
Estimating the Robustness of Discovered Knowledge�

Chun-Nan Hsu and Craig A. Knoblock
Information Sciences Institute and Department of Computer Science

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
fchunnan,knoblockg@isi.edu

To appear in the Proceedings of the First International
Conference on Knowledge Discovery and Data Mining,

Montreal, Canada, 1995.

Abstract

This paper introduces a new measurement, robustness,
to measure the quality of machine-discovered knowl-
edge from real-world databases that change over time.
A piece of knowledge is robust if it is unlikely to
become inconsistent with new database states. Ro-
bustness is di�erent from predictive accuracy in that
by the latter, the system considers only the consis-
tency of a rule with unseen data, while by the former,
the consistency after deletions and updates of existing
data is also considered. Combining robustness with
other utility measurements, a system can make intel-
ligent decisions in learning and maintenance of knowl-
edge learned from changing databases. This paper
de�nes robustness, then presents an estimation ap-
proach for the robustness of Horn-clause rules learned
from a relational database. The estimation approach
applies the Laplace law of succession, which can be
e�ciently computed. The estimation is based on
database schemas and transaction logs. No domain-
speci�c information is required. However, if it is avail-
able, the approach can exploit it.

Introduction

Databases are evolving entities. Knowledge discovered
from one database state may become invalid or incon-
sistent with a new database state. It is important to
know whether a piece of knowledge is robust against
database changes. Predictive accuracy, commonly used
in inductive learning and knowledge discovery as a
measurement, is not appropriate for databases that
change. Although data tuples look alike in a database
and in an example set of inductive learning applica-
tions, they should be treated di�erently. In inductive
learning, a tuple represents a static state, an example

�The research reported here was supported in part by
the National Science Foundation under Grant No. IRI-
9313993 and in part by Rome Laboratory of the Air Force
Systems Command and the Advanced Research Projects
Agency under Contract No. F30602-91-C-0081. Views and
conclusions contained in this report are the authors' and
should not be interpreted as representing the o�cial opin-
ion or policy of NSF, DARPA, RL, the U.S. Government,
or any person or agency connected with them.

of experience, whereas in a database, a tuple repre-
sents a dynamic state of the world that changes over
time. Moreover, data may be deleted or updated in
a database, but predictive accuracy measures only the
probability that learned knowledge is consistent with
new data.

In a changing environment like a database, estimat-
ing robustness of learned knowledge enables a system
to make intelligent decisions in order to learn and
maintain knowledge economically. Consider a tour
guide who leads groups of tourists. From a particu-
lar group of tourists, the tour guide might learn that
the age of these tourists is more than 55. He might also
learn that tourists from Quebec speak
uent French.
Obviously, knowledge about age is not robust, because
it changes depending on particular groups, but knowl-
edge about language usage is robust. The tour guide
may try to remember the knowledge about language
usage but forget the knowledge about age right after
he sends the group home. However, the knowledge
about age may still be useful for the guide to decide
how often he should let his tourists take a break.

Estimating the robustness of learned knowledge
is especially useful for applications that learn from
databases so as to improve their performance. An
example of those applications is learning for semantic
query optimization (Siegel 1988; Hsu & Knoblock 1994;
1995). Semantic query optimization (SQO) (King
1981; Hsu & Knoblock 1993b) optimizes a query by
using semantic rules, such as all Maltese seaports have

railroad access, to reformulate a query into a less ex-
pensive but equivalent query. For example, suppose
we have a query to �nd all Maltese seaports with rail-

road access and 2,000,000 ft3 of storage space. From
the rule given above, we can reformulate the query so
that there is no need to check the railroad access of
seaports, which may reduce execution time.

In our previous work (Hsu & Knoblock 1993a; 1994;
1995), we have developed a learning approach that
achieves an optimization saving above 43 percent using
learned rules. Though these rules yield good optimiza-
tion performance, many of them may become invalid
after the database changes. To deal with this problem,

Schema:

geoloc(name,glc cd,country,latitude,longitude),

seaport(name,glc cd,storage,silo,crane,rail).

Rules:

R1: ?latitude � 35.89 (geoloc(, ,"Malta",?latitude,).

R2: seaport(,?glc cd, , , ,) (geoloc(,?glc cd,"Malta", ,).

R3: ?storage > 2000000 (seaport(,?glc cd,?storage, , ,) ^ geoloc(,?glc cd,"Malta", ,).

