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Abstract
Recently, large amounts of data are being published
using Semantic Web standards. Simultaneously,
there has been a steady rise in links between objects
from multiple sources. However, the ontologies
behind these sources have remained largely dis-
connected, thereby challenging the interoperabil-
ity goal of the Semantic Web. We address this
problem by automatically finding alignments be-
tween concepts from multiple linked data sources.
Instead of only considering the existing concepts
in each ontology, we hypothesize new composite
concepts, defined using conjunctions and disjunc-
tions of (RDF) types and value restrictions, and
generate alignments between them. In addition,
our techniques provide a novel method for curat-
ing the linked data web by pointing to likely incor-
rect or missing assertions. Our approach provides a
deeper understanding of the relationships between
linked data sources and increases the interoperabil-
ity among previously disconnected ontologies.

1 Introduction
The last few years have witnessed a paradigm shift from pub-
lishing isolated data to publishing data that is linked to related
data from other sources using the structured model of the Se-
mantic Web. By doing so, the publishers of the linked data are
able to supplement their own knowledge base, by integrating
data from different sources, and realize significant benefits
across various domains. Most of the effort has been on iden-
tifying which objects from different sources are actually the
same. For example, that object geonames.org/5368361 is the
same as dbpedia:Los Angeles. Despite the increasing avail-
ability of linked data, the absence of links at the concept level
has resulted in heterogenous schemas, challenging the inter-
operability goal of the Semantic Web. For example, of the
190 sources in the latest census of linked data1 only 15 have
mappings between their ontologies.

⇤The paper on which this extended abstract is based was the re-
cipient of the best paper award in the research track at the 11th Inter-
national Semantic Web Conference, 2012 [Parundekar et al., 2012].

1http://www4.wiwiss.fu-berlin.de/lodcloud/state/

The problem of schema linking (aka schema matching in
databases and ontology alignment in the Semantic Web) has
received much attention [Bellahsene et al., 2011; Euzenat and
Shvaiko, 2007; Bernstein et al., 2011; Gal, 2011]. In this
paper we present a novel extensional approach to generate
alignments between ontologies of linked data sources. Sim-
ilar to previous work on instance-based matching [Duckham
and Worboys, 2005; Doan et al., 2004; Isaac et al., 2007],
we rely on linked instances to determine the alignments. Two
concepts are equivalent if all (or most of) their respective in-
stances are linked (by owl:sameAs or similar links). How-
ever, our search is not limited to the existing concepts in
the ontology. We hypothesize new concepts by combining
existing elements in the ontologies and seek alignments be-
tween these more general concepts. This ability to general-
ize allows us to find many more meaningful alignments in
ontologies in which one-to-one concept equivalences might
not exist. For example, the alignment of an impoverished
ontology like GeoNames, which has only one class - geon-
ames:Feature, with the well-developed DBpedia ontology is
not particularly informative. To successfully link such on-
tologies, we first generate more expressive concepts, based
on properties and values of the instances in the sources. For
example, in GeoNames the values of the featureCode and fea-
tureClass properties can be used to find alignments with exist-
ing concepts in DBpedia, such as the alignment of the concept
geonames:featureClass=P to dbpedia:PopulatedPlace.

Our approach finds alignments between concepts defined
by conjunction and disjunctions of (RDF) type and value re-
strictions (cf. [Horrocks et al., 2006]), which we call restric-
tion classes henceforth. An atomic restriction class, {p = v},
is the set of objects having object (or data) property p (includ-
ing rdf:type) with object (or literal) value v. These alignments
are based on the linked instances between these composite
concepts. This is an important feature of our approach; we
model the actual contents and relationships between sources,
as opposed to what ontologies disassociated from the data
may lead us to believe based on class names or structure.

