
Assigning Semantic Labels to Data Sources?

S.K.Ramnandan1, Amol Mittal2, Craig A. Knoblock3, and Pedro Szekely3

1 Indian Institute of Technology - Madras,
nandparikrish@gmail.com

2 Indian Institute of Technology - Delhi,
amolmittal.iitd@gmail.com

3 University of Southern California
{knoblock, pszekely}@isi.edu

Abstract. There is a huge demand to be able to find and integrate
heterogeneous data sources, which requires mapping the attributes of a
source to the concepts and relationships defined in a domain ontology. In
this paper, we present a new approach to find these mappings, which we
call semantic labeling. Previous approaches map each data value individ-
ually, typically by learning a model based on features extracted from the
data using supervised machine-learning techniques. Our approach dif-
fers from existing approaches in that we take a holistic view of the data
values corresponding to a semantic label and use techniques that treat
this data collectively, which makes it possible to capture characteristic
properties of the values associated with a semantic label as a whole. Our
approach supports both textual and numeric data and proposes the top
k semantic labels along with their associated confidence scores. Our ex-
periments show that the approach has higher label prediction accuracy,
has lower time complexity, and is more scalable than existing systems.
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1 Introduction

Semantic labeling of a data source involves assigning a class or property in
an ontology to each attribute of a data source. When the source is a table,
the objective is to assign to each column in the table a class or property that
specifies the semantics of the column. When the source is more complex, such as
an XML or JSON file, the objective is to map each attribute of the source to a
class or property that specifies its semantics. The goal of our work is to learn a
semantic labeling function from a set of sources that have been manually labeled.
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When presented with a new source, the learned semantic labeling function can
automatically assign the semantic labels to each attribute of the new source.

We are interested in mapping diverse data sources with different schemas to a
common ontology. Taheriyan et al. [14] explain that this involves two steps - as-
signing semantic labels (class or data property) from the ontology to each source
attribute and determining the relationships between the labelled attributes using
ontology properties. Our work focuses on the first step of learning the semantic
labeling function from the data. To learn the mapping, we use the data rather
than the attribute names, which can be quite cryptic as they are often abbre-
viated (e.g., fname rather than first-name). The challenge is that new sources
rarely have the same set of values for an attribute as the sources that the system
was trained on. Distinguishing numeric attributes is especially challenging. For
example, Humidity and ChanceOfSnow are both percentages and are thus very
similar.

The contribution of our work is a new algorithm for learning a semantic
labeling function with the following properties:

– Efficiency and scalability: evaluations show that our method is about 250
times faster than our previous method using Conditional Random Fields.

– Coverage: our method can effectively learn semantic labels for both text
and numeric data and can handle noisy “mostly” numeric data where a
fraction of values are not numbers.

– Accuracy: our comprehensive evaluation shows that our method improves
the accuracy of competing approaches on a wide variety of sources.

– Generality our method is ontology and schema agnostic and can learn
a semantic labeling function with respect to any ontology or classification
scheme that a user selects for their application.

We now formally define the problem of semantic labeling of data sources. A
data source s is defined as a collection of ordered pairs < {a}, {va} > where a
denotes an attribute name (e.g. “Date of birth” , “PIN Code” etc.) and {va}
denotes the set of data values corresponding to the attribute a (e.g., if a is “Date
of birth”, the set {va} will have values like “02-10-1992”, “Jan 1, 1950”, etc).

Input to our algorithm is a set of labelled data sources. Different data sources
can have attributes that have different attribute names but map to the same se-
mantic label. E.g., data source s1 has an attribute “Population” and source s2
has an attribute “Number of people” and both these attributes are assigned the
same semantic label “populationTotal” from the given ontology. In our approach,
the data values from these sources are normalized to a standard format. Multiple
data sources are often mapped to the same ontology in many practical scenar-
ios, e.g., museums map their data to a common cultural heritage ontology and
universities map their data to a research networking ontology (e.g. vivoweb.org).