Table 1: Schema of a geographic database and semantic rules

geoloc("Safaqis", 8001, Tunisia, . . .) seaport("Marsaxlokk" 8003 . . .)
geoloc("Valletta", 8002, Malta, . . .)+ seaport("Grand Harbor" 8002 . . .)
geoloc("Marsaxlokk", 8003, Malta, . . .)+ seaport("Marsa" 8005 . . .)
geoloc("San Pawl", 8004, Malta, . . .)+ seaport("St Pauls Bay" 8004 . . .)
geoloc("Marsalforn", 8005, Malta, . . .)+ seaport("Catania" 8016 . . .)
geoloc("Abano", 8006, Italy, . . .) seaport("Palermo" 8012 . . .)
geoloc("Torino", 8007, Italy, . . .) seaport("Traparri" 8015 . . .)
geoloc("Venezia", 8008, Italy, . . .) seaport("AbuKamash" 8017 . . .)

.

.

.

.

.

.

Table 2: A database fragment

the learning system can estimate the robustness of can-
didate rules and learn those rules with high estimated
robustness. When the database is changed, a main-
tenance system can be used to update the robustness
and delete those rules with low robustness. Meanwhile,
the learning system can keep learning new rules from
new database states. This way, the system can au-
tonomously maintain a set of e�ective and consistent
rules for optimization.
In this paper, we �rst establish the basic terminol-

ogy on databases and rules. Next, we present both
informal and formal de�nitions of robustness. Follow-
ing that, we review the Laplace law of succession and
then describe how it is used to estimate the robust-
ness of a Horn-clause rule. Finally, we conclude with a
summary of the contributions and directions for future
work.

Databases and Rules

This section brie
y introduces the basic database and
knowledge discovery terminology that will be used
throughout this paper. We are particularly interested
in estimating the robustness of Horn-clause rules de-
rived from a relational database, because Horn-clause
rules and relational databases are widely used in prac-
tice. In this paper, a database consists of a set of re-
lations. A relation is then a set of instances. Each in-

stance is a vector of attribute values. The number of at-
tributes is �xed for all instances in a relation. The val-
ues of attributes can be either a number or a string, but
with a �xed type. Table 1 shows the schema of an ex-
ample database with two relations and their attributes.
In this database, the relation geoloc stores data about
geographic locations, and the attribute glc cd is a ge-

ographic location code.

Knowledge is expressed in Horn-clause rules in this
paper. Table 1 shows some Horn-clause rules describ-
ing the data. We adopt standard Prolog terminol-
ogy and semantics as de�ned in (Lloyd 1987) in our
discussion of rules. In addition, we refer to literals
on database relations as database literals (e.g., sea-
port(,?glc cd,?storage, , ,)), and literals on built-in
relations as built-in literals (e.g., ?latitude � 35.89).
In Table 1, rule R1 states that the latitude of a Mal-
tese geographic location is greater than or equal to
35.89. R2 states that all Maltese geographic locations
are seaports. R3 states that all Maltese seaports have
a storage capacity greater than 2,000,000 ft3.

A database state at a given time t is the collection
of the instances presented in the database at the time
t. We use the closed-world assumption (CWA) to in-
terpret the semantics of a database state. That is,
information not explicitly presented in the database is
taken to be false. A rule is said to be consistent with a
database state if all variable instantiations that satisfy
the antecedent of the rule also satisfy the consequent
of the rule. A straightforward approach to identify-
ing an inconsistent rule is to transform a rule of the
form C A into a query :C ^ A. If the query re-
turns an answer that is not empty, then the rule is
inconsistent. For example, R2 in Table 1 is consistent
with the database fragment shown in Table 2, since for
all geoloc tuples that satisfy the body of R2 (labeled
with a \+" in Table 1), there is a corresponding tuple
in seaport with a common glc cd value.

A database can be changed by transactions. There
are three kinds of primitive transactions | inserting
a new tuple into a relation, deleting an existing tuple

2

from a relation, and updating an existing tuple in a
relation. A transaction can be considered as a mapping
from a database state to a new database state.

Robustness
Intuitively, a rule is robust against database changes
if it is unlikely to become inconsistent after database
changes. This can be expressed as the probability that
a database is in a state consistent with a rule.

De�nition 1 (Robustness { intuitive de�nition)
Given a rule r, let D denote the event that a database

is in a state that is consistent with r. The robustness

of r is Robust(r) = Pr(D).