2 Sources with Heterogenous Ontologies
Linked data sources often conform to different, but related,
ontologies that can be meaningfully linked [Cruz et al., 2011;
Jain et al., 2011; Parundekar et al., 2010; 2012]. Our algo-
rithms are generic and can be used to align any two linked



sources. However, we will use two sources with geospatial
data for better illustration of our approach. GeoNames (geon-
ames.org), contains about 7.8 million geographical objects. It
is described by a rudimentary ontology since its semantic web
version was generated automatically by direct translation of a
simple relational database model. All its instances belong to
a single class, Feature, with the type of the geographical data
(e.g. mountains, lakes, cities, etc.) encoded in the feature-
Class and featureCode properties. DBpedia (dbpedia.org) is
a knowledge base that covers multiple domains and includes
approximately 526,000 geographical objects. It is described
using a rich ontology with extensive concept hierarchies and
numerous relations. At the time of our experiments, these
two sources have over 86,000 pairs of instances linked using
owl:sameAs assertions.

3 Finding Alignments Across Ontologies
We find three types of alignments between the ontologies of
linked data sources. First, we extract equivalent and subset
alignments between atomic restriction classes. These are the
simplest alignments that we define. Though simple, they of-
ten yield interesting alignments. Moreover, we use them as
seed hypotheses to find alignments that are more descriptive.
Second, we find alignments between conjunctive restriction
classes in the two sources. Finally, we find concept cover-
ings, which are alignments where a concept from one source
maps to a union of smaller concepts from the other source.

Before searching for alignments, we pre-process the
sources to reduce the search space and avoid computation not
leading to meaningful alignments. First, we only consider
instances that are actually linked, thus removing unrelated in-
stances and their properties. Second, we eliminate inverse (or
quasi-inverse) functional properties, since a restriction class
on such a property would only contain a single instance (or
very few) and would not be a useful concept (e.g., the latitude
and longitude properties generally point to one place).

3.1 Aligning Atomic Restriction Classes
Atomic restriction classes can be generated by combining
properties and values in the sources and tested for alignments
using the simple algorithm in Fig. 1. Fig. 2 illustrates the
set comparison operations of our algorithm. We consider
the two concepts equivalent if they significantly overlap each
other. We use two metrics P and R to measure the degree of
overlap between restriction classes. In a perfect equivalence
alignment, the values for P and R would be both 1. How-
ever, to allow for missing links or errors in the sources, we
use P � ✓ and R � ✓ (✓ = 0.9 in our experiments). For
example, consider the alignment between restriction classes
{geonames:countryCode=ES} and {dbpedia:country = db-
pedia:Spain}. Based on the concept extensions, our algo-
rithm finds |Img(r1)| = 3198, |r2| = 4143, |Img(r1) \ r2|
= 3917, R = 0.9997 and P = 0.9454. Thus, the algo-
rithm considers this alignment as equivalent in an extensional
sense. This algorithm finds numerous equivalent and sub-
set alignments between atomic restriction classes. For exam-
ple, we find that each of {geonames:featureCode = S.SCH}
and {geonames:featureCode = S.UNIV} (i.e. Schools and

Universities from GeoNames) are subsets of {dbpedia:-
EducationalInstitution}.

function ATOMICALIGNMENTS(Source1,Source2)
for all properties p1 in Source1, all distinct values v1 2 p1,

all p2 in Source2, and all distinct v2 2 p2 do
r1  {p1 = v1} // instances of Source1 with p1 = v1

r2  {p2 = v2}
Img(r1) instances of Source2 linked to those in r1

P  |Img(r1)\r2|
|r2|

, R |Img(r1)\rb|
|r1|

alignment(r1, r2) [
if P � ✓ and R � ✓ then r1 ⌘ r2

else if P � ✓ then r1 ⇢ r2

else if R � ✓ then r2 ⇢ r1

end if]
end for

end function

Figure 1: Aligning atomic restriction classes
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Figure 2: Comparing linked instances from two ontologies

3.2 Aligning Conjunctive Restriction Classes
The second type of alignments we detect are those be-
tween conjunctive restriction classes. For example, the con-
junctive restriction class ‘Schools in the US’, {geonames:-
countryCode=US \ geonames:featureCode=S.SCH}, is the
intersection of the atomic restriction classes representing all
schools in GeoNames and all things in the US.

