
Chapter 1

Aligning Ontologies of Linked Data

Rahul Parundekar

University of Southern California

Craig A. Knoblock

University of Southern California
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1.1 Introduction

Linked data is characterized by defining links between Semantic Web data
resources using equivalence statements such as owl:sameAs, as well as other
types of properties. Despite the increase in the number of linked instances
in recent times, the absence of links at the concept level has resulted in het-
erogenous schemas, challenging the interoperability goal of the Semantic Web.
For example, out of the 190 linked data sources surveyed in the latest cen-
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sus1, only 15 have mappings between their ontologies. The problem of schema
linking, such as schema matching in databases and ontology alignment in the
Semantic Web, has received much attention [2, 7, 3, 8]. Many approaches
for linking schemas have been developed, including techniques that exploit
linguistic, terminological, structural, or extensional properties of the sources.

In this chapter we present a novel extensional approach to generate align-
ments between ontologies of linked data sources. Similar to previous work on
instance-based matching [6, 5, 10], we rely on linked instances to determine the
alignments. Two concepts are equivalent if all (or most of) their respective in-
stances are linked (by owl:sameAs or similar links). However, our search is not
limited to the existing concepts in the ontology. We hypothesize new concepts
by combining existing elements in the ontologies and seek alignments between
these more general concepts. This ability to generalize allows our algorithm
to find many more meaningful relationships between the ontologies.

The problem of finding alignments in ontologies between sources in linked
data is non-trivial since one-to-one concept equivalences may not exist. In
some sources the ontology is extremely rudimentary (e.g., GeoNames has only
one class - geonames:Feature) and the alignment of such an impoverished on-
tology with a well developed one, such as DBpedia, is not particularly informa-
tive. In order to be successful in linking ontologies, we first need to generate
more expressive concepts. The necessary information to do this is often present
in the properties and values of the instances in the sources. For example, in
GeoNames the values of the featureCode and featureClass properties provide
useful information that can be used to find alignments with existing concepts
in DBpedia, such as the alignment of the concept geonames:featureClass=P
to dbpedia:PopulatedPlace. Therefore, our approach explores the space of con-
cepts generated by value restrictions, which we will call restriction classes in
the reminder of the paper. A value restriction is a concept constructor present
in expressive description logics such as OWL2 DL (SROIQ) [9]. We consider
class assertions (rdf:type) and value restrictions on both object and data prop-
erties, which we will represent uniformly as {p = v} and refer to as an atomic
restriction class, where either p is an object property and v is a resource (in-
cluding rdf:type=Class), or p is a data property and v is a literal. Associated
with each atomic restriction class {p = v} is a set of instances that exten-
sionally defines the concept, where each instance has a value v asserted for
its property p. We consider two restriction classes equivalent if their respec-
tive instance sets can be identified as equal after following the owl:sameAs
(or similar) links. We also explore alignments between composite concepts,
defined by conjunctions and disjunctions of atomic restriction classes.

We have developed algorithms to find alignments between atomic, con-
junctive, and disjunctive restriction classes in linked data sources based on
the extensions of the concepts (i.e. the sets of instances satisfying the defini-
tions of the restriction classes). We believe that this is an important feature

1http://www4.wiwiss.fu-berlin.de/lodcloud/state/
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of our approach in that it allows one to understand the relationships in the
actual linked data and their corresponding ontologies. The alignments gener-
ated can readily be used for modeling and understanding the sources since
we are modeling what the sources actually contain as opposed as to what an
ontology disassociated from the data appears to contain.

This chapter is organized as follows. First, we describe two linked data
sources in the geospatial domain that we will use to explain our approach.
Second, we present algorithms to generate three types of alignments: (i) equiv-
alence and subset relations between atomic restriction classes, (ii) alignments
between conjunctive restriction classes [13], and (iii) alignments between re-
striction classes formed using disjunctions (concept coverings) [14]. While
doing so, we also describe how our approach is able to automatically curate
existing linked data by identifying inconsistencies, incorrect values and pos-
sible linking errors. Third, we describe representative alignments discovered
by our approach and present an evaluation of the results. Finally, we compare
with related work, summarize our contributions, and discuss future work.

1.2 Linked Data Sources with Heterogeneous Ontologies

Linked data sources often conform to different, but related, ontologies that
can be meaningfully linked [4, 12, 13, 14]. To illustrate our approach we use
two sources with geospatial data, GeoNames & DBpedia, which have over
86,000 pairs of instances linked using the owl:sameAs property. It should be
noted, however, that our algorithms are generic and can be used to align any
two linked sources. GeoNames (geonames.org), contains about 7.8 million
geographical features. Since its Semantic Web version was generated auto-
matically from a simple relational database, it has a rudimentary ontology.
All instances in GeoNames belong to a single class (Feature) with the type
of the geographical data (e.g. mountains, lakes, etc.) encoded in the feature-
Class and featureCode properties. DBpedia (dbpedia.org), is a knowledge
base that covers multiple domains and includes about 526,000 places and
other geographical features. It uses a rich ontology with extensive concept
hierarchies and relations to describe these instances.

