
A Data Integration Approach to Automatically
Composing and Optimizing Web Services

Snehal Thakkar, José Luis Ambite and Craig A. Knoblock

University of Southern California/ Information Sciences Institute
4676 Admiralty Way

Marina Del Rey, CA 90292
USA

{thakkar, ambite, knoblock}@isi.edu

Abstract
In this paper we show how data integration
techniques can be used to automatically compose
new web services from existing web services. A
key challenge is to optimize the execution of the
composed web services. We introduce a novel
technique termed tuple-level filtering that
optimizes the execution of the composed web
services by reducing the number of web service
requests. Moreover, we combine the tuple-level
filtering algorithm with a technique that includes
additional web service requests in the
composition in order to improve filtering and
further optimize the execution. Our initial
experimental evaluation shows that our
optimization techniques can reduce the execution
time of the composed web services by up to two
orders of magnitude.

1. Introduction
A key promise of web services is seamless integration of
information from various sources. The web services
protocols (e.g., SOAP, WSDL) provide the infrastructure
to address syntactical issues involved in integrating data
from various data sources. Using this infrastructure, one
can build new exciting applications on the web that
integrate information from different web services and web
sources. The true potential of web services can only be
achieved if web services are used to create new web
services that provide more functionality compared to
existing services. Web service composition research has
largely focused on producing specifications and tools to
manually write web services, for example, using
languages like BPEL4WS and WSFL, see [16] for a
survey. Some initial research on automatic composition
based on pre-defined HTN schemas is described in [20].
However, fully automatic web service composition in

response to arbitrary user request remains an open
problem.

Some commercial web services involve complex
transactions and fully automatic web service composition
may not be possible. However, it is possible to fully
automate the composition of the large class of
information-producing web services. In this paper, we
describe how we build on existing mediator-based
approaches to support the automatic composition of web
services. In the context of automatically composing new
web services from existing web services, the existing web
services can be viewed as data sources. In recent years
various mediator systems, such as the Information
Manifold [12], InfoMaster [7], InfoSleuth [3], and
Ariadne [9] have been used to provide a unified query
interface to various data sources. At the same time the
theoretical fundamentals of data integration have been
investigated and are now well understood [10, 11]. The
traditional mediator systems accept a specific user query
and reformulate this query into a combination of source
queries that can answer the specific user query.

Our mediator framework extends existing mediator-
based approaches in two ways. First, the mediator-based
systems typically provide an answer to a specific user
query. We extend this by allowing a user to specify the
class of queries the service should support. For example,
the system may get a request to create a web service that
accepts make of the car and price range and returns a list
of cars made by the given maker and are for sale within
the given price range.

Second, we describe a novel algorithm termed tuple-
level filtering to optimize the integration plans for the
composed web services. The tuple-level filtering
algorithm utilizes the constraints in the source
descriptions to reduce the number of requests sent to the
existing web services. We also describe an extension to
the tuple-level filtering algorithm to insert sensing
operations in the integration plan to further optimize the
execution of the composed web services.

The rest of the paper is organized as follows. Section
2 describes a motivating example that is used in the rest of
the paper to clearly describe various concepts. Section 3
provides description of how the existing view integration
algorithms can be utilized to compose web services.
Section 4 presents the tuple-level filtering algorithm to
optimize the execution of the composed web services.
Section 5 provides the experimental evaluation of our
approach. Section 6 describes the comparison of our
approach with the existing research. Finally, Section 7
concludes the paper by discussing the contribution of the
paper and directions for future work.

2. Motivating Example
In this section, we will describe some web services and
queries that will be used in the rest of the paper to explain
various concepts. As we introduced in [18], we can model
the input/output behaviour of web services as data sources
with binding pattern restrictions. Assume our mediator
system has modelled the following web services as data
sources.

CitytoCounty(cityb, stateb, countyf)
LAProperty(addressb, cityf, zipf, valuef)
TNProperty(addressb, cityb, countyf, zipf, valuef)
YellowPages(nameb, zipf, cityf, statef, addressf, phonef)

The CitytoCounty source accepts a city and a state as
an input and provides the county in which the city is
located. The LAProperty web service accepts an address
in “Los Angeles County” and provides the value of the
property located at the given address. Similarly, the
TNProperty web service accepts an address and city in the
state of Tennessee and provides the property value and
county information for the address. The YellowPages
web service accepts a business name and provides the
addresses for all the locations of the given business.