We seed the search space with the alignments generated by
ATOMICALIGNMENTS. Taking one hypothesis at a time, we
can generate new hypothesis by conjoining atomic restriction
classes. For example, we can extend the alignment [{geo-
names:featureCode=S.SCH}, {rdf:type=EducationalInstitu-
tion}] by conjoining {geonames:featureCode=S.SCH} with
{geonames:countryCode=US}, and investigate the relation-
ship between schools in the US and educational institutions.

The algorithm to find conjunctive restriction classes ap-
pears in Fig. 3 (cf. [Parundekar et al., 2010]). To reduce the
combinatorial search space, our algorithm prunes hypothe-
ses that 1) do not have enough instances supporting either
of the restriction classes; 2) where the extension of the re-
fined restriction class (r0) is the same as its parent (i.e. the
constraint did not specialize the concept); 3) have the form
[r01, r2], where r01 is a subclass of r1 and r1 ⇢ r2, since
no immediate specialization is provided; and 4) would have
been explored more than once (these are avoided by using a
lexicographic ordering). Finally, the algorithm removes any



implied alignments that are generated because of the hierar-
chical nature of the algorithm. Specifically, it removes 1) re-
lations that implied by the transitivity of the subset relations;
2) cyclic equivalences which may be generated due to the re-
duced threshold ✓.

function CONJUNCTIVEALIGNMENTS(Source1,Source2)
for all [r1, r2] 2 ATOMICALIGNMENTS(Source1,Source2)

do EXPLOREHYPOTHESES(r1, r2,Source1,Source2)
end for
REMOVEIMPLIEDALIGMENTS

end function
function EXPLOREHYPOTHESIS(r1,r2,Sourcea,Sourceb)

for all pa in Sourcea occurring lexicographically after all the
properties in r1 and distinct va associated with pa do

r

0
1  r1 \ {pa = va}
alignment FINDALIGNMENT(r01,r2)
if not SHOULDPRUNE(r01,r2,alignment) then

alignment(r01, r2) alignment

EXPLOREHYPOTHESES(r01, r2)
end if

end for
for all pb in Sourceb occuring lexicographically after all the

properties in r2 and distinct vb associated with pb do
r

0
2  r2 \ {pb = vb}
alignment FINDALIGNMENT(r1,r02)
if not SHOULDPRUNE(r1,r02,alignment) then

alignment(r1, r
0
2) alignment

EXPLOREHYPOTHESES(r1, r02)
end if

end for
end function

Figure 3: Aligning conjunctive restriction classes

3.3 Finding Concept Coverings
The CONJUNCTIVEALIGNMENTS algorithm may produce a
very large number of subset relations. Analyzing the results
of [Parundekar et al., 2010], we noticed that these subset
alignments follow common patterns. For example, we found
that both Schools and Universities from GeoNames were sub-
sets of Educational Institutions from DBpedia. However, the
union of Schools, Colleges, and Universities from GeoNames
was equivalent to dbpedia:EducationalInstitution, which is a
more informative finding.

The algorithm for generating concept coverings appears in
Fig. 4. We start with the subclass alignments found by ATOM-
ICALIGNMENTS. Then we identify concepts from one on-
tology that are defined on the same property and are subsets
of another concept in the other ontology. We test whether
the union of the smaller concepts is equivalent to the larger
concept based on the extensions of the concepts as before.
Although we could explore more complex hypotheses, this
approach is tractable and generates intuitive definitions.

