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Abstract 
In this paper we show how data integration 
techniques can be used to automatically compose 
new web services from existing web services. A 
key challenge is to optimize the execution of the 
composed web services. We introduce a novel 
technique termed tuple-level filtering that 
optimizes the execution of the composed web 
services by reducing the number of web service 
requests. Moreover, we combine the tuple-level 
filtering algorithm with a technique that includes 
additional web service requests in the 
composition in order to improve filtering and 
further optimize the execution. Our initial 
experimental evaluation shows that our 
optimization techniques can reduce the execution 
time of the composed web services by up to two 
orders of magnitude. 

1. Introduction 
A key promise of web services is seamless integration of 
information from various sources.  The web services 
protocols (e.g., SOAP, WSDL) provide the infrastructure 
to address syntactical issues involved in integrating data 
from various data sources. Using this infrastructure, one 
can build new exciting applications on the web that 
integrate information from different web services and web 
sources.  The true potential of web services can only be 
achieved if web services are used to create new web 
services that provide more functionality compared to 
existing services.  Web service composition research has 
largely focused on producing specifications and tools to 
manually write web services, for example, using 
languages like BPEL4WS and WSFL, see [16] for a 
survey.  Some initial research on automatic composition 
based on pre-defined HTN schemas is described in [20]. 
However, fully automatic web service composition in 

response to arbitrary user request remains an open 
problem. 

Some commercial web services involve complex 
transactions and fully automatic web service composition 
may not be possible.  However, it is possible to fully 
automate the composition of the large class of 
information-producing web services. In this paper, we 
describe how we build on existing mediator-based 
approaches to support the automatic composition of web 
services.  In the context of automatically composing new 
web services from existing web services, the existing web 
services can be viewed as data sources.  In recent years 
various mediator systems, such as the Information 
Manifold [12], InfoMaster [7], InfoSleuth [3], and 
Ariadne [9] have been used to provide a unified query 
interface to various data sources.  At the same time the 
theoretical fundamentals of data integration have been 
investigated and are now well understood [10, 11]. The 
traditional mediator systems accept a specific user query 
and reformulate this query into a combination of source 
queries that can answer the specific user query.    

Our mediator framework extends existing mediator-
based approaches in two ways. First, the mediator-based 
systems typically provide an answer to a specific user 
query.  We extend this by allowing a user to specify the 
class of queries the service should support.  For example, 
the system may get a request to create a web service that 
accepts make of the car and price range and returns a list 
of cars made by the given maker and are for sale within 
the given price range.   

Second, we describe a novel algorithm termed tuple-
level filtering to optimize the integration plans for the 
composed web services.  The tuple-level filtering 
algorithm utilizes the constraints in the source 
descriptions to reduce the number of requests sent to the 
existing web services.  We also describe an extension to 
the tuple-level filtering algorithm to insert sensing 
operations in the integration plan to further optimize the 
execution of the composed web services. 



The rest of the paper is organized as follows.  Section 
2 describes a motivating example that is used in the rest of 
the paper to clearly describe various concepts.  Section 3 
provides description of how the existing view integration 
algorithms can be utilized to compose web services.  
Section 4 presents the tuple-level filtering algorithm to 
optimize the execution of the composed web services.  
Section 5 provides the experimental evaluation of our 
approach.  Section 6 describes the comparison of our 
approach with the existing research.  Finally, Section 7 
concludes the paper by discussing the contribution of the 
paper and directions for future work. 

2.   Motivating Example 
In this section, we will describe some web services and 
queries that will be used in the rest of the paper to explain 
various concepts. As we introduced in [18], we can model 
the input/output behaviour of web services as data sources 
with binding pattern restrictions.  Assume our mediator 
system has modelled the following web services as data 
sources. 
 