1.3 Finding Alignments Across Ontologies

We find three types of alignments between the ontologies of linked data
sources. First, we extract equivalent and subset alignments between atomic
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restriction classes. These are the simplest alignments we define and are often
interesting. We then use them as seed hypotheses to find alignments that
are more descriptive. The second type of alignments we find are between
conjunctive restriction classes in the two sources. The third type of alignments
we find, Concept Coverings, are alignments where a larger concept from one
source can be described with a union of smaller concepts from the other source.

1.3.1 Source Preprocessing

Before we begin exploring alignments, we perform some simple pre-
processing on the input sources in order to reduce the search space and opti-
mize the representation. First, for each pair of sources that we intend to align,
we only consider instances that are actually linked. For example, instances
from DBpedia not relevant to alignments in the geospatial domain (like Peo-
ple, Music Albums, etc.) are removed. This has the effect of removing some
properties from consideration. For example, when considering the alignment
of DBpedia to GeoNames, the dbpedia:releaseDate property is eliminated since
the instances of type album are eliminated.

Second, in order to reduce the space of alignment hypotheses, we remove
properties that cannot contribute to the alignment. Inverse functional prop-
erties resemble foreign keys in databases and identify an instance uniquely.
Thus, if a restriction class is constrained on the value of an inverse func-
tional property, it would only have a single element in it and would not be
useful. As an example, consider the wikipediaArticle property in GeoNames,
which links to versions of the same article in Wikipedia in different languages.
The GeoNames instance for the country Saudi Arabia2 has links to 237 ar-
ticles in different languages. Each of these articles, however, could only be
used to identify Saudi Arabia, so restriction classes based on wikipediaArticle
would not yield useful concepts. Similarly, the latitude (georss:lat) and lon-
gitude (georss:lat) properties in GeoNames are also almost inverse functional
properties and thus not useful concept constructors. On the other hand, the
countryCode property in GeoNames has a range of 2-letter country codes that
can be used to group instances into meaningful restriction classes.

1.3.2 Aligning Atomic Restriction Classes

Atomic restriction classes can be generated in each source automatically
by exploring the space of distinct properties and their distinct values by the
simple algorithm in Fig.1.1. Fig.1.2 illustrates the set comparison operations
of our algorithm. We use two metrics P and R to measure the degree of overlap
between restriction classes. In order to allow a certain margin of error induced
by the data set, we use P ≥ θ and R ≥ θ (instead of P = 1 and R = 1, which
would hold if there were no erroneous or missing links) in our score func-

2http://sws.geonames.org/102358/about.rdf
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tion. In our experiments we used a threshold θ = 0.9, which was determined
empirically, but can be changed as desired. For example, consider the align-
ment between restriction classes {geonames:countryCode=ES} from GeoN-
ames and {dbpedia:country = dbpedia:Spain} from DBpedia. Based on the ex-
tension sets, our algorithm finds |Img(r1)| = 3198, |r2| = 4143, |Img(r1)∩ r2|
= 3917, R =0.9997 and P = 0.9454. Thus, the algorithm considers this
alignment as equivalent in an extensional sense. Our algorithm also finds
that each of {geonames:featureCode = S.SCH } and {geonames:featureCode
= S.UNIV } (i.e. Schools and Universities from GeoNames) are subsets of
{dbpedia:EducationalInstitution}.

function atomicAlignments(Source1,Source2)
for all properties p1 in Source1, all distinct values v1 ∈ p1, all p2 in Source2,

and all distinct v2 ∈ p2 do
r1 ← {p1 = v1} // instances of Source1 with p1 = v1
r2 ← {p2 = v2}
Img(r1)← instances of Source2 linked to those in r1
P ← |Img(r1)∩r2|

|r2|
, R← |Img(r1)∩rb|

|r1|
alignment(r1, r2)← [
if P ≥ θ and R ≥ θ then r1 ≡ r2
else if P ≥ θ then r1 ⊂ r2
else if R ≥ θ then r2 ⊂ r1
end if ]

end for
end function

FIGURE 1.1: Aligning atomic restriction classes

r1	   r2	  

Img(r1)	  
Instance	  pairs	  where	  both	  r1	  and	  r2	  holds	  

Set	  of	  instance	  pairs	  where	  both	  r1	  and	  r2	  holds	  	  

Key:	  

Set	  of	  instances	  from	  Source1	  where	  r1	  holds	  	  

Set	  of	  instances	  from	  Source2	  where	  r2	  holds	  	  
Set	  of	  instances	  from	  Source2	  paired	  to	  	  
instances	  from	  Source1	  	  