Since all smaller classes are subsets of the larger restriction
class, PU � ✓ holds by construction. Thus, we just need to
check that RU � ✓ to determine whether the union restriction
class is equivalent to the single concept. The smaller restric-
tion classes that were omitted in ATOMICALIGNMENTS be-
cause of insufficient support size of their intersections (e.g.,

function CONCEPTCOVERINGS(Source1,Source2)
for all alignments [UL, r2] 2 ATOMICALIGN-

MENTS(Source1,Source2), with larger concept UL =
{pL = vL} from Source1 and multiple classes r2 = {pS = vi}
from Source2 that can be partitioned on property pS do

for all smaller concepts {pS = vi} do
US  {pS = {v1, v2, ...}} // union restriction class
UA  Img(UL) \ US , PU  |UA|

|US | , RU  |UA|
|UL|

if RU � ✓ then alignment(r1, r2) UL ⌘ US

end if
end for

end for
end function

Figure 4: Finding Concept Coverings

{geonames:featureCode = S.SCHC}) are included in con-
structing US for completeness.

Figure 5 illustrates the approach. ATOMICALIGNMENTS
detects that {geonames:featureCode = S.SCH}, {geonames:-
featureCode = S.SCHC}, and {geonames:featureCode =
S.UNIV} are subsets of {rdf:type = dbpedia:Educational-
Institution}. As can be seen in the Venn diagram in Figure 5,
UL is Img({rdf:type = dbpedia:EducationalInstitution}), US

is {geonames:featureCode = S.SCH} [ {geonames:feature-
Code = S.SCHC} [ {geonames:featureCode = S.UNIV}, and
UA is the intersection of the two. Upon calculation we find
that RU for the alignment of dbpedia:EducationalInstitution
to {geonames:featureCode= {S.SCH, S.SCHC, S.UNIV}} is
0.98 (greater than ✓). We can thus confirm the hypothesis and
consider UL and US as equivalent.

Img(UL)(:(Educa/onal(Ins/tu/ons(from(Dbpedia(
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Outliers.(

Figure 5: Concept covering: Educational Institutions

4 Results
The results of the three alignment algorithms over GeoNames
and DBpedia appear in Table 2. In all, we were able to de-
tect about 580 (263 + 45 + 221 + 51) equivalent alignments
including both atomic and complex restriction classes, along
with 15,376 (4,946 + 5,494 + 4,400 +536) subset relations.

Table 1 shows some of the representative alignments found
by the three algorithms. We are able to detect alignments of
atomic restriction classes with existing RDF concepts (i.e.,
defined with rdf:type) and with value restrictions. For exam-
ple, alignment #1 shows that the feature class ‘H’ in GeoN-
ames maps to a ‘Body of Water’ in DBpedia. Alignments
#2 and #3 show equivalence and subset relations between
value restrictions. Alignment #4 shows a conjunctive align-
ment for ‘Populated Places in the US’. Finally, alignment #5



# GeoNames concept Rel. DBpedia concept P R |I(r1) \ r2|
1 geonames:featureClass=geonames:H = rdf:type=dbpedia:BodyOfWater 0.91 0.99 1939
2 geonames:countryCode=ES = dbpedia:country=dbpedia:Spain 0.95 0.99 3917
3 geonames:featureCode=geonames:T.MT ⇢ rdf:type=dbpedia:Mountain 0.97 0.78 1721
4 geonames:featureClass=geonames:P & = rdf:type=dbpedia:PopulatedPlace & 0.97 0.96 26061

geonames:countryCode=US dbpedia:country=dbpedia:United States
5 geonames:featureCode = = rdf:type = - 0.98 396

{S.SCH, S.SCHC, S.UNIV} dbpedia:EducationalInstitution

Table 1: Representative alignments found in two sources

atomic restriction classes Alignments
Equivalent Alignments 263
Subclasses with larger class from GeoNames 4,946
Subclasses with larger class from DBpedia 5,494
conjunctive restriction classes

Equivalent Alignments 45
Subclasses with larger class from GeoNames 4,400
Subclasses with larger class from DBpedia 536
concept coverings