CitytoCounty(cityb, stateb, countyf) 
LAProperty(addressb, cityf, zipf, valuef) 
TNProperty(addressb, cityb, countyf, zipf, valuef) 
YellowPages(nameb, zipf, cityf, statef, addressf, phonef) 
 

The CitytoCounty source accepts a city and a state as 
an input and provides the county in which the city is 
located.  The LAProperty web service accepts an address 
in “Los Angeles County” and provides the value of the 
property located at the given address.  Similarly, the 
TNProperty web service accepts an address and city in the 
state of Tennessee and provides the property value and 
county information for the address.  The YellowPages 
web service accepts a business name and provides the 
addresses for all the locations of the given business. 

Our goal is to allow the users to compose and 
efficiently execute new web services using the above 
mentioned services.  In [18], we described a mediator 
based approach to dynamically compose web services.   
While the approach described in [18] can compose web 
services, the composed web services plans may send 
unnecessary requests to the existing web services.  In this 
paper, we describe an extension to optimize the plans 
generated in [18].  To clarify various concepts in this 
paper, we will use the request to create a web service that 
can “find property values for all locations of the given 
business”.  An example query for the newly composed 
web service is to “Find property values for all 
‘McDonalds’ locations”.  In the next section, we briefly 
describe the procedure of creating new web services using 
the mediator based approach described in [18]. 

3.   Mediator-based Web Service 
Composition  
Recently there has been a lot of research on web service 
composition [1, 5, 14, 16, 18].  In [18], we described a 
mediator based approach to compose web services.  The 
key intuition behind our approach was to utilize the 
techniques developed in the view integration research to 
automatically compose web services.  Our approach to 
compose web services works in three steps.  First, a 
domain expert designs a set of domain predicates and 
describes available web services as views over the domain 
predicates.  For the example web services shown in 
Section 2 the domain expert may use the following 
domain predicates: 
 
Cities(city, state, county) 
BusinessProperties(name, address, city, county, state, zip,  

phone, value) 
 

Traditionally, various mediator systems utilize either 
the Local-As-View approach [11] or the Global-As-View 
approach [6] to describe the relationship between domain 
predicates and available data sources.  In the Global-As-
View approach the domain predicates are described as 
views over available data sources.  In the Local-As-View 
approach the data sources are described as views over the 
domain predicates.  Adding additional data sources in the 
Local-As-View model is much easier compared to the 
Global-As-View model [11].   Therefore, our mediator 
system utilizes the Local-As-View model.  For the given 
example, our mediator system describes the data sources 
as views over the domain predicates as follows: 
 
R1: LAProperty(addr, city,  zip, val):-  
 BusinessProperties(name, addr, city, county,  

state, zip, phone, val)^ 
  county = ‘Los Angeles’^ state = ‘C A’ 
R2: TNProperty(addr, city, county, zip, value):-  
 BusinessProperties(name, addr, city, county, 
   state, zip, phone, val)^  
   state = ‘TN’ 
R3: YellowPages(name, zip, city, state, address, phone):- 
 BusinessProperties(name, address, city, county,  
    state, zip, phone, value) 
R4: CitytoCounty(city, state, county):-  

 Cities(city, state, county) 
R5: CitytoCounty(city, state, county):-  

BusinessProperties(name, address, city, county,  
    state, zip, phone, value) 
  

The source descriptions are given to the mediator.  In 
addition to the source descriptions, we also provide 
mediator the rules about the functional dependencies in 
our domain model.  The functional dependency 
relationships are provided by the domain expert.  For 
example, in the domain model described in Section 2, the 
attributes value is functionally dependent on the attributes 



address, city, and state.  The rules to encode the 
functional dependency in the mediator are shown below. 

   
FR1: equals(value, value’) :-  

BusinessProperties(name, addr, city, county,  
   state, zip, phone, value)^ 

BusinessProperties(name’, addr’, city’, county’,  
   state’, zip’, phone’, value’)^ 
 equals(addr, addr’)^ 
 equals(city, city’)^ 
 equals(state, state’) 
FR2: equals(x, z) :- equals(x, y) ^ equals(y, z) 
 

The rule FR1 states that if there exist two tuples in the 
relation BusinessPriorities, with the exact same values for 
the attributes address, city, and state, then the attribute 
value must have the same value in both tuples.  The rule 
FR2 is inserted to ensure the transitivity property of the 
equality predicate.   

