
A Parallel Query Engine for
Interactive Spatiotemporal Analysis

Mihir Sathe
Dept. of Computer Science

University of Southern
California

msathe@usc.edu

Craig Knoblock
Information Sciences Institute

University of Southern
California

knoblock@isi.edu
Yao-Yi Chiang

Spatial Sciences Institute
University of Southern

California
yaoyic@usc.edu

Aaron Harris
Dept. of Mechanical

Engineering
University of Southern

California
arharris@usc.edu

ABSTRACT
Given the increasing popularity and availability of location
tracking devices, large quantities of spatiotemporal data are
available from many different sources. Quick interactive
analysis of such data is important in order to understand the
data, identify patterns, and eventually make a marketable
product. Since the data do not necessarily follow the rela-
tional model and may require flexible processing possibly us-
ing advanced machine learning techniques, spatial databases
or similar query tools do not make the best means for such
analysis. Moreover, the high complexity of geometric oper-
ations makes the quick interactive analysis very difficult. In
this paper, we present a highly flexible functional query en-
gine that 1) works with multiple schema types, 2) provides
low response times by spatiotemporal indexing and paral-
lelization, 3) helps understand the data using visualizations,
and 4) is highly extensible to easily add complex functional-
ity. To demonstrate its usefulness, we use our tool to solve
a real world problem of crime pattern analysis in Los An-
geles County and compare the process with some other well
known tools.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Design, Languages, Performance, Experimentation, Human
Facors, Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
spatiotemporal analysis, spatial join, parallelization, index-
ing, visualization

1. INTRODUCTION
Finding spatiotemporal patterns is much like criminal in-

vestigation. You collect, integrate and aggregate the data,
make some queries to find some leads. You further drill down
to make some educated guesses about possible patterns and
then you query further to test your guesses. Low response
time queries are very important for such tasks. High com-
plexity of most geometric operations increases the response
time of such queries. Another important requirement for
such analysis is quick visualization which ranges from map-
plotting to visualizing non-spatial quantities like aggrega-
tions and frequency distributions. Moreover, this analysis
often needs advanced operations like anomaly detection and
clustering which are not strictky spatial or temporal.

Through this paper, we present a unique system that pro-
vides efficient query processing through in-memory indexing
and parallelization. It also provides data visualization and
can be extended easily to add advanced functionality. Our
tool is deployed as a web application. Figure 1 shows the
User Interface (UI) for our tool. UI is divided into three dif-
ferent panels: Top left panel to write queries, Right panel for
visualizations and bottom panel for tabular and map view.

In the following section, we provide a motivating exam-
ple of the analysis of statistical crime data in Los Angeles
County. Section 3 contains details about the query model
and capabilities of our system followed by description of the
architecture in section 4. In section 5, we demonstrate the
use of our tool to solve the problem described in section 2.
We then evaluate our system in solving the said problem as
compared to other well-known tools. Finally, we describe
the related work and conclude with discussion of our contri-
bution and future scope of the project.

2. MOTIVATING EXAMPLE
Strategic crime analysis is the study of crime informa-

tion integrated with sociodemographic and spatial factors to
determine long term “patterns” of activity [book1]. We ob-

Figure 1: User Interface for our tool

tained data about a total 148,638 crimes in Los Angeles (LA)
County since October 1st 2013 from the LA County Sheriff’s
Department [lasd] and various city level police departments
[mapping]. Most crimes include latitude and longitude,
date and time of occurrence, date and time of report and
category of the crime (provided by individual agencies). We
also have data about the geographical borders of cities in
the county. We will analyze the crime patterns in the cities
of Compton and West Hollywood. Figure 2 shows the heat
maps of the crimes in those cities. Red spots indicate the
highest concentration of the crimes.

Crimes being spatiotemporal, strategic crime analysis makes
a great use case to demonstrate the usefulness of our tool.
As a motivating example, we find the types of crimes that
occur spatiotemporally together frequently. In other words,
we seek the types of crime that frequently occur near each
other within a short span of time. These crimes are more
likely to be related to same entity (e.g. person, gang or a
riot), this analysis helps us profile the behavior of such an
entity and hence can give better insight to law enforcement
agencies about how to deal with such an entity. For example,
if we find that drunk driving and assaults occur together fre-
quently in a certain city, strict enforcing of driving laws near
the places that serve alcohol will help reduce the number of
assaults as well.

