS system," in Proceedings of the ACM
SIGMOD Internation Conference on Management of Data, (San Jose, CA), 1995.

[6] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfe�er, A. Sah, J. Sidell, C. Staelin, and A. Yu, \Mariposa:

A wide-area distributed database system," The VLDB Journal, vol. 5, no. 1, pp. 48{63, 1996.

34

[7] P. M. Apers, A. R. Hevner, and S. Yao, \Optimizing algorithms for distributed queries," IEEE Trans.
on Software Engineering, vol. 9, pp. 57{68, 1983.

[8] M. Jarke and J. Koch, \Query optimization in database systems," ACM Computer Surveys, vol. 16,
pp. 111{152, 1984.

[9] A. Y. Levy, D. Srivastava, and T. Kirk, \Data model and query evaluation in global information

systems," Journal of Intelligent Information Systems, Special Issue on Networked Information Discovery
and Retrieval, vol. 5, no. 2, 1995.

[10] Y. Arens, C. A. Knoblock, andW.-M. Shen, \Query reformulation for dynamic information integration,"

Journal of Intelligent Information Systems, Special Issue on Intelligent Information Integration, vol. 6,
no. 2/3, pp. 99{130, 1996.

[11] A. Y. Levy, A. Rajaraman, and J. J. Ordille, \Querying heterogeneous information sources using source

descriptions," in Proceedings of the 22nd VLDB Conference (VLDB-96), (Bombay, India), 1996.

[12] C. A. Knoblock and A. Levy, \Exploiting run-time information for e�cient processing of queries," in

Working Notes of the AAAI Spring Symposium on Information Gathering in Heterogeneous, Distributed
Environments, (Palo Alto, CA), 1995.

[13] C. A. Knoblock, \Planning, executing, sensing, and replanning for information gathering," in Proceed-
ings of the Thirteenth International Joint Conference on Arti�cial Intelligence (IJCAI-95), (Montreal,

Quebec, Canada), 1995.

[14] M. Hammer and S. B. Zdonik, \Knowledge-based query processing," in Proceedings of the Sixth VLDB
Conference, (Washington, DC), pp. 137{146, 1980.

[15] J. J. King, Query Optimization by Semantic Reasoning. PhD thesis, Stanford University, Department

of Computer Science, 1981.

[16] M. D. Siegel, \Automatic rule derivation for semantic query optimization," in Proceedings of the Second
International Conference on Expert Database Systems (L. Kerschberg, ed.), pp. 371{385, Fairfax, VA:
George Mason Foundation, 1988.

[17] S. Shekhar, J. Srivastava, and S. Dutta, \A formal model of trade-o� between optimization and execution

costs in semantic query optimization," in Proceedings of the 14th VLDB Conference, (Los Angeles, CA),
1988.

[18] S. T. Shenoy and Z. M. Ozsoyoglu, \Design and implementation of a semantic query optimizer," IEEE
Trans. Knowledge and Data Engineering, vol. I, no. 3, pp. 344{361, 1989.

[19] C. T. Yu and W. Sun, \Automatic knowledge acquisition and maintenance for semantic query opti-

mization," IEEE Trans. Knowledge and Data Engineering, vol. I, no. 3, pp. 362{375, 1989.

[20] U. S. Chakravarthy, J. Grant, and J. Minker, \Logic-based approach to semantic query optimization,"

ACM Transactions on Database Systems, vol. 15, no. 2, pp. 162{207, 1990.

[21] W. Sun and C. T. Yu, \Semantic query optimization for tree and chain queries," IEEE Trans. Knowledge
and Data Engineering, vol. 6, no. 1, pp. 136{151, 1994.

[22] S. Shekhar, B. Hamidzadeh, A. Kohli, and M. Coyle, \Learning transformation rules for semantic query

optimization: A data-driven approach," IEEE Transactions on Knowledge and Data Engineering, vol. 5,
no. 6, pp. 950{964, 1993.

[23] C.-N. Hsu and C. A. Knoblock, \Rule induction for semantic query optimization," inMachine Learning,
Proceedings of the 11th International Conference (ML-94), (San Mateo, CA), Morgan Kaufmann, 1994.