Our mediator utilizes the Inverse Rules algorithm [4] 
to generate a datalog program for the new web service. 
The request to compose a web service that accepts a name 
of a business and returns property values for all the 
business locations can be formulated as the following 
query. 
 
QR1: Q1(name, addr, city, st, zip, ph, val):- 
 BusinessProperties(name, addr, city, cty, st, zip,  

ph, val)^ 
 name = <name> 

 
The <name> denotes that the web service accepts a 

parameter termed name.  Section 3.1 describes the process 
of generating a datalog program for the new web service 
using the domain model, the source descriptions, the 
functional dependency rules, and the query.  

3.1 Inverse Rules algorithm 
The Inverse Rules algorithm [4] is a query reformulation 
algorithm for the Local-As-View approach.  There are 
also other query reformulation algorithms for the Local-
As-View approach, such as, the Minicon algorithm [15].  
In this paper we describe the query reformulation process 
using the Inverse Rules algorithm. However, the 
optimization algorithm described in this paper is 
applicable to any system that utilizes the Local-As-View 
model.  

The first step of the Inverse Rules is to invert the 
source definitions to obtain definitions for all global 
relations as views over the source relations as ultimately 
only the requests on source relations can be executed.  In 
order to generate the inverse view definition, the Inverse 
Rules algorithm analyzes all view definitions.  For every 
view definition, V(X) :- S1(X1),…,Sn(Xn), where X and Xi 
refer to set of attributes in the corresponding view or 
relation, the Inverse Rules algorithm generates n inverse 

rules, for i = 1,..,n, Si(X’i) :- V(X), where if Xi ∈ X, X’i is 
the same as Xi else Xi is replaced by a function symbol 
[4].   For the given example, the Inverse Rules algorithm 
analyzes the view definitions and generates the following 
rules. 
 
IR1: BusinessProperties(fnlap(), addr, city, 'Los Angeles',  

'CA', zip, fplap(), val) :- 
LAProperty(addr, city,  zip, val) 

IR2: BusinessProperties(fntnp(), addr, city, county, 'TN',  
zip, fptnp(), val) :- 

TNProperty(addr, city, county, zip, val) 
IR3: BusinessProperties(name, addr, city, fcyp(), state,  

zip, phone, fvyp()) :- 
 YellowPages(name, zip, city, state, addr, phone) 

IR4: Cities(city, state, county):-  
 CitytoCounty(city, state, county) 

IR5: BusinessProperties(fncc(), facc(), city, county, state,  
fzcc(), fpcc(), fvcc()) :- 

 CitytoCounty(city, state, county) 
 
The rule IR1 is the result of inverting the rule R1 from 

the source descriptions.  For clarity purposes, we have 
used a shorthand notation for the Skolem functions.  In 
general the Skolem functions would have the rest of the 
attributes in the head as arguments.  For example, Skolem 
function fnlap() would be written as fnlap(addr, city, zip, 
val).  The rules IR2 to IR5 are result of inverting rules R2 
to R5 from the source descriptions. 

Given the source descriptions and the query, it is clear 
that the mediator can not evaluate the query without the 
functional dependencies. As all the rules to compute the 
predicate BusinessProperties result in function symbols 
either for name attribute or the value attribute.  Therefore, 
the mediator must utilize the functional dependencies.  As 
described in [4], for every attribute X in the head of the 
query, that participates in a functional dependency 
relationship the mediator replaces X with X’ in the body 
of the query and inserts a new predicate equals(X, X’) in 
the query.  For the example query, attribute val 
participates in the functional dependency.  Having added 
the equals predicate the resulting datalog program looks 
as follows: 

Reasoning with the functional dependencies (see [4] 
for details), we can rewrite the program in Figure 1 to the 
equivalent program shown in Figure 2.  
 