When we combine the labelled data sources, we get training data of the form
{ (< {a1}, {v1i } >, l1), (< {a2}, {v2i } >, l2), · · · , (< {an}, {vni } >, ln)}. Here, for
each j, {aj} denotes the set of attribute names assigned to the semantic label lj

and {vji } denotes union of the sets of corresponding data values. The goal is to
learn the the semantic labelling function φ : < {a}, {vi} > → l.



To assign a semantic label to an attribute in a new data source, we take an
ordered pair < {a}, {va} > and use the semantic labelling function φ to predict
its semantic label.

The rest of the paper is structured as follows: In Section 2, we describe our
approach to semantic labelling. We describe how we handle textual and numeric
data differently and how we combine the two to provide a robust technique
capable of handling noise. In Section 3, we survey related work. In Section 4,
we present the results of our experiments. Finally, in Section 5, we describe the
future enhancements to our approach and conclude.

2 Approach

This section describes our approach for learning to label source attributes with
semantic types using data sources that have already been aligned to an ontology.
The training data consists of a set of semantic labels and each semantic label
has a set of data values v′is and attribute names a′s associated with it. Our
approach takes a holistic view by using techniques that capture characteristic
properties associated with each semantic label as a whole rather than features
from individual values. Given a new set of data values, the goal is to predict the
top k candidate semantic labels along with confidence scores.

2.1 Textual Data

We define a textual semantic label as a semantic label associated with textual
data values (e.g.. title of a painting, department name, etc.). In our approach,
the set of data values associated with each textual semantic label {vi} in the
training data is treated as a document. Similarly, at prediction time, the new set
of data values is treated as a query document.

We index the training documents to improve query time efficiency. Data
values are first tokenized by space and punctuation, then normalized and then
indexed. Normalizations include removal of blank spaces, stemming, removal of
common stop words, etc. Each document has a vector space model representa-
tion where each dimension corresponds to a unigram token from the vocabulary
of tokens extracted. We used Apache Lucene2 for indexing and searching of
documents.

The weight assigned to a term in a document vector is the product of its term
frequency (TF) and inverse document frequency (IDF), called TF-IDF. For each
term t in the document (or query) x, term frequency (TF) of t in x measures
the number of occurrences of t in x and inverse document frequency (IDF) of t
measures the inverse of the number of documents containing term t.

Remember that each training document in the index corresponds to a distinct
semantic label. In order to suggest the top k candidate semantic labels for the set
of new data values at prediction time, we rank semantic labels in decreasing order

2 Apache Lucene: http://lucene.apache.org/core/



of the cosine of the angle between the query document vector and each training
document vector. The confidence score associated with a predicted semantic
label is the corresponding cosine similarity between the documents’ vectors.

The cosine similarity for a query document q and a training document d is

sim(q, d) =
V (q)× V (d)

|V (q)| × |V (d)|
(1)

where V (q) and V (d) are the corresponding vector space model representations.
The idea behind using this approach stems from the fact that each semantic

label has a characteristic set of tokens associated with it that can collectively
help in identifying the correct semantic label. For example, if the data is about
dimensions of a painting, data values typically look like “28 in. x 30 in.” and
hence, the presence of tokens like x and in strongly characterize this semantic
label.

We call this approach the TF-IDF-based cosine-similarity approach. Though
it seems quite simple, it results in higher prediction accuracy in terms of the
mean reciprocal rank [3] and is extremely fast (low query time due to indexing)
compared to existing approaches that extract features from each data value.

We also tried another similar approach in which the weight we assign to a
term in a document vector is 1 if the term occurs in the document and 0 other-
wise. Here, we rank semantic labels in decreasing order of the Jaccard similarity
between the query document vector and the training document vector (corre-
sponding to a semantic label). However, the TF-IDF cosine similarity approach
proved to work better since the non-binary term weights are more informative
and allows for a continuous degree of similarity between queries and documents.