Our goal is to allow the users to compose and
efficiently execute new web services using the above
mentioned services. In [18], we described a mediator
based approach to dynamically compose web services.
While the approach described in [18] can compose web
services, the composed web services plans may send
unnecessary requests to the existing web services. In this
paper, we describe an extension to optimize the plans
generated in [18]. To clarify various concepts in this
paper, we will use the request to create a web service that
can “find property values for all locations of the given
business”. An example query for the newly composed
web service is to “Find property values for all
‘McDonalds’ locations”. In the next section, we briefly
describe the procedure of creating new web services using
the mediator based approach described in [18].

3. Mediator-based Web Service
Composition
Recently there has been a lot of research on web service
composition [1, 5, 14, 16, 18]. In [18], we described a
mediator based approach to compose web services. The
key intuition behind our approach was to utilize the
techniques developed in the view integration research to
automatically compose web services. Our approach to
compose web services works in three steps. First, a
domain expert designs a set of domain predicates and
describes available web services as views over the domain
predicates. For the example web services shown in
Section 2 the domain expert may use the following
domain predicates:

Cities(city, state, county)
BusinessProperties(name, address, city, county, state, zip,

phone, value)

Traditionally, various mediator systems utilize either
the Local-As-View approach [11] or the Global-As-View
approach [6] to describe the relationship between domain
predicates and available data sources. In the Global-As-
View approach the domain predicates are described as
views over available data sources. In the Local-As-View
approach the data sources are described as views over the
domain predicates. Adding additional data sources in the
Local-As-View model is much easier compared to the
Global-As-View model [11]. Therefore, our mediator
system utilizes the Local-As-View model. For the given
example, our mediator system describes the data sources
as views over the domain predicates as follows:

R1: LAProperty(addr, city, zip, val):-
 BusinessProperties(name, addr, city, county,

state, zip, phone, val)^
 county = ‘Los Angeles’^ state = ‘C A’
R2: TNProperty(addr, city, county, zip, value):-
 BusinessProperties(name, addr, city, county,
 state, zip, phone, val)^
 state = ‘TN’
R3: YellowPages(name, zip, city, state, address, phone):-
 BusinessProperties(name, address, city, county,
 state, zip, phone, value)
R4: CitytoCounty(city, state, county):-

 Cities(city, state, county)
R5: CitytoCounty(city, state, county):-

BusinessProperties(name, address, city, county,
 state, zip, phone, value)

The source descriptions are given to the mediator. In
addition to the source descriptions, we also provide
mediator the rules about the functional dependencies in
our domain model. The functional dependency
relationships are provided by the domain expert. For
example, in the domain model described in Section 2, the
attributes value is functionally dependent on the attributes

address, city, and state. The rules to encode the
functional dependency in the mediator are shown below.

FR1: equals(value, value’) :-

BusinessProperties(name, addr, city, county,
 state, zip, phone, value)^

BusinessProperties(name’, addr’, city’, county’,
 state’, zip’, phone’, value’)^
 equals(addr, addr’)^
 equals(city, city’)^
 equals(state, state’)
FR2: equals(x, z) :- equals(x, y) ^ equals(y, z)

The rule FR1 states that if there exist two tuples in the
relation BusinessPriorities, with the exact same values for
the attributes address, city, and state, then the attribute
value must have the same value in both tuples. The rule
FR2 is inserted to ensure the transitivity property of the
equality predicate.

Our mediator utilizes the Inverse Rules algorithm [4]
to generate a datalog program for the new web service.
The request to compose a web service that accepts a name
of a business and returns property values for all the
business locations can be formulated as the following
query.

QR1: Q1(name, addr, city, st, zip, ph, val):-
 BusinessProperties(name, addr, city, cty, st, zip,

ph, val)^
 name = <name>

The <name> denotes that the web service accepts a

parameter termed name. Section 3.1 describes the process
of generating a datalog program for the new web service
using the domain model, the source descriptions, the
functional dependency rules, and the query.