QR1: Q1(name, addr, city, st, zip, ph, val):- 
 BusinessProperties(name, addr, city, cty, st, zip,  

ph, val’)^ 
 name = <name> ^ equals(val, val’) 
FR1: equals(value, value’) :-  

BusinessProperties(name, addr, city, county,  
   state, zip, phone, value)^ 

BusinessProperties(name’, addr’, city’, county’,  
   state’, zip’, phone’, value’)^ 
 equals(addr, addr’)^  



 equals(city, city’)^ 
 equals(state, state’) 
FR2: equals(x, z) :- equals(x, y)^ equals(y, z) 
IR1: BusinessProperties(fnlap(), addr, city, 'Los Angeles',  

'CA', zip, fplap(), val) :- 
LAProperty(addr, city,  zip, val) 

IR2: BusinessProperties(fntnp(), addr, city, county, 'TN',  
zip, fptnp(), val) :- 

TNProperty(addr, city, county, zip, val) 
IR3: BusinessProperties(name, addr, city, fcyp(), state,  

zip, phone, fvyp()) :- 
 YellowPages(name, zip, city, state, addr, phone) 

IR4: Cities(city, state, county):-  
 CitytoCounty(city, state, county) 

IR5: BusinessProperties(fncc(), facc(), city, county, state,  
fzcc(), fpcc(), fvcc()) :- 

 CitytoCounty(city, state, county) 
 

Figure 1 Datalog Program with Function Symbols 
 
PR1: Q1(name, addr, city, cty, st, zip, ph, val):-  
  YellowPages(name, zip, city, st, addr, ph)^ 
  name = <name>^ 
  LAProperty(addr, city, zip, val) 
PR2: Q1(name, addr, city, cty, st, zip, ph, val):-  
  YellowPages(name, zip, city, st, addr, ph)^ 
  name = <name>^ 
  TNProperty(addr, city, cty, zip, val) 
 

Figure 2 Generated Datalog Program 
 

The datalog program shown above can be used to host 
a web service that accepts the name of a business and 
provides property values for all business locations1.  
When the new web service receives a request to obtain 
property values for all locations of some business, e.g. 
‘McDonalds’, it first obtains all locations of ‘McDonald’ 
from the YellowPages web service.  Next, one request for 
each location is sent to the LAProperty and TNProperty 
sources to obtain the property values for the given 
locations.  The results from both services are merged and 
returned to the user.  While the above mentioned datalog 
program works well, it is not the most efficient program.  
We can optimize this program further by utilizing the 
source descriptions.  The next section describes a tuple-
level filtering technique that allows us to add filters to the 
plan to optimize the generated datalog program. 

                                                           
1 As the mediator only has access to property tax services 
covering the state of Tennessee and the county of Los 
Angeles, the new web service will only provide property 
values for the business locations in the state of Tennessee 
or in the county of Los Angeles, which is maximally 
complete answer given the available services. 

4. Optimizing web service composition plans 
by tuple-level filtering 
In previous work [19], we introduced the idea of inserting 
filters based on source descriptions in data integration 
programs in order to reduce the number of requests sent to 
the data sources.  In this paper, we generalize this 
technique and describe the conditions under which a 
mediator can optimize a web service composition 
represented by the datalog program generated by the 
Inverse Rules algorithm [4].  The key idea is to use the 
constraints in the source descriptions to add filters that 
eliminate provably useless calls to each web service.  
First, we describe the algorithm for filter introduction 
when the attributes needed to evaluate the filters already 
appear in the composition plan. Second, we extend the 
algorithm by including additional sensing web services 
that produce the attributes needed for the filters if they are 
not already present in the plan.  In spite of including these 
additional sensing services, the resulting composition 
plans are often more cost-efficient since they take 
advantage of the discriminative power of the constraints.  