2.2 Numeric Data

If the data values associated with a semantic label are numeric, instead of the TF-
IDF-based approach, we analyse the distribution of numeric values corresponding
to a semantic label. This arises from the simple intuition that the distribution of
values in each semantic type is different. For example, the distribution of weights
is likely to be different from the distribution of temperatures. In order to measure
the similarity between distributions, we use statistical hypothesis testing.

The key output of statistical hypothesis testing used in our approach is the
p-value. The p-value helps determine the statistical significance of the results of
the hypothesis testing and is the probability of obtaining a test statistic at least
as extreme as the one obtained using the sample data, assuming that the null
hypothesis is true. Irrespective of the actual statistical hypothesis test used, the
underlying idea is the same. The null hypothesis we are testing is that the two
groups of data values are drawn from the same population (semantic label). A
low p-value provides strong evidence against the null hypothesis while a large
p-value provides weak evidence against the null hypothesis.

The training data consists of a set of numeric semantic labels and each se-
mantic label has a sample of numeric data values. At prediction time, given a



new set of numeric data values (query sample), we perform statistical hypothesis
tests between the query sample and each sample in the training data correspond-
ing to a distinct semantic label. We rank the semantic labels in descending order
of the p-values returned by the statistical hypothesis tests performed and suggest
the top k candidate semantic labels with the confidence scores as corresponding
p-values.

We considered Welch’s t-test [6] as our statistical hypothesis test. Given two
samples of data, the t statistic is defined by:

t =
X̄1 − X̄2√

s21
N1

+
s22
N2

(2)

where X̄i, s
2
i and Ni are the sample mean, sample variance and sample size

of the ith sample respectively. Welch’s t-test does not assume that both samples
of data have the same standard distribution. Once the t statistic is calculated, it
uses the t distribution to test the null hypothesis that the two population means
are equal (though the population variances may differ).

The problem with Welch’s t-test is that it looks only at the mean of the
population and not the complete distribution and hence does not match our need
to test that the samples are drawn from the same distribution. Moreover, Welch’s
t-test expects the sample and population data to be approximately normal and
expects the samples to have a similar number of data points. Most of the time,
our problems fail to meet these expectations. To overcome this issue, we applied
non-parametric tests to compare two samples of data.

We considered Mann-Whitney’s U test [6], a non-parametric test of the null
hypothesis that the two samples have the same distribution. It is more efficient
than the t-test on non-normal distributions and does not expect the samples to
have a similar number of data points. This test ranks all values from the two
samples from low to high and then computes a p-value that depends on the
difference between the mean ranks of the two samples. If you assume that the
two samples are drawn from distributions with the same shape, then it can be
viewed as a comparison of the medians of the two samples.

We also considered the two-sample Kolmogorov - Smirnov (KS) Test [6],
a non-parametric test that tests if the two samples are drawn from the same
distribution by comparing the cumulative distribution functions (CDF) of the
two samples. Similar to the Mann-Whitney test, it does not assume normal
distributions of the population and works well on samples with unequal sizes.

The KS test computes the D statistic which is the maximum vertical differ-
ence between the CDFs of the two samples and is given by

DN1,N2
= sup

x
|F1,N1

(x)− F2,N2
(x)| (3)

where F1,N1
and F2,N2

are the cumulative distribution functions of sample 1
and sample 2 respectively. The p-value associated with the KS test determines
the probability that the cumulative distribution functions of two samples that



are randomly sampled from the same population are as far apart as observed
with respect to the D statistic.

The KS test is slightly more powerful than the Mann-Whitney’s U test in the
sense that it cares only about the relative distribution of the data and the result
does not change due to transformations applied to the data. Also, the KS test
is more sensitive to differences in the shape of the distribution, variance, and
median, while the Mann-Whitney’s U test is more sensitive to changes in the
median. The non-parametric Wilcoxon signed-rank test is intended for paired
variates and hence is not applicable in our case of independent attribute val-
ues. Our experiments on numeric data show that the Kolmogorov-Smirnov test
achieves the highest label prediction accuracy of the various statistical hypoth-
esis tests.