Instance	  pairs	  where	  r1	  holds	  

FIGURE 1.2: Comparing the linked instances from two ontologies

The complexity of atomicAlignments is O(p2m2i log(i)), where p is the
maximum number of distinct properties in the two sources, m is the maximum
number of distinct values for any property, and i is number of instances in
the largest atomic restriction class. Despite having a polynomial run-time, we
also use certain optimization strategies for faster computation. For example,
if we explore the properties lexicographically, the search space is reduced to
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{geonames:countryCode=US}	  
{rdf:type=owl:Thing}	  

{geonames:featureCode=S.SCH}	  
{rdf:type=dbpedia:EducaAonalInsAtuAons}	  

{geonames:featureCode=H.LK}	  
{rdf:type=dbpedia:Lake}	  

Seed	  hypotheses	  generaAon	  

{geonames:countryCode=US	  ∩	  
geonames:featureCode=S.SCH}	  

{rdf:type=dbpedia:EducaAonalInsAtuAons}	  

{geonames:featureCode=S.SCH	  ∩	  
rdf:type=geonames:Feature}	  	  

{rdf:type=dbpedia:City}	  

Seed	  hypothesis	  	  
pruning	  (owl:Thing	  
covers	  all	  instances)	  

Prune	  as	  no	  change	  	  
in	  the	  extension	  set	  

Pruning	  on	  empty	  set	  
r2=Ø	  

{geonames:countryCode=US}	  
{rdf:type=dbpedia:EducaAonalInsAtuAons}	  

Lexicographic	  
Pruning	  

{geonames:featureCode=H.LK}	  
{rdf:type=dbpedia:Lake	  ∩	  
dbpedia:populaAon=…}	  

FIGURE 1.3: Exploring and pruning the space of alignments

half because of symmetry. Also, to qualify as an alignment hypothesis, the
intersection of the restriction classes needs to have a minimum support, which
we set experimentally to ten instances.

1.3.3 Aligning Conjunctive Restriction Classes

The second type of alignment we detect are those between conjunctive
restriction classes. For example, the conjunctive restriction class ‘Schools in
the US’, {geonames:countryCode=US ∩ geonames:featureCode=S.SCH }, is
the intersection of the atomic restriction classes representing all schools in
GeoNames and all features in the US.

We seed the search space with the alignments generated by atomicAlign-
ments. Taking one hypothesis at a time, we can generate a new hypothesis
from it by using the conjunction operator on one of the atomic restriction
classes from the two sources to intersect it with another atomic restriction
class. This process is shown in Fig.1.3. Since the space of alignment hypothe-
ses is combinatorial, our algorithm exploits the set containment property of
the hypotheses in a top-down fashion along with several systematic pruning
features to manage the search space.

Pruning: Our algorithm prunes the search space in several ways. First,
we prune those hypotheses where the number of supporting instance pairs
is less than a given threshold. For example, the hypothesis [{geonames:-
featureCode=H.LK}, {rdf:type=dbpedia:Lake ∩ dbpedia:population=...}] in
Fig.1.3 is pruned since it has no support.
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Second, if the number of instances of the new hypothesis formed af-
ter adding an atomic restriction class to one of the restriction classes
did not change, then it means that adding the constraint did not spe-
cialize the current hypothesis. Any of its possible child hypotheses would
also occur in some other branch of the search space. Because of this, we
can prune this hypothesis. Fig.1.3 shows such pruning when the atomic
restriction class {rdf:type=geonames:Feature} is added to the alignment
[{geonames:featureCode=S.SCH }, {rdf:type=dbpedia:City}]. A special case of
this pruning is when the seed hypothesis itself contains all instances in one
of the sources. For example, the alignment [{geonames:countryCode=US},
{rdf:type =owl:Thing}].

Third, we prune hypotheses [r′1, r2] where r′1 is a refinement (subclass) of r1
and r1 ∩ r2 = r1, as illustrated in Fig.1.4. In this case, imposing an additional
restriction on r1 to form r′1 would not provide any immediate specialization.
Any children [r′1, r′2] of [r′1, r2] that would make interesting alignments can
be explored from the children of [r1, r′2]. We are choosing to prune half of the
possible children of [r1, r2], by skipping all [r′1, r2] and investigating only [r1,
r′2] and its children. In practice, since we use θ = 0.9, we ignore all children
[r′1, r2] when |r1| < |r2|. This still ensures that all possible hypotheses are
explored. The same holds for the symmetrical case r1 ∩ r2 = r2.

Prune	  

(p1=v1)	  
(p3=v3)	  

(p1=v1	  &	  p2=v2)	  
(p3=v3)	  

(p1=v1	  )	  
(p3=v3	  &	  p4=v4)	  

r2	  

(p1=v1	  &	  p2=v2)	  
(p3=v3	  &	  p4=v4)	  

(a)	  Pruning	  when	  r1	  ∩	  r2	  =	  r1	  (i.e.	  r1	  ⊂  r2)	  

Hypothesis	  

r1	  

r’1	  

r’2	  

[if	  r1	  ∩	  r’2	  =	  r’2]	  

FIGURE 1.4: Pruning the hypotheses search space

Finally, to explore the space systematically, the algorithm specializes the
restriction classes in a lexicographic order. For example, the addition of the re-
striction {geonames:countryCode=US} to [{geonames:featureCode=S.SCH },
{rdf:type =dbpedia:EducationalInstitution}] is pruned as shown in Fig.1.3.
Also, as an optimization our algorithm only considers conjunctions of atomic
restriction classes on different properties.