Our algorithm for tuple-level filtering is shown in 
Figure 3.  The algorithm takes as input the source (web 
service) descriptions and the datalog program generated 
by applying the inverse rules algorithm to the source 
descriptions. The output is an optimized datalog program.  
The algorithm represents an optimization search for the 
most cost-effective program that includes those 
constraints and sensing operation whose savings outweigh 
their evaluation costs.  We denote each choice point by 
the keyword choice.   

4.1 Introducing Filtering Constraints 
The algorithm of Figure 3 optimizes each rule 

independently. Recall that each inverse rule has as head a 
domain predicate and as body a conjunctive query of 
source predicates (representing the web services) and 
constraints (equality and order).  The algorithm first 
collects the attributess that are bound to constants in the 
body of the rule (line 3).  Since the mediator knows the 
value of these attributes, it can evaluate constraints on 
them.  Then, for each source (web service) predicate the 
algorithm retrieves its source description and for each 
constraint in the source description (lines 4-5), it checks 
whether it can evaluate the constraint before it calls the 
web service.  The constraint can be evaluated if we know 
the values for the s involved in the constraint (line 6) at 
that point in the evaluation of the rule body (line 7).  
Intuitively, the web service will be called with input 
values that are part of a tuple that the body of the rule is 
constructing.  If we know that the tuple is not relevant for 
that web service because it violates some constraint in the 
service description, it is better to filter such tuple and 
avoid the call to the service, which will certainly fail. 

 



Tuple-level Filtering(SD, IR) 
Input: SD: Source Descriptions (LAV rules) 
           IR: Inverse Rules 
Output: Optimized Inverse Rules 
Algorithm: 
1. SP := heads of SD          /* source predicates */ 
2. For each rule R in IR 
3.    B := attributes bound to constants in the body of R 
4.    For each source predicate S in body(R) 
5.      For each constraint C in the source description for S  
6.         A := attributes of C 
7.         If A ⊆ B 
8.         Then /* insert filtering constraint */ 
9.            choice[insert constraint C before S in body(R)] 
10.       Else /* insert sensing source predicate */  
11.         If ∃ source predicate SS in SP such that  
12.               inputs(SS) ⊆ B and A ∈ outputs(SS) and 
13.               ∃ functional dependency: inputs(SS) → A 
14.         Then choice[ 
15.                      insert predicate SS before S in body(R)  
16.                      B := B ∪ attributes(SS)] 
17.   B := B ∪ attributes(S)   /* update bound attributes */ 
 

Figure 3 Tuple-level Filtering Algorithm 
 
Since the selectivity factor for a constraint may be 

small, it may not be worth including it in the composition 
plan. Thus, we make constraint inclusion a choice point in 
the algorithm (line 9).  Only by estimating the expected 
evaluation cost, the mediator can be certain that the 
constraint inserted actually produces a more efficient 
plan.  

To clarify the algorithm, consider our running 
example.  The optimized datalog program generated after 
inserting constraints is shown in Figure 4.  The source 
description for the LAProperty service contains order 
constraints on the attributes state and county.  The 
constraint on the state attribute is used to add a filtering 
constraint to the rule PR1.  The order constraint on the 
attribute county for the LAProperty service is (for the 
moment) ignored since no web service in the integration 
plan produces a value for the county attribute.  Similarly, 
the order constraint on the TNProperty web service is 
used to add a filtering constraint to the rule PR2.  As a 
result of the optimization, we obtain the new rules TR1 
and TR2, as shown in Figure 4. 
 