The first part of this problem involves identifying the
crimes occurring near each other within a short interval of
time. Once we find all such series of crimes, the second
part will involve analysis of the association rules between
the categories of those crimes. We demonstrate solution of
this problem using our tool and present the results in Sec-
tion 5. In Section 6, we compare two different approaches of
solving this problems: one involving use of our tool and the
other involving the use of PostGIS and spatial extensions to
the R language. We compare both approaches in terms of
performance.

3. QUERY MODEL
We try to make queries easy to read and write by us-

ing higher order functions. These functions take stateless
‘example‘ functions as parameters and apply them on en-
tire dataset. This makes queries concise and parallelization
ready. We allow users to write queries i JavaScript, Coffee-
Script or a combination of both.

3.1 Spatiotemporal Operations

Figure 2: Crime heatmaps in the cities of Compton

(above) and West Hollywood (below)

Figure 3: Use of contains operator in spatial joins

Our tool supports all common spatiotemporal operations
like joins and aggregations. More complex and domain-
specific functionality can be added to this tool as an ex-
tension. We explain spatiotemporal joins in greater details
in this paper.

3.1.1 Spatial Joins
All the spatial join queries between two collections1 can

be written in the following format:
<collection 1> . <operator> (<collection 2>,

<label>, <selector>)
Collection1 here is the collection on the left side of this

join (note that all joins are left outer joins) and operator
is the matching factor for the join (contains, contained by,
intersects etc.). Collection2 is the collection on the right
side of the join. If an object from Collection2 satisfies the
criteria for join with an object in Collection1, part of the
object of Collection2 returned by the selector function
is added to the said object of Collection1 under the key
specified by parameter label.

For example, if ‘Compton’ is one of the objects in the
collection ‘city’ and crime with ID 1001 (a burglary) and
crime with ID 1002 (a robbery) are objects in the collection
‘crime’ and both these crimes occurred inside Compton, Fig-
ure 5 shows how the spatial join with ‘contains’ operator will
work.

We supported spatial operators like contains, covers and

1Throughout this paper, ‘collection’ refers to a data struc-
ture that is an ordered list of objects. This is loosely similar
to idea of relational tables except collections are not rela-
tional. Also, different objects in collections can have differ-
ent schema structure

//MATH.ext
(function() {

return {
add: function(a, b) { return a+b; },
subtract: function(a, b) { return a-b; }

}
})();

//Script
var math = #IMPORT MATH
outtext (math.add(10, 15)) // will print 25

Figure 4: Procedure to create a simple extension

intersects and temporal operators like together, within and
around.

3.2 Extensions
Users can write their own extensions to any the desired

functionality to the tool allowing them to use this tool as an
integrated environment for analysis. Moreover any existing
algorithm implementation in JavaScript or CoffeeScript can
be imported as an extension with little to no modification.
Figure 7 shows a simple MATH extension and the procedure
to import in in your query. Some of the examples of the ex-
tensions made are function profiling, hierarchical clustering,
spatial correlation, naive Bayesian classifier (see figure 6)
and apriori association mining (used in section 5).

4. ARCHITECTURE
In this section we will describe the data architecture, ex-

ecution environment and client-server interaction. We will
also discuss the parallelization and parallel query infrastruc-
ture that we’ve built to run queries faster.

4.1 Data Format
All the data is handled in the GeoJSON[geojson] format

internally. We have added some specifications to add tem-
poral properties to GeoJSON objects. At the top level of
object, we can add ‘dtime’ (along with ‘properties’, ‘geom-
etry’ and ‘type’). dtime contains ‘start’ and ‘end’ as time
objects. If an object does not have an interval, it won’t have
the ‘end’ object. Figure 8 shows a spatiotemporal GeoJSON
object that will work with our tool.

4.2 Data Architecture
Users can import their data from relational databases,

CSV files, GeoJSON files or MongoDB collections. All data
is converted to the said spatiotemporal GeoJSON format
and stored in in-memory data store. Data can also be ex-
ported to same sources.

4.3 Execution Environment
Users write queries in a browser based code editor. When

user runs a script, ther code is sent to a JavaScript sandbox
on the server that contains in-memory data store and has full
access to the query modeldescribed previously. Code from
all imported extensions is also added to the sandbox. Asyn-
chronous operations keep the clients waiting using KEEP
ALIVE signal until the response is ready.