This probability can be estimated by the ratio be-
tween the number of all possible database states and
the number of database states consistent with a rule.
That is,

Robust (r) =
of database states consistent with r

of all possible database states

There are two problems with this estimation. The
�rst problem is that it treats all database states as if
they are equally probable. That is obviously not the
case in real-world databases. The other problem is that
the number of possible database states is intractably
large, even for a small database. An alternative de�ni-
tion can be derived from the observation that the like-
lihood of database states is determined by a current
database state and the probability of certain transac-
tions on that state. A rule become inconsistent when
a transaction that results in a new state inconsistent
with the rule is performed. The robustness of a rule
can then be de�ned as the complement of the proba-
bility that such a transaction is performed. In other
words, for a given rule and a current database state,
if the transactions that will invalidate the rule are un-
likely to be performed, then the rule is robust. We
present this reformulated de�nition as follows:

De�nition 2 (Robustness) Given a database state

d and a rule r that is consistent with d, let t denote
the transactions on d that result in new database states
inconsistent with r. The robustness of r in the database
state d is Robust(rjd) = 1� Pr(tjd).

This de�nition retains our intuitive notion of robust-
ness, but allows us to estimate robustness without es-
timating the probability of possible database states.
The main di�erence is in that the intuitive de�nition
de�nes the robustness regardless of how databases are
changed. In De�nition 2, the robustness of a rule is
di�erent in di�erent database states. Since databases
are changed over time, the robustness of a rule should
change accordingly. De�nition 2 captures this idea.

Laplace Law of Succession
This section introduces two useful estimates for the
probability of the outcomes of a repeatable random

experiment. They will be used to estimate the robust-
ness of rules.

Theorem 1 (Laplace Law of Succession) Given

a repeatable experiment with an outcome of one of any

K classes. Suppose we have conducted this experiment

n times, r of which have resulted in some outcome C,
in which we are interested. The probability that the

outcome of the next experiment will be C can be esti-

mated as
r + 1

n+ k
.

Detailed description and a proof of the Laplace law
of succession can be found in (Howson & Urbach 1988).
The Laplace law applies to any repeatable experiments
that can be performed as many times as required. An
example of a repeatable experiment is tossing a coin.
The Laplace law is a special case of a modi�ed estimate
called m-Probability (Cestnik & Bratko 1991). A prior
probability of outcomes can be brought to bear in this
more general estimate.

Theorem 2 (m-Probability) Let r, n, and C be as
in Theorem 1. Suppose Pr(C) is known as the prior

probability that the experiment has an outcome C, and
m is an adjusting constant that indicates our con�-
dence in the prior probability Pr(C). The probability

that the outcome of the next experiment will be C can

be estimated as
r +m � Pr(C)

n+m
.

The idea of m-Probability can be understood as a
weighted average of known relative frequency and prior
probability:

r +m � Pr(C)

n+m
= (

n

n +m
) � (

r

n
) + (

m

n+m
) � Pr(C)

where n and m are the weights. The Laplace law
is a special case of the m-probability estimate with
Pr(C) = 1=k, and m = k. The prior probability used
here is that k outcomes are equally probable. The
m-probability estimate has been used in many ma-
chine learning systems for di�erent purposes. Convinc-
ing results in handling noisy data and pruning deci-
sion trees have been achieved (Cestnik & Bratko 1991;
Lavra�c & D�zeroski 1994). We will use these theorems
to estimate the probability of transactions and the ro-
bustness of rules.

Estimating Robustness

Our problem is to estimate the robustness of a rule
based on the probability of transactions that may in-
validate the rule. This problem can be decomposed
into the problem of deriving a set of transactions that
may invalidate a rule and estimating the probability
of those transactions. This section illustrates our ap-
proach with an example.
Consider R1 in Table 3 as an example. Transactions

that map the current database state to a state that sat-
is�es the negation of R1 will invalidate R1. The nega-
tion of R1 is:

3

R1: ?latitude � 35.89 (geoloc(, ,"Malta",?latitude,).

T1: One of the existing tuples of geoloc with its country = "Malta" is updated such that its

latitude < 35.89.

T2: A new tuple of geoloc with its country = "Malta" and latitude < 35.89 is inserted to

the database.

T3: One of the existing tuples of geoloc with its latitude < 35.89 and its country not equal to

"Malta" is updated such that its country = "Malta".

Table 3: Transactions that invalidate R1

9 ?latitude: ?latitude < 35.89 ^

geoloc(, ,"Malta",?latitude,).