TR1: Q1(name, addr, city, cty, st, zip, ph, val):-  
  YellowPages(name, zip, city, st, addr, ph)^ 
  name = <name>^ 
  st = ‘CA’^ 
  LAProperty(addr, city, zip, val) 
TR2: Q1(name, addr, city, cty, st, zip, ph, val):-  
  YellowPages(name, zip, city, st, addr, ph)^ 
  name = <name>^ 
  st = ‘TN’^ 
  TNProperty(addr, city, cty, zip, val) 
 

Figure 4 . Tuple-level Filtering without Sensing 

 
As a result of the filtering instead of sending one 

request for each tuple from the YellowPages web service 
to the LAProperty and the TNProperty web service, the 
optimized datalog program only sends tuples with 
attribute state equals “CA” to the LAProperty web service 
and tuples with state equals “TN” to the TNProperty web 
service.  While the optimized datalog program reduces the 
number of requests sent to the property tax web services 
significantly, we may be able get more reduction by 
utilizing the order constraints that were ignored due to 
unavailability of some attributes.  In the next section, we 
describe an extension to the tuple-level filtering algorithm 
to use sensing operations for further optimization. 

4.2 Introducing Sensing Operations 
The mediator system can further optimize a plan by 

adding sensing operations.  So far, the mediator system 
only added filters for constraints whose attributes were 
already available in the plan, e.g., state.  Nevertheless, the 
mediator can call other services to produce the attributes 
required by other constraints in the source descriptions.  
We call these additional web service calls sensing 
operations, since they are use to gather additional 
information that can be used to discriminate among the 
remaining service calls.  

The introduction of sensing source (web service) 
predicates is show in lines 10 to 16 of the tuple-level 
filtering algorithm of Figure 3.   

There are several conditions that a sensing web service 
predicate (SS) must satisfy in order to be a valid addition 
to the datalog program.  First, the inputs of the web 
service (inputs(SS)) must already be computed by the 
composition plan2. Second, the desired constraint 
attribute (A) must be among the service outputs 
(outputs(SS)).  Third, and most important, the service 
must satisfy a functional dependency between its inputs 
and the desired output attribute.  This last condition is 
crucial to ensure that the semantics of the query does not 
change (nor the number of answers).  Intuitively, the body 
of the rule is computing a tuple and the functional 
dependency restriction ensures that the tuple is only 
extended.  Without the functional dependency the join 
with the new source may generate several tuples changing 
the semantics and results of the query. 

We illustrate this reasoning with our running example. 
The optimized datalog program including sensing 
operations is shown in Figure 5.  In particular, it includes 
in SR1 a call to the CitytoCounty web service as a sensing 
operation that produces the attribute county.  Then the 
constraint on county can be introduced and enforced.  In 
rule SR1 the mediator will check that the county of a 

                                                           
2 Actually we could extend our algorithm to add sensing 
sources recursively, that is, a sensing source could 
provide inputs for another sensing source 



business property is in fact “Los Angeles County” before 
sending a request to the LAProperty web service. As an 
example of the savings obtained by this technique, 
consider that if the YellowPages web service returned 150 
tuples with state equals “CA” and only 25 of them were in 
Los Angeles County, the mediator would only send 25 
requests to the LAProperty web service as opposed to 150 
requests. 
 
SR1: Q1(name, addr, city, cty, st, zip, ph, val):-  
  YellowPages(name, zip, city, st, addr, ph)^ 
  name = <name>^  st = ‘CA’^ 
  CitytoCounty(city, st, cty)^ 
  cty = ‘Los Angeles’^ 
  LAProperty(addr, city, zip, val) 
SR2: Q1(name, addr, city, cty, st, zip, ph, val):-  
  YellowPages(name, zip, city, st, addr, ph)^ 
  name = <name>^ 
  st = ‘TN’^ 
  TNProperty(addr, city, cty, zip, val) 
 

Figure 5 Tuple-level Filtering with Sensing 

5. Experimental Results 
In order to evaluate the saving provided by our algorithms 
we performed experiments for the motivating example 
using the following web services: (1) YellowPages web 
service3, (2) Los Angeles county property tax web 
service4, (3) Tennessee state property tax records web 
service5, and (4) County information web service6.  For 
the purpose of the experiments we converted the above 
mentioned web sites into web services using Fetch Agent 
platform7.  The source descriptions were exactly the same 
as the motivating example.   