3.1 Inverse Rules algorithm
The Inverse Rules algorithm [4] is a query reformulation
algorithm for the Local-As-View approach. There are
also other query reformulation algorithms for the Local-
As-View approach, such as, the Minicon algorithm [15].
In this paper we describe the query reformulation process
using the Inverse Rules algorithm. However, the
optimization algorithm described in this paper is
applicable to any system that utilizes the Local-As-View
model.

The first step of the Inverse Rules is to invert the
source definitions to obtain definitions for all global
relations as views over the source relations as ultimately
only the requests on source relations can be executed. In
order to generate the inverse view definition, the Inverse
Rules algorithm analyzes all view definitions. For every
view definition, V(X) :- S1(X1),…,Sn(Xn), where X and Xi
refer to set of attributes in the corresponding view or
relation, the Inverse Rules algorithm generates n inverse

rules, for i = 1,..,n, Si(X’i) :- V(X), where if Xi ∈ X, X’i is
the same as Xi else Xi is replaced by a function symbol
[4]. For the given example, the Inverse Rules algorithm
analyzes the view definitions and generates the following
rules.

IR1: BusinessProperties(fnlap(), addr, city, 'Los Angeles',

'CA', zip, fplap(), val) :-
LAProperty(addr, city, zip, val)

IR2: BusinessProperties(fntnp(), addr, city, county, 'TN',
zip, fptnp(), val) :-

TNProperty(addr, city, county, zip, val)
IR3: BusinessProperties(name, addr, city, fcyp(), state,

zip, phone, fvyp()) :-
 YellowPages(name, zip, city, state, addr, phone)

IR4: Cities(city, state, county):-
 CitytoCounty(city, state, county)

IR5: BusinessProperties(fncc(), facc(), city, county, state,
fzcc(), fpcc(), fvcc()) :-

 CitytoCounty(city, state, county)

The rule IR1 is the result of inverting the rule R1 from

the source descriptions. For clarity purposes, we have
used a shorthand notation for the Skolem functions. In
general the Skolem functions would have the rest of the
attributes in the head as arguments. For example, Skolem
function fnlap() would be written as fnlap(addr, city, zip,
val). The rules IR2 to IR5 are result of inverting rules R2
to R5 from the source descriptions.

Given the source descriptions and the query, it is clear
that the mediator can not evaluate the query without the
functional dependencies. As all the rules to compute the
predicate BusinessProperties result in function symbols
either for name attribute or the value attribute. Therefore,
the mediator must utilize the functional dependencies. As
described in [4], for every attribute X in the head of the
query, that participates in a functional dependency
relationship the mediator replaces X with X’ in the body
of the query and inserts a new predicate equals(X, X’) in
the query. For the example query, attribute val
participates in the functional dependency. Having added
the equals predicate the resulting datalog program looks
as follows:

Reasoning with the functional dependencies (see [4]
for details), we can rewrite the program in Figure 1 to the
equivalent program shown in Figure 2.

QR1: Q1(name, addr, city, st, zip, ph, val):-
 BusinessProperties(name, addr, city, cty, st, zip,

ph, val’)^
 name = <name> ^ equals(val, val’)
FR1: equals(value, value’) :-

BusinessProperties(name, addr, city, county,
 state, zip, phone, value)^

BusinessProperties(name’, addr’, city’, county’,
 state’, zip’, phone’, value’)^
 equals(addr, addr’)^

 equals(city, city’)^
 equals(state, state’)
FR2: equals(x, z) :- equals(x, y)^ equals(y, z)
IR1: BusinessProperties(fnlap(), addr, city, 'Los Angeles',

'CA', zip, fplap(), val) :-
LAProperty(addr, city, zip, val)

IR2: BusinessProperties(fntnp(), addr, city, county, 'TN',
zip, fptnp(), val) :-

TNProperty(addr, city, county, zip, val)
IR3: BusinessProperties(name, addr, city, fcyp(), state,

zip, phone, fvyp()) :-
 YellowPages(name, zip, city, state, addr, phone)

IR4: Cities(city, state, county):-
 CitytoCounty(city, state, county)

IR5: BusinessProperties(fncc(), facc(), city, county, state,
fzcc(), fpcc(), fvcc()) :-

 CitytoCounty(city, state, county)