Note that variables in a Horn-clause rule are uni-
versally quanti�ed. Table 3 lists three transactions
that will invalidate R1 because in the database states
yielded by them, there exists a tuple of geoloc that
satis�es the negation of R1. Since T1, T2, and T3

are mutually exclusive, we have Pr(T1 _ T2 _ T3) =
Pr(T1) + Pr(T2) + Pr(T3). The probability of these
transactions, and thus the robustness of R1, can be
estimated from the probabilities of T1, T2, and T3.
We now demonstrate how Pr(T1) can be estimated

only with the database schema information, and how
we can use the Laplace law of succession when transac-
tion logs and other prior knowledge are available. We
�rst decompose the transaction T1 into a conjunction
of more primitive statements such that constraints of
di�erent degrees of detail are excerpted:

� a1: a tuple is updated.
� a2: a tuple of geoloc is updated.
� a3: a tuple of geolocwith its country = "Malta"

is updated.
� a4: a tuple of geoloc whose latitude is updated.
� a5: a tuple of geoloc whose latitude is updated
to a value less than 35.89.

These statements specify constraints, respectively, of
the type of the transaction, which relation, which tu-
ples, which attributes, and how the update is per-
formed. From the probability theory, we have

Pr(T1) = Pr(a1 ^ a2 ^ a3 ^ a4 ^ a5)

= Pr(a1) �Pr(a2ja1) � Pr(a3ja2 ^ a1) �

Pr(a4ja3 ^ a2 ^ a1) � Pr(a5ja4 ^ a3 ^ a2 ^ a1)

We estimate each conditional probability using the
Laplace law or the m-probability theorem. They are
applicable because transactions of a database are ran-
dom repeatable events. Since we decompose a com-
plex transaction into conditional events, information
such as database schema, transaction logs, and domain
knowledge such as expected size of relations, expected
distribution, range of attribute values, etc., can be eas-
ily included in the estimation. When no information is
available, we use the principle of indi�erence and treat
all possibilities as equally probable. We now describe
how these conditional probabilities can be estimated.

� A tuple is updated:

Pr(a1) =

�
1

3
no information available

tu+1

t+3
transaction log available

where tu is the number of previous updates and t is
the total number of previous transactions. Because
there are three types of primitive transactions (inser-
tion, deletion, and update), when no information is
available, we will assume that updating a tuple is one
of three possibilities. When a transaction log is avail-
able, we can use the Laplace law to estimate this prob-
ability.
� A tuple of geoloc is updated, given that a tuple is

updated:

Pr(a2ja1) =

�
1

R
no information available

tu;geoloc+1

tu+R
transaction log available

where R is the number of relations in the database (this
information is available in the schema), and tu;geoloc
is the number of updates made to tuples of relation
geoloc. Similar to the estimation of Pr(a1), when no
information is available, the probability that the up-
date is made on a tuple of any particular relation is
one over the number of relations in the database.
� A tuple of geoloc with its country = "Malta" is

updated, given that a tuple of geoloc is updated:

Pr(a3ja2^a1) =

(
Ia3
G

no information available
tu;a3+1

tu;geoloc+R
transaction log available

where G is the size of relation geoloc, Ia3 is the
number of tuples in geoloc that satisfy country =

"Malta", and tu;a3 is the number of updates made on
the tuples in geoloc that satisfy country = "Malta".
The number of tuples that satisfy a literal can be
retrieved from the database. If this is too expen-
sive for large databases, we can use the estima-
tion approaches used for conventional query optimiza-
tion (Ullman 1988; Piatetsky-Shapiro 1984) to esti-
mate this number.
� The value of latitude is updated, given that a tu-

ple of geoloc with its country = "Malta" is updated:

Pr(a4ja3 ^ a2 ^ a1) = Pr(a4ja2 ^ a1)

=

(
1

A
no information available

tu;geoloc;latitude+1

tu;geoloc+A
transaction log available

4

R2: seaport(,?glc cd, , , ,) (geoloc(,?glc cd,"Malta", ,).

T1: One of the existing tuples of geoloc with its country = "Malta" is updated such that its

glc cd value is not equal to any glc cd values of seaport tuples.

T2: A set of tuples of seaport sharing their glc cd values is updated such that their glc cd

values are not equal to any glc cd values of geoloc tuples with their country = "Malta".

T3: A new tuple of geoloc with its country = "Malta" and glc cd not equal to any glc cd

values of seaport tuples is inserted into the database.