The response contains four types of output:

• Text to be displayed on the console

Figure 5: Architecture and request-response model

Figure 6: Workflow at the server side

• Shapes to be displayed on the map

• Visualizations to be displayed in the visualization
window

• Data to be displayed on the output table

4.3.1 Parallel Processing Infrastructure
We have built a parallel infrastructure to run the queries

in parallel. The main challenge here is to put all the pieces
of the output together once the process is complete. The ex-
ecution pipeline consists of a processing unit that fetches one
instruction at a time from the execution queue, decides what
collections to split and sends it to the processes to execute
based on availability of data with that process (see subsec-
tion 4.3.2). Every query or job has a unique job identifier
(ID) that helps identifying the result. Once a process is done
executing its part of the job, it passes on the results to the
result unit which keeps track of the number of expected pro-
cess outputs and number of outputs recieved. Once all the
outputs are recieved, it updates the in-memory store with
the new output (if required) and notifies the processing unit
of the completion by giving it the callback. Processing unit
will look for next statement in the execution queue for the
same job and proceed in the same way. If there are no more
statements to be executed, it will end the processing and
server will send the response with all the results upon next
request by the browser. Figure 11 shows the server side
workflow including the parallel processing.

4.3.2 Process Cacheing
Data can be passed to a new process by message pass-

ing over Transmission Control Protocol (TCP) connection
which can carry large amount of JSON encoded data. How-
ever, considering the fact that 1] we are working on same
collections again and again and 2] message passing for large
data (few hundred MBs) is fairly time consuming, it does not
make sense to send all the data every single time an opera-
tion is required over it. We therefore introduce an in-process
cacheing of data. Every single process when spawned con-
tains a Least Recently Used (LRU) cache that can cache
the collections upon request. The cache also has a message
passing interface for master thread to communicate with it.
This helps our tool to make best use of available memory to
give faster results.

4.4 Indexing
Indexing is the heart of efficient spatiotemporal opera-

tions. We provide existing in-memory implementations of R-
Tree[rtree] for the spatial indexing and Interval-Tree[clrs]
for temporal indexing of the objects. Indexes are created
on all the spatial and temporal collections upon their cre-
ation unless otherwise specified. This is also true for the
smaller collections that are created by splitting the larger
collections for parallel processing. Since these indexes are
in-memory, they do not take a lot of time to build on small-
medium size data. Like the collections themselves, indexes

are also cached in the threads which helps reduce the overall
execution time.

5. PROBLEM SOLVING
In this section, we demonstrate usefulness of our tool by

using it to solve the problem proposed in section 2. As men-
tioned before, we have data about crimes (location, time,
category, police unit identifier) and geographic boundaries
of cities in the Los Angeles County. Given this dataset, we
need to find the types of crimes that occur together. We
will analyze such patterns for the cities Compton and West
Hollywood.

There are a few crimes that are not spatial because their
location is unknown or can not be identified. For some
crimes like NSF 2 check frauds, the location is often not
reported since it is irrelevant for the investigation purposes.
We will filter out such crimes using filter function as shown
in figure 4. Now that we only have the spatial crimes, we
need to find the crimes that are located inside cities Comp-
ton and West Hollywood. To do this, we first filter out
the said cities by name from the ‘cities’ collection and then
use the contains operator to perform a spatial join between
cities and crimes (see the first entry in table 1). We find
7,289 cases in Compton and 2,839 cases in West Hollywood.

The next step is to find the sets of crimes that occur near
each other within a short span of time. To do this, we use the
reccursive algorithm wherein we progressively seach spec-
ified number of meters around every crime to find crimes
that occur within specified number of hours after the previ-
ous crime. We then run the same function reccursively on
every crime selected by above procedure until we no longer
find any crimes nearby. Also, we initially sort all the crimes
in the ascending order of their time of occurance so that we
can only look for crimes occuring in after the given crimes
and not the ones before. To avoid same crime being counted
multiple times, we set ‘seen’ flag inside the crime object ev-
ery time the crime is passed to the function. All the crimes
that are already ‘seen’ are filtered out from the list of nearby
crimes before performing any further process. Algorithm
1 shows the procedure for searching crimes that are spa-
tiotemporally nearby the given crime. Algorithm 2 shows
the procedure to calculate the series of nearby crimes start-
ing from the given crime and moving forward in the time.
Algorithm 2 can be applied on every crime after temporally
sorting crimes in ascending order. Result will be the set of
all the series of nearby crimes. We found 461 such series
from Compton and 117 series from West Hollywood.