Figure 1 Datalog Program with Function Symbols

PR1: Q1(name, addr, city, cty, st, zip, ph, val):-
 YellowPages(name, zip, city, st, addr, ph)^
 name = <name>^
 LAProperty(addr, city, zip, val)
PR2: Q1(name, addr, city, cty, st, zip, ph, val):-
 YellowPages(name, zip, city, st, addr, ph)^
 name = <name>^
 TNProperty(addr, city, cty, zip, val)

Figure 2 Generated Datalog Program

The datalog program shown above can be used to host
a web service that accepts the name of a business and
provides property values for all business locations1.
When the new web service receives a request to obtain
property values for all locations of some business, e.g.
‘McDonalds’, it first obtains all locations of ‘McDonald’
from the YellowPages web service. Next, one request for
each location is sent to the LAProperty and TNProperty
sources to obtain the property values for the given
locations. The results from both services are merged and
returned to the user. While the above mentioned datalog
program works well, it is not the most efficient program.
We can optimize this program further by utilizing the
source descriptions. The next section describes a tuple-
level filtering technique that allows us to add filters to the
plan to optimize the generated datalog program.

1 As the mediator only has access to property tax services
covering the state of Tennessee and the county of Los
Angeles, the new web service will only provide property
values for the business locations in the state of Tennessee
or in the county of Los Angeles, which is maximally
complete answer given the available services.

4. Optimizing web service composition plans
by tuple-level filtering
In previous work [19], we introduced the idea of inserting
filters based on source descriptions in data integration
programs in order to reduce the number of requests sent to
the data sources. In this paper, we generalize this
technique and describe the conditions under which a
mediator can optimize a web service composition
represented by the datalog program generated by the
Inverse Rules algorithm [4]. The key idea is to use the
constraints in the source descriptions to add filters that
eliminate provably useless calls to each web service.
First, we describe the algorithm for filter introduction
when the attributes needed to evaluate the filters already
appear in the composition plan. Second, we extend the
algorithm by including additional sensing web services
that produce the attributes needed for the filters if they are
not already present in the plan. In spite of including these
additional sensing services, the resulting composition
plans are often more cost-efficient since they take
advantage of the discriminative power of the constraints.

Our algorithm for tuple-level filtering is shown in
Figure 3. The algorithm takes as input the source (web
service) descriptions and the datalog program generated
by applying the inverse rules algorithm to the source
descriptions. The output is an optimized datalog program.
The algorithm represents an optimization search for the
most cost-effective program that includes those
constraints and sensing operation whose savings outweigh
their evaluation costs. We denote each choice point by
the keyword choice.

4.1 Introducing Filtering Constraints
The algorithm of Figure 3 optimizes each rule

independently. Recall that each inverse rule has as head a
domain predicate and as body a conjunctive query of
source predicates (representing the web services) and
constraints (equality and order). The algorithm first
collects the attributess that are bound to constants in the
body of the rule (line 3). Since the mediator knows the
value of these attributes, it can evaluate constraints on
them. Then, for each source (web service) predicate the
algorithm retrieves its source description and for each
constraint in the source description (lines 4-5), it checks
whether it can evaluate the constraint before it calls the
web service. The constraint can be evaluated if we know
the values for the s involved in the constraint (line 6) at
that point in the evaluation of the rule body (line 7).
Intuitively, the web service will be called with input
values that are part of a tuple that the body of the rule is
constructing. If we know that the tuple is not relevant for
that web service because it violates some constraint in the
service description, it is better to filter such tuple and
avoid the call to the service, which will certainly fail.

Tuple-level Filtering(SD, IR)
Input: SD: Source Descriptions (LAV rules)
 IR: Inverse Rules
Output: Optimized Inverse Rules
Algorithm:
1. SP := heads of SD /* source predicates */
2. For each rule R in IR
3. B := attributes bound to constants in the body of R
4. For each source predicate S in body(R)
5. For each constraint C in the source description for S
6. A := attributes of C
7. If A ⊆ B
8. Then /* insert filtering constraint */
9. choice[insert constraint C before S in body(R)]
10. Else /* insert sensing source predicate */
11. If ∃ source predicate SS in SP such that
12. inputs(SS) ⊆ B and A ∈ outputs(SS) and
13. ∃ functional dependency: inputs(SS) → A
14. Then choice[
15. insert predicate SS before S in body(R)
16. B := B ∪ attributes(SS)]
17. B := B ∪ attributes(S) /* update bound attributes */

Figure 3 Tuple-level Filtering Algorithm

Since the selectivity factor for a constraint may be

small, it may not be worth including it in the composition
plan. Thus, we make constraint inclusion a choice point in
the algorithm (line 9). Only by estimating the expected
evaluation cost, the mediator can be certain that the
constraint inserted actually produces a more efficient
plan.