2.3 Overall Approach

We now present our overall approach (called SemanticTyper) combining the ap-
proaches to textual and numeric data. For textual data, we use the TF-IDF-based
approach and for numeric data, we use the Kolmogorov-Smirnov (KS) statistical
hypothesis test.

Data sources are often noisy and contain attributes with a mixture of numeric
and text data. It is challenging to decide whether it is actually a numeric column
and the text values are noise (e.g., years with noise such as “1999-2000”) or it is a
column of textual data (e.g., database identifiers). The challenge is to determine
a threshold for the amount of noise allowed in a numeric column.

In order to resolve this, we adopted the rule that in the training data, if
for a semantic label the fraction of pure numeric data values is below 60%, it
is trained as textual data (and hence indexed as document). If the fraction of
numeric values is above 80%, it is trained as purely numeric data (its distribution
is extracted to be used in KS test) after discarding textual data values. In the
other case (if the fraction is between 60% and 80%), the data is trained as both
textual and numeric data (it is both indexed as a document and its distribution
is extracted to be used in KS test).

At the time of prediction, given a new set of data values, we again calculate
the fraction of numeric values. If it is greater than 70%, it is tested as numeric
data (textual data values are discarded). Else, it is tested as textual data. The
above numbers (60%,70%,80%) were arrived at empirically by running a coarse
grid over these values by varying them in steps of 5% and choosing the values
that resulted in highest average label prediction accuracy.

During one of the experiments, we observed that while training, the fraction
of numeric data values corresponding to the “Postal Code” semantic label was
71% and hence it was trained as both textual and numeric data. During predic-
tion, the fraction of numeric data values was 50% and was hence was tested as
textual data. The TF-IDF-based approach was hence used and was successful
in predicting the correct semantic label as the first candidate suggestion. This
clearly illustrates the strength of our approach in handling noisy data.



3 Related Work

Goel et al. [5] describe an approach that uses a supervised machine learning
technique based on Conditional Random Fields (CRF) for semantic labelling of
data sources. They extract features from the data values after tokenizing and
building a CRF graphical model to represent the latent structure of the data
sources, such as the dependency between field labels and their token labels,
dependency between neighboring tokens within a field, and dependency between
labels of neighboring fields. They assign semantic labels to all fields in a tuple
(corresponding to a row in the data source) and then combine the labels of
the fields in a particular source attribute to assign a label to the attribute.
However, there is a tradeoff between the amount of latent structure exploited
and corresponding training time to generate the CRF models.

Limaye et al. [8] work on the problem of annotating tables on the Web
with entity, type, and relationship labels. They propose a probabilistic graphi-
cal model to label table cells with entities, table columns with types, and pairs
of table columns with binary relations simultaneously rather than making the
labelling decisions separately for each. The task of assigning semantic labels to
columns is achieved using two feature functions (among 5 in total) - one that
looks at the dependency between the type of column and the entity of entries
in that column and the other that looks at the dependency between the type of
column and the column header text using textual similarity measures. Mulwad
et al. [9] assigns candidate labels for each cell value using Wikitology, similar
to Limaye’s work in using a probabilistic graphical model to assign labels to
individual cells.

The approaches described above rely on training a probabilistic graphical
model to annotate columns with semantic types. They analyze entries in the
column separately and do not use any statistical measures to extract charac-
teristic properties of the column data as a whole. Further, training probabilistic
graphical models is not scalable as the number of semantic labels in the ontology
increases due to explosion of the search space. Unlike in a named entity extrac-
tion setting, dependency between labels of adjacent source attributes (used in [5])
is not of use in semantic labeling of data sources since the order of attributes in
a data source is not consistent enough to improve the accuracy of the labelling.