2Not Sufficient Funds

Data: point: A point corresponding to a crime,
dist th: Distance threshold in meters,
time th: Time threshold in seconds
Result: All crimes spatiotemporally nearby to point
if point is seen then

return empty list;
end
mark point as seen;
searchSpace := buffer of dist th around point;
crimes := crimes containedBy searchSpace;
results := crimes within [point.time, point.time +
time th];
return results;
Algorithm 1: SEARCH NEARBY, Finding crimes spa-

tiotemporally nearby to a given point

Data: point: A point corresponding to a crime,
dist th: Distance threshold in meters,
time th: Time threshold in seconds,
series: current series; initially empty
Result: Series of crimes starting with point
nearby := SEARCH NEARBY (point, dist th,
time th);
if nearby is empty list then return series;
;
foreach nearby crime in nearby do

if nearby crime is not seen then
add nearby crime to series;
return FIND SERIES (nearby crime, dist th,
time th, series);

end

end
Algorithm 2: FIND SERIES, Find series of crimes starting

with current one

Once we find all such sets from our sample space, the
next step is to find the types of crime that occur together
most frequently in a set. For this, we use the apriori algo-
rithm [apriori] for the association mining. The basic idea of
apriori is that any association can not be stronger than the
strength of its weakest subset. We use this idea to signifi-
cantly reduce the number of comparisons necessary to find
all the relevant associations which in this case are cooccu-
rances of crime categories. We provide apriori algrithm as
an extension to our tool which makes it very easy to perform
such analyses from right inside the tool. Table 4 shows the
most commonly associated crime types in spatiotemporally
nearby crimes. We have included the top 5 association rules
with highest support for both cities. Support indicates the
frequency with which these rules occur in the population.
Therefore, a support of 30% means the rule is observed in
30% of all the series found in that city. All the categories
used are exactly as reported by the agencies. Figure 14
shows the code a user would have to write to solve the entire
problem described in section 2 including pattern detection
and apriori association mining. Note the significant concise-
ness of the code for a considerably complex operation. More
importantly, the code can be written ad-hoc on a try and
error basis.

6. EVALUATION
With respect to solving problem described in section 2,

we will analyze the runtime performance of our tool with

Compton

Association Rule Support
Assault, Aggravated Assault, Vehicle/Boat-
ing Laws

23.86%

Theft/Larceny, Vehicle break-in/Theft, As-
sault

22.13%

Assault, Grand Theft Auto, Motor Vehicle
Theft

20.61%

Non-aggravated assault, Vandalism, Nar-
cotics

17.14%

Narcotics, Vehicle/Boating Laws, Assault 16.05%

West Hollywood

Association Rule Support
Vehicle/Boating Laws, Narcotics, Non-
aggravated Assault

29.91%

Drunk/Alcohol/Drugs, Theft/Larceny, Vehi-
cle/Boating Laws

26.49%

Vehicle/Boating Laws, Aggravated Assault,
Non-aggravated Assault

22.22%

Vehicle/Boating Laws, Narcotics, Non-
aggravated Assault

17.63%

Aggravated Assault, Narcotics, Non-
aggravated Assault

15.38%

Table 1: Association rules for spatiotemporally associ-

ated crimes from Compton and West Hollywood with

their support

respect to some other tools. We have divided this process
into two parts: spatial joins and recursive pattern discovery.
We compare first part with PostGIS and second part with
the spatial extension of R language. All tests were performed
on 2.3 GHz Intel i7 quad core machine with 8 gigabytes of
DDR3 main memory running Mac OS X 10.9.3 (Mavericks).

6.1 Spatial Join
In section 5, we found crimes inside Compton and West

Hollywood using spatial join between filtered ‘city’ and ‘crime’
collections. For the purpose of evaluation, we will take the
spatial join between all cities and crimes. Collection ‘city’
has 250 polygons and collection ‘crime’ has 148,638 points.
We compare the runtime for the said join using brute force
approach (unindexed join), brute force but filtered by min-
imum bounding rectangle (MBR) approach, indexed join
with PostGIS, single threaded indexed join with our tool
and finally multithreaded indexed join with our tool. Fig-
ure 12 shows the runtimes for the join. All the times for
indexed joins include time for the index creation. Note the
great improvement caused over the brute force because of
all the optimizations. Also, even though PogtGIS performed
slightly better than our tool running on single thread, op-
timized multiprocessing outperforms everything else on the
chart.