To clarify the algorithm, consider our running
example. The optimized datalog program generated after
inserting constraints is shown in Figure 4. The source
description for the LAProperty service contains order
constraints on the attributes state and county. The
constraint on the state attribute is used to add a filtering
constraint to the rule PR1. The order constraint on the
attribute county for the LAProperty service is (for the
moment) ignored since no web service in the integration
plan produces a value for the county attribute. Similarly,
the order constraint on the TNProperty web service is
used to add a filtering constraint to the rule PR2. As a
result of the optimization, we obtain the new rules TR1
and TR2, as shown in Figure 4.

TR1: Q1(name, addr, city, cty, st, zip, ph, val):-
 YellowPages(name, zip, city, st, addr, ph)^
 name = <name>^
 st = ‘CA’^
 LAProperty(addr, city, zip, val)
TR2: Q1(name, addr, city, cty, st, zip, ph, val):-
 YellowPages(name, zip, city, st, addr, ph)^
 name = <name>^
 st = ‘TN’^
 TNProperty(addr, city, cty, zip, val)

Figure 4 . Tuple-level Filtering without Sensing

As a result of the filtering instead of sending one

request for each tuple from the YellowPages web service
to the LAProperty and the TNProperty web service, the
optimized datalog program only sends tuples with
attribute state equals “CA” to the LAProperty web service
and tuples with state equals “TN” to the TNProperty web
service. While the optimized datalog program reduces the
number of requests sent to the property tax web services
significantly, we may be able get more reduction by
utilizing the order constraints that were ignored due to
unavailability of some attributes. In the next section, we
describe an extension to the tuple-level filtering algorithm
to use sensing operations for further optimization.

4.2 Introducing Sensing Operations
The mediator system can further optimize a plan by

adding sensing operations. So far, the mediator system
only added filters for constraints whose attributes were
already available in the plan, e.g., state. Nevertheless, the
mediator can call other services to produce the attributes
required by other constraints in the source descriptions.
We call these additional web service calls sensing
operations, since they are use to gather additional
information that can be used to discriminate among the
remaining service calls.

The introduction of sensing source (web service)
predicates is show in lines 10 to 16 of the tuple-level
filtering algorithm of Figure 3.

There are several conditions that a sensing web service
predicate (SS) must satisfy in order to be a valid addition
to the datalog program. First, the inputs of the web
service (inputs(SS)) must already be computed by the
composition plan2. Second, the desired constraint
attribute (A) must be among the service outputs
(outputs(SS)). Third, and most important, the service
must satisfy a functional dependency between its inputs
and the desired output attribute. This last condition is
crucial to ensure that the semantics of the query does not
change (nor the number of answers). Intuitively, the body
of the rule is computing a tuple and the functional
dependency restriction ensures that the tuple is only
extended. Without the functional dependency the join
with the new source may generate several tuples changing
the semantics and results of the query.

We illustrate this reasoning with our running example.
The optimized datalog program including sensing
operations is shown in Figure 5. In particular, it includes
in SR1 a call to the CitytoCounty web service as a sensing
operation that produces the attribute county. Then the
constraint on county can be introduced and enforced. In
rule SR1 the mediator will check that the county of a

2 Actually we could extend our algorithm to add sensing
sources recursively, that is, a sensing source could
provide inputs for another sensing source

business property is in fact “Los Angeles County” before
sending a request to the LAProperty web service. As an
example of the savings obtained by this technique,
consider that if the YellowPages web service returned 150
tuples with state equals “CA” and only 25 of them were in
Los Angeles County, the mediator would only send 25
requests to the LAProperty web service as opposed to 150
requests.