We performed two experiments corresponding to two 
web service creation requests. In the first experiment, we 
send a request to create a web service that accepts name 
of a business and provides a list of all locations of the 
business and their values.  In the second experiment, the 

                                                           
3 http://www.switchboard.com  
4 http://www.lacountyassessor.com/extranet/default.asp  
5 http://170.142.31.248  
6 http://www.naco.org/  

request is to create a web service that accepts an address 
and provides the value of the property at the given 
address. All the experiments were run using a computer 
having Intel Pentium 4 processor operating at 2.2GHz and 
having 1 GB of memory.   

The results of the first experiment are shown in 
Table 1. The input column of the Table 1 shows the 
different inputs that we passed to the composed web 
service.  The Inverse rules algorithm without any 
optimizations would send all the business locations to 
both property tax web services.  Thus, in the first example 
input ‘Red Roof Inn’, the program generated by the 
Inverse Rules algorithm sends 356 requests to the Los 
Angeles county property tax web service and the 
Tennessee state property tax web service, for a total of 
713 requests.  Therefore, the datalog program generated 
by the Inverse Rules program takes 8747 seconds.   

The datalog program generated by the combination of 
the Inverse Rules algorithm and tuple-level filtering 
without sensing reduces the number of requests sent to 
each property tax web services considerably.  In the first 
example, only 10 requests are sent to the Los Angeles 
county property tax web service and only 17 requests are 
sent to the Tennessee state property tax web service.  
Therefore, the execution time reduces to 92 seconds and 
only 28 requests are sent to different web services.  

Finally, if the mediator adds sensing operations, the 
number of requests sent to the Los Angeles county 
property tax web service is further reduced to 4 requests.  
As there are 5 distinct cities with state equals “CA” in the 
result, the sensing operation requires sending 5 requests to 
the CitytoCounty web service.  After the optimization 
with sensing only 27 total requests are sent to different 
web services.  This is a huge improvement over the 713 
requests that would have been sent by the unoptimized 
datalog program generated by the Inverse Rules algorithm 
without any optimization.  This optimization results in the 
execution time of 88 seconds, which is about two orders 
of magnitude less than the execution time of the 

                                                                                              
7 http://www.fetch.com  

# of tuples for state # of tuples in 
county 

Time in Seconds  
Input 

# tuples from 
YellowPages 

Tennessee California Los Angeles Inverse 
Rules 

Tuple-level 
Filtering 

Tuple-level 
Filtering  
With Sensing 

Red Roof Inn 356 17 10 4 8747 92 88 

Fetch 78 2 7 2 1578 72 67 

Whiz-bang 11 1 1 0 402 32 30 
Table 1 Experimental Results for Query 1 



unoptimized Inverse Rules algorithm8.  Similar 
improvements are seen for other inputs. 

For the second experiment, the mediator creates a web 
service that accepts an address from the user and finds the 
value of the property at the given address by sending 
requests to the property tax web services.  The datalog 
program generated by the Inverse Rules algorithm sends 
one request each to both property tax web services.  The 
datalog program generated by the tuple-level filtering 
algorithm without sensing, only sends one request to one 
of the property tax web services based on the given 
address.  Therefore, there is a small improvement in the 
execution time.  The datalog program generated by the 
tuple-level filtering with sensing results in one request to  
county information web service and one request to one of 
the two property tax web services, resulting in slight 
improvement over the Inverse Rules algorithm. 

In general, the tuple-level filtering algorithm with or 
without sensing works well in any domain where one or 
more attributes can be used to filter out requests to 
different web services.  We have identified the following 
example domains where the tuple-level filtering with or 
without sensing operations would result in great 
improvements in the execution time: (1) integrating 
classifieds information from different newspapers that 
cover different cities, (2) integrating automobile 
information from different manufacturers, and (3) 
integrating phone directories of different institutions. 