Coverings with larger class from GeoNames 221
Coverings with larger class from DBpedia 51

Table 2: Alignments found between GeoNames and DBpedia

shows the covering of ‘Educational Institutions’ in DBpedia
with schools, colleges and universities in GeoNames. None
of these alignments could be detected by previous algorithms
that do not hypothesize concepts beyond the existing classes.
Also, note that the alignments generated from actual data
need not match the intentional similarity of the concepts. For
example, Mountains from GeoNames are subset of Moun-
tains in DBpedia, since GeoNames divides the concept by
distinguishing Peaks, Hills, etc., from Mountains.

An interesting outcome of our approach is the detection of
outliers, which suggest possible erroneous links or value as-
signments. For example, in alignment #2, R overlap (0.99) is
not complete (1) since one outlier instance from GeoNames
has ‘IT’ (Italy) as countryCode. However, this is likely an
error since there is overwhelming support for ‘ES’ being the
countryCode of Spain. Alignment #5 shows an interesting
case where 8 instances could not be identified as Educational
Institutions. They had either a missing genomes:featureCode
(1) or a value for Library (1), Hospitals (1), Buildings (3), Es-
tablishments (1), and Museums (1). The detection of outliers
provides a unique opportunity for identifying inconsistencies
and automatically curate the web of linked data.

5 Related Work
Even though most previous work on linked data focuses on
linking instances across different sources, several authors
have considered aligning ontologies of linked data sources.
Jain et al. [2010] describe the BLOOMS approach, which
uses a central forest of concepts derived from topics in
Wikipedia. It is, however, unable to find alignments because
of the single Feature class in GeoNames. BLOOMS+ [Jain
et al., 2011] aligns linked data ontologies with an upper-

level ontology called Proton. Using contextual information,
BLOOMS+ finds an greater number of alignments between
GeoNames & Proton and DBpedia & Proton than its pre-
decessor. Cruz et al. [2011] describe a dynamic ontology
mapping approach called AgreementMaker that uses similar-
ity measures along with a mediator ontology to find mappings
using the labels of the classes. The advantage of our ap-
proach is that, by hypothesizing novel concepts (restriction
classes), it can find a larger set of alignments than previous
approaches, even from sources described using a rudimen-
tary ontology, such as GeoNames. Völker et al. [2011] de-
scribe an extensional approach that uses statistical methods
for finding alignments by generating OWL-2 axioms using
an intermediate associativity table of instances and concepts
and mining associativity rules from it. GLUE [Doan et al.,
2004] is a instance-based matching algorithm, which predicts
the concept in the other source that instances belong to by us-
ing machine learning. GLUE then hypothesizes alignments
based on the probability distributions obtained from the clas-
sifications. In contrast, our approach is based on the existing
links, and hence reflects the nature of the source alignments
in practice. CSR [Spiliopoulos et al., 2008] aligns a concept
from one ontology to a union of concepts from another ontol-
ogy using the similarity of properties as features in predicting
the subsumption relationships. It differs from our approach in
that it uses a statistical machine learning approach for detec-
tion of subsets rather than the extensional approach. Atencia
et al., [2012] provide a formalization of weighted ontology
mappings that is applicable to extensional matchers like ours.

6 Conclusion
We described an approach to identifying alignments be-
tween atomic, conjunctive and disjunctive restriction classes
in linked data sources. Our approach discovers alignments
where concepts at different levels in the ontologies of two
sources can be mapped even when there is no direct equiva-
lence or only rudimentary ontologies exist. Our algorithm is
also able to detect outliers that help identify erroneous links
or inconsistencies in the linked instances. By using the GeoN-
ames and DBpedia sources as an example, we showed that the
results the algorithm generates can provide a deeper insight
into the nature of the alignments of linked data.

In future work, we plan to explore more expressive con-
cept descriptions and provide a curation system that not only
signals outliers, but also proposes corrections automatically.
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