SR1: Q1(name, addr, city, cty, st, zip, ph, val):-
 YellowPages(name, zip, city, st, addr, ph)^
 name = <name>^ st = ‘CA’^
 CitytoCounty(city, st, cty)^
 cty = ‘Los Angeles’^
 LAProperty(addr, city, zip, val)
SR2: Q1(name, addr, city, cty, st, zip, ph, val):-
 YellowPages(name, zip, city, st, addr, ph)^
 name = <name>^
 st = ‘TN’^
 TNProperty(addr, city, cty, zip, val)

Figure 5 Tuple-level Filtering with Sensing

5. Experimental Results
In order to evaluate the saving provided by our algorithms
we performed experiments for the motivating example
using the following web services: (1) YellowPages web
service3, (2) Los Angeles county property tax web
service4, (3) Tennessee state property tax records web
service5, and (4) County information web service6. For
the purpose of the experiments we converted the above
mentioned web sites into web services using Fetch Agent
platform7. The source descriptions were exactly the same
as the motivating example.

We performed two experiments corresponding to two
web service creation requests. In the first experiment, we
send a request to create a web service that accepts name
of a business and provides a list of all locations of the
business and their values. In the second experiment, the

3 http://www.switchboard.com
4 http://www.lacountyassessor.com/extranet/default.asp
5 http://170.142.31.248
6 http://www.naco.org/

request is to create a web service that accepts an address
and provides the value of the property at the given
address. All the experiments were run using a computer
having Intel Pentium 4 processor operating at 2.2GHz and
having 1 GB of memory.

The results of the first experiment are shown in
Table 1. The input column of the Table 1 shows the
different inputs that we passed to the composed web
service. The Inverse rules algorithm without any
optimizations would send all the business locations to
both property tax web services. Thus, in the first example
input ‘Red Roof Inn’, the program generated by the
Inverse Rules algorithm sends 356 requests to the Los
Angeles county property tax web service and the
Tennessee state property tax web service, for a total of
713 requests. Therefore, the datalog program generated
by the Inverse Rules program takes 8747 seconds.

The datalog program generated by the combination of
the Inverse Rules algorithm and tuple-level filtering
without sensing reduces the number of requests sent to
each property tax web services considerably. In the first
example, only 10 requests are sent to the Los Angeles
county property tax web service and only 17 requests are
sent to the Tennessee state property tax web service.
Therefore, the execution time reduces to 92 seconds and
only 28 requests are sent to different web services.

Finally, if the mediator adds sensing operations, the
number of requests sent to the Los Angeles county
property tax web service is further reduced to 4 requests.
As there are 5 distinct cities with state equals “CA” in the
result, the sensing operation requires sending 5 requests to
the CitytoCounty web service. After the optimization
with sensing only 27 total requests are sent to different
web services. This is a huge improvement over the 713
requests that would have been sent by the unoptimized
datalog program generated by the Inverse Rules algorithm
without any optimization. This optimization results in the
execution time of 88 seconds, which is about two orders
of magnitude less than the execution time of the

7 http://www.fetch.com

of tuples for state # of tuples in
county

Time in Seconds
Input

tuples from
YellowPages

Tennessee California Los Angeles Inverse
Rules

Tuple-level
Filtering

Tuple-level
Filtering
With Sensing

Red Roof Inn 356 17 10 4 8747 92 88

Fetch 78 2 7 2 1578 72 67

Whiz-bang 11 1 1 0 402 32 30
Table 1 Experimental Results for Query 1

unoptimized Inverse Rules algorithm8. Similar
improvements are seen for other inputs.

For the second experiment, the mediator creates a web
service that accepts an address from the user and finds the
value of the property at the given address by sending
requests to the property tax web services. The datalog
program generated by the Inverse Rules algorithm sends
one request each to both property tax web services. The
datalog program generated by the tuple-level filtering
algorithm without sensing, only sends one request to one
of the property tax web services based on the given
address. Therefore, there is a small improvement in the
execution time. The datalog program generated by the
tuple-level filtering with sensing results in one request to
county information web service and one request to one of
the two property tax web services, resulting in slight
improvement over the Inverse Rules algorithm.