The algorithm to find conjunctive restriction classes is shown in Fig.1.5.
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function conjunctiveAlignments(Source1,Source2)
for all [r1, r2] ∈ atomicAlignments(Source1,Source2) do exploreHy-

potheses(r1, r2,Source1,Source2)
end for

end function
function exploreHypothesis(r1,r2,Sourcea,Sourceb)

for all pa in Sourcea occurring lexicographically after all the properties in r1
and distinct va associated with pa do

r′1 ← r1 ∩ {pa = va}
alignment← findAlignment(r′1,r2)
if not shouldPrune(r′1,r2,alignment) then

alignment(r′1, r2)← alignment
exploreHypotheses(r′1, r2)

end if
end for
for all pb in Sourceb occurring lexicographically after all the properties in r2

and distinct vb associated with pb do
r′2 ← r2 ∩ {pb = vb}
alignment← findAlignment(r1,r

′
2)

if not shouldPrune(r1,r
′
2,alignment) then

alignment(r1, r
′
2)← alignment

exploreHypotheses(r1, r
′
2)

end if
end for

end function

FIGURE 1.5: Aligning conjunctive restriction classes

1.3.4 Eliminating Implied Alignments

From the resulting alignments of conjunctive restriction classes that pass
our scoring thresholds, we need to only keep those that are not implied by
other alignments. We hence perform a transitive reduction based on contain-
ment relationships to remove the implied alignments. Fig.1.6 explains the re-
duction process. Alignments between r1 and r2 and between r′1 and r2 are at
different levels in the hierarchy such that r′1 is a subclass of r1 by construction
(i.e., r′1 is constructed by conjoining with an additional property-value pair
to r1). Fig.1.6 depicts the combinations of the equivalence and containment
relations that might occur in the alignment result set. Solid arrows depict
these containment relations. Arrows in both directions denote an equivalence
of the two classes. Dashed arrows denote implied containment relations.

A typical example of the reduction is Fig.1.6(e) where the result set con-
tains a relation such that r1 ⊂ r2 and r′1 ⊂ r2. Since r′1 ⊂ r1, the relation
r′1 ⊂ r2 can be eliminated (denoted with a cross). Thus, we only keep the
relation r1 ⊂ r2 (denoted with a check). The relation r1 ⊂ r2 could alterna-
tively be eliminated but instead we choose to keep the simplest alignment and
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r1

r’1

r2

C(a)

r1

r’1

r2

T(b)

r1

r’1

r2

C(c)

r1

r’1

r2

C(d)

r1

r’1

r2

T(e)

r1

r’1

r2

C(f)

r1

r’1

r2

T(g)

r1

r’1

r2

T(h)

r1

r’1

r2

T(i)

Key:
ri

 

rj

 

: Subset relations (ri

 

⊂

 

rj

 

) 
found by the algorithm.

ri

 

rj

 

: Implied subset relations.
r’i

 

rj

 

: Subset relation by construction.
T:  Transitivity in subset relations. 

One relation can be eliminated.
C:  Cycle in subset relations. Hence, 

all classes are equivalent.
: Relation eliminated by the rule. 
: Relation retained by the rule.

FIGURE 1.6: Eliminating Implied Alignments

hence remove r′1 ⊂ r2. Other such transitive relations and their reductions are
depicted with a ‘T’ in the bottom-right corner of each cell.

Another case can be seen in Fig.1.6(d) where the subsumption relationships
found in the alignment results can only hold if all three classes r1, r′1 and r2 are
equivalent. These relations have a characteristic cycle of subsumption relation-
ships. We hence need to correct our existing results by converting the subset
relations into equivalences. Other similar cases can be seen in Fig.1.6(a), (c)
and (f) where the box on the bottom-right is has a ‘C’ (cycle). In such cases,
we order the two equivalences such that the one with more support is said to
be a ‘better’ match than the other (i.e. if |I(r1) ∩ (r2)| > |I(r′1) ∩ (r2)|, then
r1 = r2 is a better match than r′1 = r2). The corrections in the result align-
ments based on transitive reductions may induce a cascading effect. Hence
our algorithm applies the ‘C’ rules shown in Fig.1.6(a), (c), (d), (f) to iden-
tify equivalences until quiescence. Then it applies the ‘T’ rules to eliminate
hypotheses that are not needed.