T4: A set of tuples of seaport sharing their glc cd values, which are equal to any glc cd

values of geoloc tuples with their country = "Malta", is deleted.

Table 4: Transactions that invalidate R2

where A is the number of attributes of geoloc,
tu;geoloc;latitude is the number of updates made on the
latitude attribute of the geoloc relation. Note that
a4 and a3 are independent and the condition that
country = "Malta" can be ignored. Here we have
an example of when domain-speci�c knowledge can be
used in estimation. We can infer that latitude is less
likely to be updated than other attributes of geoloc
from our knowledge that it will be updated only if the
database has stored incorrect data.
� The value of latitude is updated to a value less

than 35.89, given that a tuple of geoloc with its

country = "Malta" is updated:

Pr(a5ja4 ^ a3 ^ a2 ^ a1)

=

�
0:5 no information available
0:398 with range information

Without any information, we assume that the attribute
will be updated to any value with uniform chances.
The information about the distribution of attribute
values is useful in estimating how the attribute will
be updated. In this case, we know that the latitude is
between 0 to 90, and the chance that a new value of
latitude is less than 35.89 should be 35:89=90 = 0:398.
This information can be derived from the data or pro-
vided by the users.
Assuming that the size of relation geoloc is 80, four

of them with country = "Malta", without any trans-
action log information, and from the example schema
and the database state (see Table 1 and Table 2),
we have 2 relations in the database, 5 attributes for
geoloc relation. Therefore,

Pr(T1) =
1

3
�
1

2
�
4

80
�
1

5
�
1

2
= 0:008

Similarly, we can estimate Pr(T2) and Pr(T3). Suppose
that Pr(T2) = 0:241 and Pr(T3) = 0:001, then the
robustness of the rule can be estimated as 1� (0:008+
0:241 + 0:001) = 0:75.
The estimation accuracy of our approach may de-

pend on available information, but even given only
database schemas, our approach can still come up with
a reasonable estimation. This feature is important

because not every real-world database system keeps
transaction log �les, and those that do exist may be
at di�erent levels of granularity. It is also di�cult to
collect domain knowledge and encode it in a database
system. Nevertheless, the system must be capable of
exploiting as much available information as possible.

Implementation
Deriving transactions that invalidate an arbitrary logic
statement is not a trivial problem. Fortunately, most
knowledge discovery systems have strong restrictions
on the syntax of discovered knowledge. Therefore, we
can manually derive a set of templates of transactions
for di�erent classes of knowledge speci�cation. In our
case of Horn-clause rules, there are two classes that
need di�erent templates:

1. A rule with a built-in literal as its consequent (e.g.,
R1). Templates of transactions that invalidate these
rules can be generalized from those for R1 shown in
Table 3.

2. A rule with its consequent a database literal (e.g.,
R2). Templates of transactions that invalidate these
rules can be generalized from those for R2 shown in
Table 4.

To estimate robustness e�ciently, each transaction
in a template must be minimal in the sense that no
redundant conditions are speci�ed. For R1, a transac-
tion that updates a tuple of geoloc with its country
= "Malta" such that its latitude < 35.89 and its
longitude > 130.00 will invalidate R1. However, the
extra condition \longitude > 130.00" is redundant;
thus the transaction is not minimal. Also, transac-
tions should be mutually exclusive so that no transac-
tion covers another. For any two transactions ta and
tb, if tb covers ta, then Pr(ta _ tb) = Pr(ta) and it is
redundant to list tb for probability estimation. Again,
for R1, a transaction that deletes all geoloc tuples and
then inserts tuples invalidating R1 does not need to be
considered, because it covers T2 in Table 3.
Furthermore, we can derive the templates of the

equations to compute robustness estimation for each
type of rules. Then the system can estimate the ro-
bustness of rules by retrieving necessary parameters

5

(e.g., the size of a relation) and applying the equa-
tions directly. The system can even link parameters
with rules. When the database is changed, the system
can update the robustness of rules by increasing those
parameters being a�ected and recompute the proba-
bility. This way, the estimated robustness is able to
evolve with databases and thus supports rule mainte-
nance systems in decision making.