Venetis et al. [15] present an approach to annotate tables on the Web by
leveraging resources already on the Web. They extract an isA database from the
Web that is of the form (instance, class) and subsequently, label a particular
column with a particular class label if a substantial fraction of the cells in that
column are labelled with that class label in the isA database. They look for
explicit matches for cell contents from a column in the isA database to assign
labels to the table cells individually and then use a maximum likelihood approach
to predict a semantic label for the column.

Syed et al. [13] exploit a web of semantic data for interpreting tables. They
use the table headings (whenever available) and the values stored in the table
cells to infer a semantic model that can be further used to generate linked data.
This is achieved through the development of Wikitology - a hybrid knowledge



base of information extracted from Wikipedia and RDF data from DBpedia and
other Linked Data sources.

An important aspect of the work by both Venetis et al. and Syed et al. is
that they exploit a huge amount of data extracted from various sources. While
having more data can be useful, it also restricts the approach to only those
domains and ontologies where there is a large amount of extracted data. If we
have a user defined ontology, it can be difficult to use the models from a general
source, such as DBpedia. This is taken care in our approach where we learn
the semantic labelling function from sources previously labeled using a given
ontology. Sequeda et al. [11] address the problem of mapping relational tables
to RDF, but generate IRIs based on predefined rules and do not learn mappings
to labels in an existing ontology as we do.

A lot of work has been done in the related areas of schema and ontology
matching ([2, 4, 7, 10]). Schema matching takes two schemas as input and pro-
duces a mapping between semantically identical attributes. Schema and ontology
matching can be viewed as the combination of semantic typing and relationship
mapping and this paper focuses on the former. Stonebraker et al. [12] developed
an approach to schema matching that uses a collection of four different experts
whose results are combined to generate mappings between attributes. One of
their experts uses TF-IDF based cosine similarity to compare columns of tex-
tual data and another uses the Welch’s t-test to compare columns of numeric
data. Our work, which draws on some of these ideas, formulated an overall com-
bined approach which is highly scalable, applied it to the problem of semantic
typing, performed detailed experiments and analysis to come up with a better
performing statistical test (Kolmogorov-Smirnov), and demonstrated the effec-
tiveness of the approach on a diverse range of datasets.

4 Evaluation

For our experiments, we used datasets from multiple domains: museum, city,
weather, phone directory and flight status. There are three types of experiments
based on the nature of semantic labels to be assigned in the data sources: purely
textual, purely numeric, and mixture of textual and numeric labels. The datasets
and code used in our experiments have been published online3.

4.1 Data Sets

For evaluating our approach on purely textual labels, we used data from the
museum domain consisting of 29 data sources in diverse formats from various
art museums in the U.S. Semantic labels were assigned to the attributes in these
data sources manually to the Europeana Data Model, an ontology of cultural
heritage data.4

3 https://github.com/usc-isi-i2/eswc-2015-semantic-typing.git
4 https://joinup.ec.europa.eu/catalogue/distribution/europeana-data-model-primer



For evaluating our approach on collection of purely numeric labels, we iden-
tified 30 numeric data properties from the City class in DBpedia and extracted
these properties for various cities in the world. Most of the data properties
possess more than 17,000 data values. We split the data associated with each
semantic label into 10 partitions and manually synthesized 10 data sources by
combining one partition from each semantic label to create one data source.

For evaluating our overall approach on a mixture of textual and numeric
labels, we used 52 data properties from the City class from DBpedia, 30 of which
are the ones used in the numeric approach and the remaining 22 data properties
contain textual data values. The interesting aspect of the data collected from
DBpedia is that it is noisy in the sense that even semantic labels, which are
supposed to contain numeric data values, often contain textual values since the
data is often authored on Wikipedia by a diverse group of people. This is where
our overall approach is effective in handling noise.