With our reduced thresholds, the removal of implied alignments may
be sometimes difficult. For example, we may detect both alignments
[{geonames:featureCode=H.LK} = {rdf:type=dbpedia:BodyOfWater}] and
[{geonames:featureCode=H.LK} = {rdf:type=dbpedia:Lake}] since the num-
ber of lakes might be substantially larger than other bodies of water3, and
passing our threshold of 0.9. In such a case, we choose the alignment that is
a “better fit”. To do this, we look at P and R values of both the alignments

3Though this condition may not represent real world phenomena, it can be a frequent
occurrence in aligning the data from any two linked data sources, since the evidence we use
is only of the linked instances
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and select the alignment that has the higher F-measure (harmonic mean) of
the two.

In sources like DBpedia, an instance may be assigned multiple rdf:types
with values belonging to a single hierarchy of classes in the source ontology.
This results in multiple alignments where relations were found to be implied
based on the rdf:type hierarchy. Such alignments were also considered as can-
didates for cycle correction, equivalence ordering, and elimination of implied
subsumptions. We used the ontology files (RDF-S/OWL) provided by the
sources for the subclass relationships.

1.3.5 Finding Concept Coverings

The conjunctiveAlignments algorithm may produce a very large num-
ber of subset relations, even after the reduction algorithm. Analyzing the re-
sults of aligning DBpedia and GeoNames in [13], we noticed that these subset
alignments follow common patterns. For example, we found that Schools from
GeoNames were subsets of Educational Institutions from DBpedia. Similarly,
Universities from GeoNames were also subsets of Educational Institutions.
Though each of these alignments taken individually were only slightly infor-
mative, we realized that if taken in combination, we could find much more
significant equivalence alignments. For example, we found that the concept
Education Institution in DBpedia covers Schools, Colleges, and Educational
institutions from GeoNames completely. With this motivation, we developed
an approach for finding concept coverings.

In order to find concept coverings, we use the subclasses and equivalent
alignments found with atomic restriction classes to try and align a larger con-
cept from one ontology with a union of smaller subsumed concepts in the other
ontology. To define a larger concept, we group its subclasses from the other
source that have a common property and check whether they cover the larger
concept. By keeping the larger restriction class atomic and by grouping the
smaller restriction classes with a common property, we are able to find intu-
itive definitions while keeping the problem tractable. The disjunction operator
that groups the smaller restriction classes is defined such that i) the concept
formed by the disjunction of the classes represents the union of their set of
instances, ii) the property for all the smaller aggregated atomic restriction
classes is the same. We then try to detect the alignment between the larger
concept and the union restriction class by using an extensional approach sim-
ilar to the previous step. The algorithm for generating the hypotheses and the
alignments is shown in Fig.1.7.

Since all smaller classes are subsets of the larger restriction class, PU ≥ θ
holds by construction. We used θ = 0.9 in our experiments to determine
subset relation in the other direction. The smaller restriction classes that
were omitted in the first step (atomicAlignments because of insufficient
support size of their intersections (e.g., {geonames:featureCode = S.SCHC}),
were included in constructing US for completeness.
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function conceptCoverings(Source1,Source2)
for all alignments [UL, r2] ∈ atomicAlignments(Source1,Source2), with

larger concept UL = {pL = vL} from Source1 and multiple classes r2 = {pS = vi}
from Source2 that can be partitioned on property pS do

for all smaller concepts {pS = vi} do
US ← {pS = {v1, v2, ...}} // union restriction class

UA ← Img(UL) ∩ US , PU ← |UA|
|US | , RU ← |UA|

|UL|
if RU ≥ θ then alignment(r1, r2)← UL ≡ US

end if
end for

end for
end function

FIGURE 1.7: Finding Concept Coverings

Fig.1.8 provides an example of the approach. The first step is able
to detect that alignments such as {geonames:featureCode = S.SCH},
{geonames:featureCode = S.SCHC}, {geonames:featureCode = S.UNIV}
are subsets of {rdf:type = dbpedia:EducationalInstitution}. As can be
seen in the Venn diagram in Fig.1.8, UL is Img({rdf:type = dbpe-
dia:EducationalInstitution}), US is {geonames:featureCode = S.SCH} ∪
{geonames:featureCode = S.SCHC} ∪ {geonames:featureCode = S.UNIV},
and UA is the intersection of the two. Upon calculation we find that RU for
the alignment of dbpedia:EducationalInstitution to {geonames:featureCode=
{S.SCH, S.SCHC, S.UNIV}} is 0.98 (greater than θ). We can thus confirm
the hypothesis and consider UL and US as equivalent. The experiments in
Section 1.4 describe additional examples of concept coverings.

Img(UL)	  :	  Educa/onal	  Ins/tu/ons	  from	  Dbpedia	  

Key:	  

US:	  Schools,	  Colleges	  and	  Universi/es	  from	  	  
Geonames.	  

Schools	  from	  Geonames.	  

Img(UL)	  
US	  

Colleges	  from	  Geonames.	  

Universi/es	  from	  Geonames.	  

Educa/onal	  Ins/tu/ons	  

S.SCH	   S.SCHC	  

S.UNIV	  

Outliers.	  