In general, the tuple-level filtering algorithm with or
without sensing works well in any domain where one or
more attributes can be used to filter out requests to
different web services. We have identified the following
example domains where the tuple-level filtering with or
without sensing operations would result in great
improvements in the execution time: (1) integrating
classifieds information from different newspapers that
cover different cities, (2) integrating automobile
information from different manufacturers, and (3)
integrating phone directories of different institutions.

6. Related Work
The work presented on this research is very closely
related to research in several areas. First area of related
work is research on mediator systems such as, the
Information Manifold [12] InfoMaster [7], InfoSleuth [3],
and Ariadne [9]. In our knowledge, no mediator systems
have been utilized to automatically compose web
services. Our work utilizes the Inverse Rules [4]
algorithm, which is a part of the view integration research.
The tuple-level filtering algorithm can be utilized with
any system that utilizes Local-As-View [11] model, i.e.
we could use Minicon algorithm [15] or Bucket algorithm
[11] instead of the Inverse Rules [4] algorithm.

Second area of related work is on optimization of data
integration plans. In [8], the authors describe strategies to
optimize the recursive and non-recursive datalog
programs generated by the Inverse Rules algorithm. The
research focus of their work is to remove redundant and to
order access to different sources to reduce the query
execution time in presence of overlapping data sources.
Our optimization algorithm optimizes a plan for

8 It is easy to see that as the number of tuples returned
from the YellowPages increases, the sensing operation
would provide more improvements. For the final version
we will have more experiments to prove the usefulness of
adding the sensing operations.

parameterized query as opposed to a specific query.
Moreover, our optimization algorithm may insert sensing
operations to optimize the query. Both approaches are
complimentary as tuple-level filtering can be used to
generate the initial datalog program for the composed web
service and when the composed web service receives a
request from the user algorithms from [8] can be used to
optimize for the specific query. In [13], the authors
describe a more efficient approach compared to [4] to
handle binding pattern restrictions. In this paper we
utilized the approach described in [4]. However, our
optimization algorithms would work with the binding
pattern satisfaction algorithm described in [13] as well.

There has been some research on automatic web
service composition. In particular [20], describe a SHOP2
based system to automatically compose web services. In
addition to the input and output constraints, their system
can also handle web services with preconditions and
effects. In [14], the authors use Golog templates to
compose different web services. While this
representation is powerful and can handle web services
with preconditions and effects, their system requires a
human to write different plan templates before the system
can answer different user queries. The focus of both [14,
20] is on composing web services. Therefore, they do not
address the issue of optimizing the execution of composed
web services.

The idea of inserting filtering based on source
descriptions was discussed in [19]. However, the mediator
system in that paper utilized forward chaining to generate
the integration plan. The resulting mediator system was
unable to handle recursion or utilize functional
dependencies. In this paper, we use the Inverse Rules
algorithm to generate the integration plan to address those
limitations. Similarly, we described the idea of using
sensing operations to optimize data integration plans in
[2]. In this paper, we have generalized the idea of using
the sensing operations by utilizing the source descriptions
and the generated integration plan to insert the sensing
operations.

7. Discussion and Future Work
In this paper we have described a mediator based
approach for automatic web service composition. We
show that integration plans generated for new web
services using the existing view integration algorithms are
often inefficient. We described a novel algorithm termed
tuple-level filtering algorithm that inserts sensing
operations in the composed web services to further
optimize the execution of the composed web services.
We showed that using optimization algorithms described
in this paper, we can reduce the execution time of the
composed web services by up to two orders of magnitude.

The work described in this paper is an important step
towards our goal of completely automatic composition of
information gathering web services. Our next step is to

apply our mediator to compose web services listed in a
web service directory, such as UDDI. The key new
challenge would be to automatically model web services
in the directory as data sources in the mediator’s domain
model. Furthermore, we are looking to extend our
mediator to support a wide variety of operations on
heterogeneous data. For example, when integrating data
from several data sources, a key challenge is to
consolidate data from various data sources. We are
working on incorporating an object consolidation system
termed Active Atlas [17] in the mediator to address this
challenge.

Acknowledgements
This material is based upon work supported in part by the
National Science Foundation, under Award No. IIS-
0324955, in part by the Air Force Office of Scientific
Research under grant number F49620-01-1-0053, and in
part by a gift from the Microsoft Corporation. The views
and conclusions contained herein are those of the author
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of any of the above organizations or any person
connected with them.