[24] C.-N. Hsu and C. A. Knoblock, \Using inductive learning to generate rules for semantic query opti-

mization," in Advances in Knowledge Discovery and Data Mining (U. M. Fayyad, G. Piatetsky-Shapiro,

P. Smyth, and R. Uthurusamy, eds.), ch. 17, AAAI Press/MIT Press, 1996.

35

[25] C.-N. Hsu, Learning E�ective and Robust Knowledge for Semantic Query Optimization. PhD thesis, De-

partment of Computer Science, University of Southern California, 1996. Available as USC/ISI Technical

Report RR-96-451, or ftp://ftp.isi.edu/isi-pubs/rr-96-451.ps.Z.

[26] J. D. Ullman, Principles of Database and Knowledge-base Systems, vol. I,II. Palo Alto, CA: Computer
Science Press, 1988.

[27] R. MacGregor, \The evolving technology of classi�cation-based knowledge representation systems,"

in Principles of Semantic Networks: Explorations in the Representation of Knowledge (J. Sowa, ed.),

Morgan Kaufmann, 1990.

[28] J. W. Lloyd, Foundations of Logic Programming. Berlin, Germany: Springer-Verlag, 1987.

[29] E. F. Codd, The Relational Model for Database Management, Version 2. Addison-Wesley, 1990.

[30] C.-N. Hsu and C. A. Knoblock, \Reformulating query plans for multidatabase systems," in Proceed-
ings of the Second International Conference on Information and Knowledge Management (CIKM-93),
(Washington, D.C.), 1993.

[31] M. R. Garey and D. S. Johnson, Computers and Intractability. New York: W. H. Freeman and Company,

1979.

[32] ORACLE, ORACLE7 Server Concepts Manual. Redwood, CA: Oracle Cooperation, December 1992.

[33] A. Y. Levy, I. S. Mumick, and Y. Sagiv, \Query optimization by predicate move-around," in Proceedings
of the 20th VLDB Conference, (Santiago, Chile), 1994.

[34] P. R. Cohen, Empirical methods for arti�cial intelligence. Cambridge, MA: The MIT Press, 1995.

[35] C. T. Kwok and D. S. Weld, \Planning to gather information," in Proceedings of the Thirteenth National
Conference on Arti�cial Intelligence (AAAI-96), (Menlo Park, CA), AAAI Press, 1996.

[36] W. P. Yan and P.-A. Larson, \Performing group-by before join," in Proceedings of the 10th International
Conference on Data Engineering, (Houston, TX), pp. 89{100, IEEE Computer Society, 1994.

36

Technical Biographies of Authors

Chun-Nan Hsu Chun-Nan Hsu is an Assistant Research Fellow at Institute of Information Science,

Academia Sinica in Taiwan and an Adjunct Assistant Professor in the Department of Computer

Science and Information Engineering of National Chiao-Tung University, Taiwan. He was an As-

sistant Professor in the Department of Computer Science Engineering at Arizona State University

from 1996 to 1998. He received his B.S. in Computer Engineering from National Chiao-Tung Uni-

versity, Taiwan in 1988, and both his M.S. and Ph.D. in Computer Science from the University

of Southern California, USA in 1992 and 1996, respectively. His current research interests include

machine learning, knowledge discovery and data mining, databases and intelligent Internet agents.

He is a member of ACM, AAAI, and the Taiwanese Association for Arti�cial Intelligence. He was

on the Program Committee of the 1998 National Arti�cial Intelligence Conference (AAAI-98). URI

of his personal homepage is http://www.iis.sinica.edu.tw/�chunnan.

Craig A. Knoblock is a Project Leader at the USC Information Sciences Institute and a

Research Associate Professor in both the Computer Science Department and the Integrated Media

Systems Center at the University of Southern California. He has been at the University of Southern

California since 1991. He received both his M.S. and Ph.D. in Computer Science from Carnegie

Mellon University in 1988 and 1991, and his B.S. in Computer Science from Syracuse University

in 1984. His research interests are on information gathering and integration, automated planning,

machine learning, knowledge discovery, and knowledge representation.

He has published over 30 articles, book chapters, and conference papers in planning, machine

learning and information integration, as well as the book Generating Abstraction Hierarchies: An

Automated Approach to Reducing Search in Planning (Kluwer Academic Publishers, 1993). He

received the Best Paper Award at the 1994 Canadian Arti�cial Intelligence Conference. He is a

member of the editorial board for the Journal of Arti�cial Intelligence Research and was also on

the Senior Program Committee of the 1997 and 1998 National Arti�cial Intelligence Conferences.

URI of his personal homepage is http://www.isi.edu/�knoblock.

37