We also evaluated our overall approach on the weather, phone directory, and
flight status domains, which contain closely related data extracted from separate
Web sites and consist of a diverse mixture of textual and numeric semantic labels.
The datasets corresponding to the above domains were used in the experiments
of Ambite et al. [1].

4.2 Experimental Setup

As already explained, we are not only interested in the top-1 prediction but
in the top-k predictions due to inherent similarity in many semantic labels.
In our experiments, we took the value of k to be 4 since experiments showed
that the correct prediction was included 97% of the time using our approach.
In each experiment, the evaluation metrics of interest are mean reciprocal rank
(MRR) [3] and average training time. MRR is useful because we are interested in
the rank at which the correct semantic label is predicted among the 4 predictions
provided by the system. It helps analyse the ranking of predictions made by any
semantic labeling approach using a single measure rather than having to analyse
top-1 to top-4 prediction accuracies separately, which is a cumbersome task.

Suppose the data set consists of n sources {s0, s1, s2..., sn−1}. We perform
n runs and average the results of these n runs to prevent cases in which the
test data source is skewed in favor of our approach. In the ith run, we test our
approach in labelling data source si. In order to understand how the number of
labelled data sources in the training data affects our performance, in the ith run,
we perform n−1 experiments. In the jth experiment (j running from 1 to n−1)
in the ith run, we train on j data sources, specifically the j subsequent data
sources starting from si+1 (wrapping around 1 in a cyclical fashion), and test
our approach on data source si. We obtain the MRR and training times for each
experiment separately and average them over the n runs. Thus, we essentially
perform n(n− 1) experiments.

For example in the museum dataset containing 29 data sources, in the 1st run,
we test our approach on data source s1 by performing 28 experiments. We train



Fig. 1. Textual data from the museum domain

using only data source s2 in experiment 1, data sources {s2, s3} in experiment
2, · · · and data sources {s2, s3, · · · , s29} in experiment 28.

There can be cases where a semantic label is absent in the training set but is
present in the test set. In such a case, an ideal system is expected to identify this
case and report that the semantic label in the test set is absent in the training
set. If this is correctly identified, we assign a reciprocal rank of 1. Unlike previous
approaches, the TF-IDF-based approach has the potential to identify this case if
there is limited or no overlap in tokens between the test and training document.
The KS-test gives a low p-value in such cases but identifying a suitable threshold
for the KS-test will be addressed in future work.

4.3 Results: Textual Data

We used the 29 data sources from the museum domain to test our approach on
textual data. Figure 1 shows the variation of MRR against the number of labelled
data sources used in training for the three approaches on textual data: TF-
IDF-based cosine similarity, a Jaccard-similarity-based approach (as explained in
Section 3.1) and the Conditional Random Field (CRF)-based learning technique,
which extracts features from data values individually [5].

As evident from Figure 1, the TF-IDF-based cosine-similarity approach achieves
higher MRR regardless of the number of labelled sources in the training data
compared to the other two approaches. It reaches a maximum MRR of 0.81
when trained with 28 labelled data sources. It achieves an MRR of 0.56 when
trained with 1 labelled data source, indicating that on the average, it predicts
the correct semantic label in the second rank. The MRR steadily increases with
the number of labelled data sources, attaining an MRR of 0.78 when trained
with 16 labelled data sources itself. Beyond 16 data sources, we observe grad-



ual increase in the MRR for the TF-IDF-based approach. When trained with
16 labelled data sources, the CRF-based approach and Jaccard similarity reach
MRRs of 0.72 and 0.63 respectively.

Each point on the x-axis corresponds to the number of labelled training
sources and the corresponding ordinate value is the average of the MRRs ob-
tained in n experiments (each experiment corresponding to a distinct test data
source). In order to ensure that the results we observed based on the average
MRR are statistically significant, we ran a one-sided paired two-sample t-test
between the TF-IDF-based approach and the other two approaches for the num-
ber of labelled training sources ranging from 1 to 28. We observe that for all
points on the x-axis, we favour the alternative hypothesis that the population
mean MRR for the TF-IDF-based approach is greater than that of either of the
other two approaches with a 95% confidence.