References
1. Andrews, T., F. Curbera, H. Dholakia, Y. Goland, J.

Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S.
Thatte, I. Trickovic, and S. Weerawarana, Business
Process Execution Language for Web Services. 2002.

2. Ashish, N., C.A. Knoblock, and A. Levy. Information
Gathering Plans with Sensing Actions. in European
Conference on Planning, ECP-97. 1997. Toulouse,
France.

3. Bayardo Jr., R.J., W. Bohrer, R. Brice, A. Cichocki,
J. Flower, A. Helal, V. Kashyap, T. Ksiezyk, G.
Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R.
Shea, C. Unnikrishnan, A. Unruh, and D. Woelk.
Infosleuth: Agent-based semantic integration of
information in open and dynamic environments. in In
Proceedings of ACM SIGMOD-97. 1997.

4. Duschka, O.M., Query Planning and Optimization in
Information Integration, in Ph.D. Thesis, Computer
Science. 1997, Stanford University.

5. Florescu, D., A. Grünhagen, and D. Kossmann. XL:
an XML programming language for web service
specification and composition. in Proceedings of the
eleventh international conference on World Wide
Web. 2002.

6. Garcia-Molina, H., J. Hammer, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J. Widom.
Integrating and Accessing Heterogeneous
Information Sources in TSIMMIS. in Proceedings of
the AAAI Symposium on Information Gathering.
1995. Stanford, CA.

7. Genesereth, M.R., A.M. Keller, and O.M. Duschka.
InfoMaster: An information integration system. in In
Proceedings of ACM SIGMOD-97. 1997.

8. Kambhampati, S., E. Lambrecht, U. Nambiar, Z. Nie,
and S. Gnanaprakasam, Optimizing Recursive
Information Gathering Plans in EMERAC. To appear
in Journal of Intelligent Information Systems, 2003.

9. Knoblock, C., S. Minton, J.L. Ambite, N. Ashish, I.
Muslea, A. Philpot, and S. Tejada, The ARIADNE
Approach to Web-Based Information Integration.
International Journal on Intelligent Cooperative
Information Systems (IJCIS), 2001. 10(1-2): p. 145-
169.

10. Lenzerini, M. Data integration: A theoretical
perspective. in In Proceedings of ACM Symposium on
Principles of Database Systems. 2002. Madison,
Winsconsin, USA.

11. Levy, A., Logic-Based Techniques in Data
Integration, in Logic Based Artificial Intelligence, J.
Minker, Editor. 2000, Kluwer Publishers.

12. Levy, A.Y., A. Rajaraman, and J.J. Ordille. Query-
answering algorithms for information agents. in In
Proceedings of AAAI-96. 1996.

13. Li, C., Computing Complete Answers to Queries in
the Presence of Limited Access Patterns. The VLDB
Journal, 2003. 12: p. 211-227.

14. McIlraith, S. and T.C. Son. Adapting golog for
composition of semantic web services. in Proceedings
of the 8th International Conference on Knowledge
Representation and Reasoning (KR '02). 2002.
Toulouse, France.

15. Pottinger, R. and A. Levy, A Scalable Algorithm for
Answering Queries Using Views. VLDB Journal,
2000: p. 484-495.

16. Srivastava, B. and J. Koehler. Web Service
Composition - Current Solutions and Open Problems.
in In the Proceedings of the ICAPS workshop on
Planning for Web Services. 2003.

17. Tejada, S., C.A. Knoblock, and S. Minton, Learning
Object Identification Rules for Information
Integration. Information Systems, 2001. 26(8).

18. Thakkar, S., J.L. Ambite, and C.A. Knoblock. A view
integration approach to dynamic composition of web
services. in In Proceedings of 2003 ICAPS Workshop
on Planning for Web Services. 2003. Trento, Italy.

19. Thakkar, S., C.A. Knoblock, J.L. Ambite, and C.
Shahabi. Dynamically Composing Web Services from
On-line Sources. in In Proceeding of 2002 AAAI
Workshop on Intelligent Service Integration. 2002.
Edmonton, Alberta, Canada.

20. Wu, D., B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S Web Services Composition
Using SHOP2. in 2nd International Semantic Web
Conference (ISWC2003). 2003.