Discussion

Robustness is an appropriate and practical measure-
ment for knowledge discovered from databases that are
changed frequently. An e�cient estimation approach
for robustness enables e�ective learning and knowledge
maintenance. This paper has de�ned robustness as
the complement of the probability of rule-invalidating
transactions, and described an estimating approach.
Robustness in its more general sense can be used to

guide the learning of drifting concepts from dynamic
environments (Helmbold & Long 1994; Widmer & Ku-
bat 1993). So far, approaches to learning drifting con-
cepts assume a world that changes gradually, and focus
on incremental modi�cation of learned rules. Learning
robust rules may increase their tolerance to the world
changes and reduce the need of modi�cation e�ort.
We are currently working on applying our approach

to learning for semantic query optimization, as de-
scribed earlier in this paper. The approach can also be
applied to other database applications, such as view
management, intelligent database caching (Arens &
Knoblock 1994), and learning for the integration of het-
erogeneous multidatabases (Ambite & Knoblock 1995).
These applications require the system to extract a com-
pressed description (e.g., a view de�nition) of data, and
the consistency of the description with the database
is important. Robustness can guide the system to ex-
tract robust descriptions so that they can be used with
minimal maintenance e�ort. Our future work includes
empirical comparisons of robustness and other mea-
surements of learned knowledge. Another direction for
future work is to extend the de�nition and estimation
approach of robustness to probabilistic rules.

Acknowledgments

We wish to thank the sims project members, Yigal
Arens, Wei-Min Shen, Chin Y. Chee, Jos�e-Luis Am-
bite, and Sheila Tejada, for their help on this work.
Thanks also to Shiela Coyazo and the anonymous re-
viewers for their valuable comments.

References

Ambite, J.-L., and Knoblock, C. A. 1995. Reconciling
distributed information sources. In Working Notes of

the AAAI Spring Symposium on Information Gather-

ing in Distributed Heterogeneous Environments.

Arens, Y., and Knoblock, C. A. 1994. Intelligent
caching: Selecting, representing, and reusing data in

an information server. In Proceedings of the Third
International Conference on Information and Knowl-

edge Management.

Cestnik, B., and Bratko, I. 1991. On estimating
probabilities in tree pruning. In Machine Learning

{ EWSL-91, European Working Session on Learning.
Berlin, Germany: Springer-Verlag. 138{150.

Helmbold, D. P., and Long, P. M. 1994. Tracking
drifting concepts by minimizing disagreement. Ma-

chine Learning 14:27{45.

Howson, C., and Urbach, P. 1988. Scienti�c Reason-
ing: The Bayesian Approach. Open Court.

Hsu, C.-N., and Knoblock, C. A. 1993a. Learning
database abstractions for query reformulation. In
Proceedings of the AAAI Workshop on Knowledge

Discovery in Databases.

Hsu, C.-N., and Knoblock, C. A. 1993b. Reformulat-
ing query plans for multidatabase systems. In Pro-

ceedings of the Second International Conference on

Information and Knowledge Management. Washing-
ton, D.C.: ACM.

Hsu, C.-N., and Knoblock, C. A. 1994. Rule induc-
tion for semantic query optimization. In Proceedings

of the Eleventh International Conference on Machine

Learning.

Hsu, C.-N., and Knoblock, C. A. 1995. Using in-
ductive learning to generate rules for semantic query
optimization. In Piatetsky-Shapiro, G., and Fayyad,
U., eds., Advances in Knowledge Discovery and Data

Mining. MIT Press. Chapter 17.

King, J. J. 1981. Query Optimization by Semantic
Reasoning. Ph.D. Dissertation, Stanford University,
Department of Computer Science.

Lavra�c, N., and D�zeroski, S. 1994. Inductive Logic

Programming: Techniques and Applications. Ellis
Horwood.

Lloyd, J. W. 1987. Foundations of Logic Program-

ming. Berlin: Springer-Verlag.

Piatetsky-Shapiro, G. 1984. A Self-Organizing

Database System { A Di�erent Approach To Query

Optimization. Ph.D. Dissertation, Department of
Computer Science, New York University.

Siegel, M. D. 1988. Automatic rule derivation for
semantic query optimization. In Kerschberg, L., ed.,
Proceedings of the Second International Conference

on Expert Database Systems. Fairfax, VA: George Ma-
son Foundation. 371{385.

Ullman, J. D. 1988. Principles of Database and
Knowledge-base Systems, Volume II. Palo Alto, CA:
Computer Science Press.

Widmer, G., and Kubat, M. 1993. E�ective learning
in dynamic environments by explicit context tracking.
In Machine Learning: ECML-93. Berlin: Springer-
Verlag.

6