An interesting observation is that the Jaccard-similarity approach achieves
an MRR comparable to the TF-IDF-based approach when the number of train-
ing data sources is less than 5, beyond which the performance of the Jaccard
similarity approach starts declining monotonically and performs worse than the
CRF-based technique thereafter. A possible explanation for this observation is
that in the Jaccard similarity approach, the weights of tokens in the vector
representation of documents representing semantic labels is binary indicating
presence of terms. Hence, as the number of training data sources increases, a
larger fraction of tokens in the vocabulary are present in each document and
the binary weights are not informative enough resulting in the vector models of
most documents giving close Jaccard similarities. Thus, the Jaccard similarity
approach finds it more difficult to predict the correct semantic label at a higher
rank as the number of training data sources increases.

4.4 Results: Numeric Data

We used the numeric data properties of the City class from DBpedia (divided
into 10 data sources) to test our approach on numeric data. Figure 2 shows
the variation of MRR against the number of training data sources used for
approaches proposed by us in in Section 2.2, namely the Welch’s t-test, the
Mann-Whitney U test, and the Kolmogorov-Smirnov test. In addition to these
three approaches, we also tested the TF-IDF-based approach (used for textual
data) on this numeric data and compared the results with the existing CRF-
based semantic labelling technique [5].

Figure 2 clearly shows that the Kolmogorov-Smirnov (KS)-test-based ap-
proach achieves much higher MRR than the other 4 approaches for all number
of labelled data sources used in training. It reaches a maximum MRR of 0.879
when trained with 6 data sources and then saturates, retaining almost the same
MRR for higher number of training data sources used. The maximum MRR
scores achieved by other approaches is as follows: the Mann-Whitney U-test-
based approach is 0.779, the t-test-based approach is 0.608, the TF-IDF-based
approach is 0.715, and the CRF-based approach is 0.729.



Fig. 2. Numeric data from DBPedia on the city domain

The interesting observation is that the Welch’s t-test-based approach, which
theoretically should perform better than the TF-IDF-based approach and the
CRF-based approach on numeric data, actually does not perform better. This
is possibly because the assumptions of the t-test that the distribution of the
underlying population be Gaussian and that the two samples being compared
have similar number of data points is violated. The curve for the t-test approach
is decreasing with an increase in the number of training sources since the as-
sumption of equal number of data points is violated to a greater extent as more
data sources are included in the training.

We observe that the TF-IDF-based approach performs almost as well as the
CRF-based technique, and that the KS-test and the Mann-Whitney-test-based
approaches are clearly better suited to tackle numeric data with the KS-test-
based approach achieved the highest MRR.

We ran a one-sided paired two-sample t-tests between the KS test and each
of the other approaches to ensure the results are statistically significant. For
each point on the x axis, we observed that we favour the alternative hypothesis
that the population mean MRR for the KS test is greater than that of the other
approaches with 95% confidence.

4.5 Results: Overall Approach

First, we used the data extracted from DBpedia consisting of the 52 numeric &
textual data properties of the City class to test our proposed overall approach
(SemanticTyper). Figure 3(a) shows the variation of MRR with the number of
training data sources. We compare our proposed overall approach against the
CRF-based semantic labelling technique [5] and the TF-IDF-based approach.

As can be seen from the graph, SemanticTyper achieves an average increase
of 0.09 and 0.12 in MRR compared to the CRF-based labelling technique and



TF-IDF-based approach respectively. The maximum MRR achieved by Seman-
ticTyper is 0.926, CRF-based technique is 0.823 and TF-IDF-based approach is
0.821.