FIGURE 1.8: Concept covering of Educational Institutions from DBpedia

1.3.6 Curating Linked Data

It turns out that the outliers, the instances of the restriction classes that
do not satisfy subset relations despite the error margins, are often due to
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incorrect and missing links or assertions. Our algorithm is also able to detect
these outliers, thus providing a novel method to curate existing linked data.

For example, atomicAlignments correctly aligned the country Spain
in DBpedia and GeoNames: {dbpedia:country = Spain} ≡ {geonames:-
countryCode} = {ES}}. However, one outlier instance of {dbpedia:country
= Spain} had the country code IT (Italy) in GeoNames, suggesting an in-
correct link/assertion. The algorithm flagged this situation as a possible er-
ror since there is overwhelming support for ‘ES’ being the country code of
Spain. As another example, conceptCoverings aligned {rdf:type = dbpe-
dia:EducationalInstitution} to {geonames:featureCode} = {S.SCH, S.SCHC,
S.UNIV}} and identified 8 outliers (cf. alignment #12 in Table 1.4) . For
{rdf:type = dbpedia:EducationalInstitution}, 396 instances out of the 404 Edu-
cational Institutions were accounted for as having their geonames:featureCode
as one of S.SCH, S.SCHC or S.UNIV. From the 8 outliers, 1 does not have a
geonames:featureCode property asserted. The other 7 have their feature codes
as either S.BLDG (3 buildings), S.EST (1 establishment), S.HSP (1 hospital),
S.LIBR (1 library) or S.MUS (1 museum). This case requires more sophisti-
cated curation and the outliers may indicate a case for multiple inheritance.
For example, the hospital instance in geonames may be a medical college that
could be classified as a university. Other examples appear in Section 1.4.

In summary our alignment algorithms provide a powerful tool to quickly
focus on links that require human curation or that could be automatically
flagged as problematic, and it provides evidence for the errors.

1.4 Results

The results of the three algorithms for aligning GeoNames and DBpedia
are shown below in Table 1.1. In all, we were able to detect about 580 (263
+ 45 + 221 + 51) equivalent alignments including both atomic and complex
restriction classes, along with 15,376 (4,946 + 5,494 + 4,400 + 536) subset
relations.

1.4.1 Representative Examples of Atomic Alignments

Table 1.2 shows some examples of the alignments that we were able to
detect between atomic restriction classes. In the table, column 2 shows the
atomic restriction class from GeoNames and column 3 shows the atomic
restriction class from DBpedia. The relationship detected between the two
atomic restriction classes is shown in column 4, while the P and R scores
used for detecting the relation are shown in columns 5 & 6. Column 7 defines
the size of the intersection set of these two classes. Since we consider the use of
the rdf:type property to form an atomic restriction class as a valid constructor,



Aligning Ontologies of Linked Data 13

TABLE 1.1: Alignments found between GeoNames and DBpedia

GeoNames &DBpedia #Alignments
atomic restriction classes
Equivalent Alignments 263
Subset Alignments with larger class from GeoNames 4,946
Subset Alignments with larger class from DBpedia 5,494
conjunctive restriction classes
Equivalent Alignments 45
Subset Alignments with larger class from GeoNames 4,400
Subset Alignments with larger class from DBpedia 536
concept coverings
Concept Coverings with larger class from GeoNames 221
Concept Coverings with larger class from DBpedia 51

we are able to find alignments with traditional concepts in the ontology. For
example, in alignment #1, we can see that the concept for PopulatedPlace in
DBpedia is equal to the atomic restriction class depicting the set of instances
in GeoNames where the value of the Feature Class is geonames:P. Similarly,
the concept of things with a Feature Class of geonames:H in GeoNames is
equivalent to the BodyOfWater concept in DBpedia.

Our atomic restriction class constructors also allow us to detect
more interesting alignments. For example, we correctly identify the
equality relation between the concept denoting the country Spain in
both sources, formed by {geonames:countryCode=ES} in GeoNames and
{dbpedia:country=dbpedia:Spain} in DBpedia (alignment #3). Similarly, we
can align various geographical regions, as shown by the alignment #4 of the
atomic restriction classes denoting the administrative division of Sicily in ei-
ther source. Since the alignments that our algorithm generates capture the
actual relationship between the data in the two sources rather than what an
ontology disconnected from the data would assert, we are able to find inter-
esting patterns of ontology mismatch as shown in alignment #5. Even though
one would expect that the concept of Mountains is the same in GeoNames and
DBpedia, in reality, the class of mountains in GeoNames is a subset of moun-
tains in DBpedia. Upon inspection we found this to be because the concept
in GeoNames did not include hills (T.HLL), peaks (T.PK), some volcanos
(T.VLC), etc., which were part of the definition of mountains in DBpedia.