6. Related Work 
The work presented on this research is very closely 
related to research in several areas. First area of related 
work is research on mediator systems such as, the 
Information Manifold [12] InfoMaster [7], InfoSleuth [3], 
and Ariadne [9].  In our knowledge, no mediator systems 
have been utilized to automatically compose web 
services. Our work utilizes the Inverse Rules [4] 
algorithm, which is a part of the view integration research.  
The tuple-level filtering algorithm can be utilized with 
any system that utilizes Local-As-View [11] model, i.e. 
we could use Minicon algorithm [15] or Bucket algorithm 
[11] instead of the Inverse Rules [4] algorithm.   

Second area of related work is on optimization of data 
integration plans.  In [8], the authors describe strategies to 
optimize the recursive and non-recursive datalog 
programs generated by the Inverse Rules algorithm.  The 
research focus of their work is to remove redundant and to 
order access to different sources to reduce the query 
execution time in presence of overlapping data sources.  
Our optimization algorithm optimizes a plan for 
                                                           
8 It is easy to see that as the number of tuples returned 
from the YellowPages increases, the sensing operation 
would provide more improvements. For the final version 
we will have more experiments to prove the usefulness of 
adding the sensing operations. 

parameterized query as opposed to a specific query.  
Moreover, our optimization algorithm may insert sensing 
operations to optimize the query. Both approaches are 
complimentary as tuple-level filtering can be used to 
generate the initial datalog program for the composed web 
service and when the composed web service receives a 
request from the user algorithms from [8] can be used to 
optimize for the specific query.  In [13], the authors 
describe a more efficient approach compared to [4] to 
handle binding pattern restrictions.  In this paper we 
utilized the approach described in [4].  However, our 
optimization algorithms would work with the binding 
pattern satisfaction algorithm described in [13] as well.   

There has been some research on automatic web 
service composition. In particular [20], describe a SHOP2 
based system to automatically compose web services.  In 
addition to the input and output constraints, their system 
can also handle web services with preconditions and 
effects.  In [14], the authors use Golog templates to 
compose different web services.  While this 
representation is powerful and can handle web services 
with preconditions and effects, their system requires a 
human to write different plan templates before the system 
can answer different user queries. The focus of both [14, 
20] is on composing web services.  Therefore, they do not 
address the issue of optimizing the execution of composed 
web services. 

The idea of inserting filtering based on source 
descriptions was discussed in [19]. However, the mediator 
system in that paper utilized forward chaining to generate 
the integration plan.  The resulting mediator system was 
unable to handle recursion or utilize functional 
dependencies.  In this paper, we use the Inverse Rules 
algorithm to generate the integration plan to address those 
limitations.  Similarly, we described the idea of using 
sensing operations to optimize data integration plans in  
[2].  In this paper, we have generalized the idea of using 
the sensing operations by utilizing the source descriptions 
and the generated integration plan to insert the sensing 
operations. 

7. Discussion and Future Work 
In this paper we have described a mediator based 
approach for automatic web service composition.  We 
show that integration plans generated for new web 
services using the existing view integration algorithms are 
often inefficient.  We described a novel algorithm termed 
tuple-level filtering algorithm that inserts sensing 
operations in the composed web services to further 
optimize the execution of the composed web services.  
We showed that using optimization algorithms described 
in this paper, we can reduce the execution time of the 
composed web services by up to two orders of magnitude. 

The work described in this paper is an important step 
towards our goal of completely automatic composition of 
information gathering web services.  Our next step is to 



apply our mediator to compose web services listed in a 
web service directory, such as UDDI.  The key new 
challenge would be to automatically model web services 
in the directory as data sources in the mediator’s domain 
model.  Furthermore, we are looking to extend our 
mediator to support a wide variety of operations on 
heterogeneous data.  For example, when integrating data 
from several data sources, a key challenge is to 
consolidate data from various data sources.  We are 
working on incorporating an object consolidation system 
termed Active Atlas [17] in the mediator to address this 
challenge. 
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