Fig. 3. (a)Mean reciprocal rank (b) Average training time for a mixture of textual and
numeric data from DBPedia on the city domain

For each point on the x-axis, we ran a one-sided two-sample t-tests. We reject
the null hypothesis in favour of the alternative hypothesis that the population
mean MRR achieved by SemanticTyper is greater than that of either of the other
2 approaches with 95% confidence, showing that the differences are statistically
significant.

We also compared our overall approach, (SemanticTyper), against the CRF-
based approach and TF-IDF-based approach on the datasets from weather, phone
directory and flight status domains [1]. In each of the 3 domains, SemanticTyper
consistently achieved higher MRR as compared to CRF and TF-IDF-based ap-
proaches as we increased the number of labelled training sources (since the phone
directory domain consists of mainly textual data, SemanticTyper reflects the
TF-IDF-based approach). We present the maximum MRR achieved by the ap-
proaches in each domain in Table 1(we observe it occurs when training on all
labelled data sources apart from the test source).

4.6 Training Time

For evaluation of the training time, we ran the CRF-based labelling technique [5]
on the complete city dataset from DBpedia. As shown in Figure 3(b), the training
time increased linearly with the number of sources in the training data, starting
from 96.6 seconds for 1 training data source to 115.6 seconds for 9 training data
sources. The average training time was found to be 109.9 seconds.



Table 1. Maximum mean reciprocal rank on a mixture of textual and numeric data
from the weather, flight status, and phone directory domains

Domain No.of No.of textual No.of numeric Max. MRR
sources labels/source labels/source CRF TF-IDF SemTyper

Weather 4 7 4 0.875 0.943 0.955

Flight Status 2 6 3 0.421 0.590 0.646

Phone Directory 3 8 1 0.704 0.831 0.831

On the other hand, for our proposed approach, the training time corresponds
only to the time spent in indexing textual semantic labels using Apache Lucene
and extracting the distribution from numeric semantic labels. Recall that for
noisy semantic labels, we perform both of the above operations. The average
training time using our approach is 0.45 seconds. Also, the training time re-
mains almost constant even as more data sources are used for training. We do
notice that there is a fixed header cost in training time in our approach due
to connection establishment, I/O operations in indexing using Apache Lucene,
though this is on the order of a tenth of a second.

Thus, we observe that the average training time of the CRF-based approach
compared to our approach is about 250 times slower. This drastic drop in training
time for our approach is possible because unlike the CRF-based approach, we
are operating on the set of data values of a semantic label as a whole.

5 Conclusion & Future Work

This paper presents an integrated approach to the problem of mapping attributes
of a data source to data properties defined in a domain ontology. Automating
the semantic labeling process is crucial in constructing semantic descriptions
of heterogeneous data sources prior to integrating them. Our approach called
SemanticTyper is significantly different from approaches in past work in that
we attempt to capture the distribution and hence characteristic properties of
the data corresponding to a semantic label as a whole rather than extracting
features from individual data values. It is evident from experimental results
that our approach has much higher label prediction accuracy and is much more
scalable in terms of training time than existing systems. Our approach makes
no restrictions on the ontology from which data properties are to be assigned.

We plan to explore several directions in future work. First, the schema of a
data source often contains metadata about attributes, such as attribute name,
that can be helpful in assigning a semantic label to an attribute. For example,
consider two semantic labels - BirthDate and DeathDate. The values of both
semantic labels look very similar making it difficult to predict the correct se-
mantic label as the first suggestion. But we can leverage the attribute name to
differentiate between the two. Thus, we want to extend our approach to exploit
the information contained in attribute names to improve the labelling. Second,



in case of numeric data, many times instead of continuous real valued attributes
(like rainfall or elevation), we have attributes that take only a set of discrete
values (like age in years, number of states, etc.). So, the performance can be
enhanced further by identifying these cases and then using more suitable statis-
tical tests (e.g., the Mann-Whitney test). Third, we plan to explore alternative
tokenization and word n-gram representations as well.
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