In some cases, our algorithm produced incorrect results because of our re-
laxed threshold assumption. For example, the algorithm incorrectly asserted
that Schools in GeoNames are equivalent to Educational Institutions in DB-
pedia(alignment #6), while they are in fact a subset. Upon inspection of other
alignments in the sources (e.g., alignment #7, which shows that Universities
in GeoNames are Educational Institutions in DBpedia), we decided to rectify
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this by exploring alignments generated from more complex restriction classes,
i.e., alignments between conjunctive restriction classes and concept coverings.

1.4.2 Representative Examples of Conjunctive Alignments

Table 1.3 shows the alignments conjunctiveAlignments found between
conjunctive restriction classes in GeoNames and DBpedia. Alignments #8
and #9 follow from the results already discovered in Table 1.2. Alignment #8,
‘Populated Places in the US’, and alignment #9, ‘Body of Water in New
Zealand’, are refinements of alignments #1 and #2 respectively.

We also found other interesting alignments where the aligned concepts have
properties that are related, e.g., the relation between some states in the US
and their time zones. This can be seen in alignment #10, where we detected
that Settlements in the state of Louisiana (in GeoNames) belonged to the
North American Central Time Zone. Another example is the assignment of
area codes for telephone numbers in the US based on geographic divisions. This
is illustrated by alignment #11, where we identified that places in the state of
North Dakota used the area code of 701. In some alignments that we found,
our algorithm was able to generate results that showed the skew in ontological
concepts generated by the specialization. In particular, because of the less data
available for highly specialized classes, some alignments demonstrated that
concepts can change in their meaning. For example, alignment #12 shows
that places in Senegal with Feature Class ‘P’ in GeoNames are aligned with
Towns (as opposed to dbpedia:PopulatedPlaces from DBpedia).

1.4.3 Representative Examples of Concept Coverings

Some representative examples of the concept coverings found are shown
in Table 1.4. In the table, for each concept covering, column 2 describes the
large restriction class from Source1 and column 3 describes the union of the
(smaller) classes on Source2 with the corresponding property and value set.

The score of the covering is noted in column 4 (RU = |UA|
|UL| ) followed by |UA|

and |UL| in columns 5 and 6. Column 7 shows the outliers, i.e. values v2 of
property p2 that form restriction classes that are not direct subsets of the
larger restriction class. Each of these outliers also has a fraction with the
number of instances that belong to the intersection over the the number of

instances of the smaller restriction class (or |Img(r1)∩r2|
|r2| ). One can see that

the fraction is less than our relaxed subset score. If the value of this fraction
was greater than the relaxed subset score (i.e. θ = 0.9), the set would have
been included in column 3 instead. For example, the concept covering #13 of
Table 1.4 is the Educational Institution example described earlier. It shows
how educational institutions from DBpedia are equivalent to the union of
schools, colleges and universities in GeoNames. Column 4, 5 and 6 explain
the alignment score RU (0.98, or 98%), the size UA (396) and the size of
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UL (404). The outliers (S.BLDG, S.EST, S.LIBR, S.MUS, S.HSP) along with
their P fractions appear in column 7. Thus, 403 of the total 404 instances
were identified as either part of the covering or the outliers. The remaining
instance did not have a geonames:featureCode property asserted.

A common pattern of concept coverings discovered was the alignments
between administrative divisions at different levels in the geospatial sources.
For example, alignment #14 shows the sub-divisions of Basse-Normandie.
Table 1.4 shows and explains additional examples of concept coverings. The
complete set of alignments discovered by our algorithm is available online.4

1.4.4 Outliers

Our algorithms identify two main types of inconsistencies: (i)Incorrect
instance alignments - outliers arising out of a possible erroneous equivalence
link between instances (e.g., in alignment #15, a hill is linked to an airport,
etc.), and (ii) Incorrect values for properties - outliers arising out of possible
erroneous assertion for a property (e.g., in alignments #17 and #18, flags of
countries appear as values for the country property).

Our concept covering algorithm was able to detect outliers in alignments
of atomic restriction classes. Alignment #16 shows the outliers detected for
alignment #3 of Table 1.2 (i.e. the alignment of the country Spain, where
the only outlier had its country as Italy). In the alignments in the table,
we also mention the classes that these inconsistencies belong to along with
their support. As was the case with detecting the alignments, we were unable
to detect some outliers if there was insufficient support for coverage due to
missing instances or missing links.

1.4.5 Precision and Recall of Country Alignments

Since manually establishing ground truth for all possible concept coverings
in GeoNames and DBpedia is infeasible, we selected a representative class for
which we could compute the exact alignments, namely the set of countries.
These alignments follow a common pattern, with dbpedia:country properties
aligning to geonames:countryCode properties. A ground truth was established
by manually checking what possible country alignments were present in the
two sources. Even then, establishing the ground truth needed some insight. For
example, Scotland, England, Wales, Northern Ireland, and the United King-
dom are all marked as countries in DBpedia, while in GeoNames, the only
corresponding country is the United Kingdom. In cases like these, we decided
to relax the evaluation constraint of having an alignment with a country from
either of these, as correct. Another similar difficulty was in cases where mili-
tarily occupied territories were marked as countries (e.g., the Golan Heights
region occupied by Israel is marked as a dbpedia:country).