6.2 Recursive Pattern Discovery
In this section, we compare the performance of our tool

with R language in running the algorithm for finding series of
spatiotemporally nearby crimes (see algorithm 2: FIND SERIES).
Note that this is fairly complex since it potentially issues n2

Figure 8: Performance analysis of our tool against R in

running the algorithm to extract series of spatiotempo-

rally nearby crimes

var apriori = #IMPORT APRIORI
#coffee#
searchNear = (point, meters, hours)->
return [] if point.seen
point.seen = 1
crimes.containedBy(point.buffer(meters), ’sp’, (x)->1)
.filter((x)-> x.properties.sp)
.within(point.temp_env(hours, 1), ’time’, (x)->1)
.filter((x)-> x.properties.time)

series = (point, meters, hours, _series)->
nearby = searchNear point, meters, hours
return _series if nearby.length == 0
nearby.forEach (near)->
series near, meters, hours, _series.push(near)

apriori.init (crimes.map (crime)-> series(crime, 100,
48)), 15

outtext apriori.run()

Figure 9: Code for solving problem from section 2

contains operations (over operations in R) during its run-
time. It also issues within on the results of all the contains
operations. Figure 13 shows runtime comparison between
both tools for Compton and West Hollywood. Note that
our tool performs better in both cases. This is mainly pos-
sible because of the spatial and temporal indexing.

7. RELATED WORK
GIS systems allow representation of large data from multi-

ple sources as layers. They come with some advanced func-
tionality implementations like statistics, spatial joins etc.
They also work with the raster data. Our tool allows users
to perform most of the GIS tasks in a much more flexi-
ble programmatic way which allows to achieve much higher
complexity of operations.

On the query side, SQL has spatial extension that pro-
vides functions to deal with data stored in a spatial database
that follows the Object-Relational schema. Such spatial
databases provide highly optimized operations and spatial
indexing. When the data is too large to be processed with
just one server, there are tools that help process such ‘big’
spatial data over Hadoop, which is a distributed execution
framework. One good example of such languages if Hadoop
GIS[hgis]. However, note that since these tools work on
MapReduce framework, they do not offer interactive anal-
ysis. Their operation usually includes batch processing of
large quantity of data stored in the Hadoop filesystem to ob-
tain aggregation reports using mapreduce functions. Since
our tool is designed for quick interactive analysis, it uses in-
dexing and performs operations in parallel which makes it
both fast and interactive. However, it should be noted that
our tool is an in-memory tool which restricts the amount of
data it can work with.

An analysis tool closer to our tool is the spatial modules
for R language[rspatial]. This plugin lets users use a lot of
advanced statistical capabilities of R for spatial objects. It
also provides some basic visualizations using the ‘plot’ func-

Figure 7: Performance analysis of various tools and methods of execution for spatial join between collection ‘crime’

and ‘city’

tion. R works both with vector and raster data. Our pro-
gramming model is based on very simplistic data structures
and intuitive operations. Moreover, since our tool is exclu-
sively built for the spatiotemporal operations, it is better
optimized for efficient execution of all common spatiotem-
poral operations.

8. CONCLUSION AND FUTURE SCOPE
We present a novel tool that helps make quick interac-

tive spatiotemporal queries on the data in many different
formats. The tool helps the analysis by providing quick ag-
gregations, visualizations and mapping. Any advanced func-
tionality may be added to this tool by writing extensions.
It is very easy to include any existing JavaScript or Coffee-
Script implementation as an extension to our tool. The tool
makes operations faster by splitting them and running in
parallel on multiple processor cores. We utilize most of avail-
able memory to improve speeds with thread-cacheing. The
entire complexity of multiprocessing as well as synchronous-
asynchronous operations is completely transparent to the
users. Users can write any type of statements in desired
sequence and expect a correct result.

We show the usefulness of our tool by demostrating its use
on LA crime pattern analysis problem described in section 2
and further compare the process with some well-known tools
in terms of performance. The results clearly indicate that
our tool performs better in almost all the steps of execution.
Moreover, it provides helpful visualizations and aggregations
that are not available readily with the other tools making it
a better problem solving utility.

In the future, we would like to increase the scale of this
tool by running it on multiple machines simultaneously over
the cloud. We would also like to explore in-memory cacheing
systems like Memcached or Redis as our cacheing option. As
of now, our tool only works with vector data. In future, we
would like to add support for raster data.