4http://www.isi.edu/integration/data/UnionAlignments
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Out of the 63 country alignments detected, 26 were correct. There were 27
alignments that had a ‘.svg’ file appearing as value of the country property
in DBpedia. We would have detected such concept coverings, had such asser-
tions for the country property been correct. Since this is a problem with the
data and not our algorithm, we consider these 27 as correct for this partic-
ular evaluation. We thus get a precision of 84.13% ((26+27) out of 63). The
two sources contained around 169 possible country alignments between them,
including countries with a ‘.svg’ value for the country property. There were
many alignments in the ground truth that were not found because the system
did not have enough support (R < 0.9) to pass our threshold. Accordingly,
the recall was 31.36%, for an F1-measure of 45.69%.

1.4.6 Representative Alignments from Other Domains

Our algorithms are generic and can find alignments between any two
sources with linked instances. Table 1.5 shows the alignments that our ap-
proach finds in the Biological Classification and Genetics domains. In par-
ticular, the table shows the alignments between classes from the animal and
plant kingdoms in Geospecies & DBpedia and between classes from the MGI
& GeneID databases in bio2rdf.org. A detailed description of these sources
and corresponding alignment results appears in Parundekar et al. [14].

1.5 Related Work

Ontology alignment and schema matching has received much attention
over the years [2, 7, 3, 8] with a renewed interest recently due to the rise of
the semantic web. In linked data, even though most work done is on linking
instances across different sources, an increasing number of authors have looked
into aligning the ontologies of linked data sources. BLOOMS [11] uses a cen-
tral forest of concepts derived from topics in Wikipedia. This approach fails
to find alignments with GeoNames because of its rudimentary ontology (sin-
gle Feature class). Its successor, BLOOMS+ [12], aligns ontologies of linked
data with an upper-level ontology called Proton using contextual informa-
tion. BLOOMS+ is marginally more successful than its predecessor in finding
alignments between GeoNames & Proton and DBpedia & Proton (precision
= 0.5% & 90% respectively). AgreementMaker [4] is a dynamic ontology map-
ping approach that uses similarity measures along with a mediator ontology to
find mappings using the labels of the classes. From the subset and equivalent
alignments between GeoNames (10 concepts) and DBpedia (257 concepts), it
achieves a precision of 26% and a recall of 68%. In comparison, for GeoNames
and DBpedia, we achieve a precision of 64.4%. But this comparison does not
reflect that we find concept coverings in addition to one-to-one alignments,
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which other approaches do not. We are able to find such alignments because
of our use of restriction classes, as in the case of aligning the rudimentary
ontology of GeoNames with DBpedia. We believe that since other approaches
do not use such constructs to generate refined concepts, they would fail to
find alignments like the Educational Institutions example (alignment #1).

Extensional techniques and concept coverings have also been studied in the
past [10]. Völker et al. [16] describe an extensional approach that uses sta-
tistical methods for finding alignments. This work induces schemas for RDF
data sources by generating OWL-2 axioms using an intermediate associativ-
ity table of instances and concepts and mining associativity rules from it. The
GLUE [5] system is a instance-based matching algorithm, which first pre-
dicts the concept in the other source that instances belong to using machine
learning. GLUE then hypothesizes alignments based on the probability distri-
butions obtained from the classifications. Our approach, in contrast, depends
on the existing links (in linked data), and hence reflects the nature of the
source alignments. CSR [15] is a similar work to ours that tries to align a con-
cept from one ontology to a union of concepts from another ontology. It uses
the similarity of properties as features in predicting the subsumption relation-
ships. It differs from our approach in that it uses a statistical machine learning
approach for detection of subsets rather than the extensional approach. Aten-
cia et al. [1] provide a formalization of weighted ontology mappings that is
applicable to extensional matchers like ours.

1.6 Conclusion

We described an approach to identifying alignments between atomic, con-
junctive and disjunctive restriction classes in linked data sources. Our ap-
proach produces alignments where concepts at different levels in the ontolo-
gies of two sources can be mapped even when there is no direct equivalence or
only rudimentary ontologies exist. Our algorithm is also able to find outliers
that help identify erroneous links or inconsistencies in the linked instances.

In future work, we want to find more complete descriptions for the sources.
Our preliminary findings show that our results can be used to identify patterns
in the properties. For example, the countryCode property in GeoNames is
closely associated with the country property in DBpedia, though their ranges
are not exactly equal. By mining rules from the generated alignments, we will
be closer to the interoperability vision of the Semantic Web. We also intend
to use the outliers to feed the corrections back to the sources, particularly
DBpedia, and to the RDF data quality watchdog group pedantic-web.org.
To achieve this satisfactorily, we not only need to point out the instances that
have errors, but suggest why those errors occurred, that is, whether they were
due to incorrect assertions or missing links.
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