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Abstract. Entity resolution is the task of identifying all mentions that represent
the same real-world entity within a knowledge base or across multiple knowledge
bases. We address the problem of performing entity resolution on RDF graphs
containing multiple types of nodes, using the links between instances of different
types to improve the accuracy. For example, in a graph of products and manufac-
turers the goal is to resolve all the products and all the manufacturers. We formu-
late this problem as a multi-type graph summarization problem, which involves
clustering the nodes in each type that refer to the same entity into one super node
and creating weighted links among super nodes that summarize the inter-cluster
links in the original graph. Experiments show that the proposed approach outper-
forms several state-of-the-art generic entity resolution approaches, especially in
data sets with missing values and one-to-many, many-to-many relations.

1 Introduction

The increasing number of entities created online raises the problem of integrating and
relating entities from different sources. In this work, we focus on the entity resolu-
tion problem. It is a common challenge in various domains including digital libraries,
E-commerce, natural language understanding, etc. For example, in digital libraries, a
challenging problem is to automatically group references that refer to the same publi-
cation and disambiguate author names, venues, etc. In E-commerce, a difficult problem
is to match products from one domain (e.g., Amazon) to another domain (e.g., eBay).

Consider the example in Figure 1, where we have five products from different sellers
represented by RDF. The entity resolution task is to group vertices of the same product
entity (e.g., 1 and 2) and vertices of the same manufacturer entity (e.g., Bose and Bose
Electronic) together and relate product entities with manufacture entities.
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Fig. 1. An example of RDF graph for five products, where values of description field are omitted



There are several challenges in tacking entity resolution tasks. The first challenge is
due to the poor quality of data, such as different spellings (cancel and cancelling), miss-
ing values (e.g., missing price for product 1) and ambiguity (e.g., the title of product
1 “Apple Noise Cancel Headphones” actually means that the headphones are suitable
for apple products, but not manufactured by Apple). This makes traditional pair-wise
distance measures approaches [9, 25, 30] less effective with noisy content and context
(see related work). The second challenge is due to the one-to-many and many-to-many
relation between entities. For instance, in the product entity resolution example, a prod-
uct might be associated with many prices (normal or discount), and each manufacturer
is associated with many products. The heterogeneous nature of relationships brings in
an additional challenge when performing collective entity resolution [5, 10, 12]: to de-
termine which kind of relationship is best suited for resolving a particular type of entity.
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Fig. 2. An example of multi-type graph representation for Figure 1 and its corresponding sum-
mary graph. The description type of vertices is omitted

To address the aforementioned challenges, we model the observed RDF graph as
a multi-type graph and formulate the collective entity resolution as a multi-type graph
summarization problem. Particularly, the goal is to transform the original k-type graph
into another k-type summary graph composed of super nodes and super edges. Each
super node is a cluster of original vertices (of the same type) representing a latent en-
tity, while super edges encode potentially valuable relations between those entities. As
shown in Figure 2(a), we model the observed RDF graph as a multi-type graph, where
vertices represent different types of objects, and edges represent either co-occurrence
between two-types of vertices (solid edge), or similarity between the same-type vertices
(dashed edge). The dashed similarity edge can be computed by any similarity mea-
sures such as graph proximity based similarity (e.g., number of common neighbors)
or content-based similarity (e.g., string similarity). An example of a summary graph
is shown in Figure 2(b), where each super node is a cluster of original vertices repre-
senting a hidden entity and each super edge relates one type entity (e.g., product 1, 2)
to another type entity (e.g., Sony). The weights of the super edges also indicate which
type of information is more useful when resolving certain types of entities. For instance,
for product 1 and 2 disambiguation, manufacturer is more reliable than price, while for
disambiguating product 3 and 4, price is a more reliable indicator than manufacturer.

In this work, we thus propose a unified, multi-type graph co-summarization based
entity resolution framework (CoSum), which 1) jointly condenses a set of similar ver-
tices in the observation into a super node in the summary graph so that each super node



(hidden entity) is coherent; 2) reveals how entities of different types are related with
each other. Our main contributions are summarized as follows:

1. A novel formulation for the entity resolution problem, where we model the ob-
served relations between different types of mentions as a multi-type graph and re-
duce the entity resolution to a graph summarization problem.

2. A multi-type graph co-summarization based generic entity resolution framework,
which supports determining how many entities are discussed, entity disambiguation
and entity relation discovery simultaneously.

3. A generic entity resolution framework that supports different user-supplied similar-
ity measures as inputs. Those similarity measures can be of any general form and
are not restricted to simple distance-based metrics.

We validate the proposed approach on real-world networks from both an E-commerce
and a citation domain. The results show that the proposed approach outperforms other
state-of-the-art approaches.

2 Related Work

Entity resolution has been extensively studied under different names such as record
linkage [2, 7, 30], reference reconciliation [12], coreference resolution [23, 29]. In the
following, we review a set of representative traditional entity resolution approaches and
collective entity resolution approaches; while we refer to tutorials [13] and surveys [6,
8, 36] for more throughout reviews.

Distance-based entity resolution approaches focus on learning a pairwise distance
metric between entities, and then either set a distance threshold or build a pairwise clas-
sifier to determine which entities are merged. The entire process can be unsupervised [9,
25, 30], or supervised [29], or a hybrid of these two [7, 15]. Limes [30] and Silk [15] are
two representative entity resolution systems that focus on a pair of records at a time, and
decide whether they are the same or not according to acceptance metrics and thresholds.
Unfortunately, pairwise-based decision is very sensitive to noise and cannot capture the
dependency between two pair-wise decisions.

To address the limitation of pairwise distance-based resolution decision, recently
collective entity resolution has been extensively studied. This work can be categorized
into three types. First, traditional collective entity resolution focuses on capturing the
dependence among the same-type entities. For example, Pasula et al. [31] proposed
the Relational Probabilistic Model for capturing the dependence among multiple coref-
erence decisions. Conditional random fields (CRFs) [21] have been successfully ap-
plied to the entity resolution domain [26] and is one of the most popular approaches in
generic entity resolution. On another hand, Singla and Domingos [34] proposed a well-
founded, integrated solution to the entity-resolution problem based on Markov logic.
Bhattacharya and Getoor [4] proposed a novel relational clustering algorithm that uses
both attribute and relational information between the same-type entities for determining
the underlying entities.

With heterogeneous data becoming more widespread, two additional types of col-
lective entity resolution have emerged: 1) Collective resolution for entities with differ-
ent types [5]. For instance, an extended LDA model was used in [5] to perform entity



resolution for authors and publications simultaneously; 2) Collective resolution for en-
tities with the same type from different domains. For example, Dong et al. [12] models
a pair of mentions or attributes from two different domains as a node and then applies
a label propagation algorithm to perform collective entity resolution. Cudré-Mauroux
et al. [10] adopt the factor-graph model to perform collective entity resolution for per-
sonal profiles. In this work, we propose a multi-type graph model for collective entity
resolution, which supports the three aforementioned different types of collective entity
resolutions in the same generic framework.

There is another direction of work that focused on methods to scale up entity resolu-
tion algorithms, such as using indexing [8] or blocking techniques [17, 18, 35] to facil-
itate pairwise similarity computation. A representative example is the Serf system [3],
which developed strategies that minimize the number of invocations to these potentially
expensive black-box entity resolution algorithms. Our framework is very generic, and
any indexing/blocking technique can be seamlessly embedded into it.

Our work is related but less relevant to named-entity relation extraction, tagging [28,
32] and entity linking [16]. This work aims to extract named entities from a corpus and
find the relation between entities deploying a fixed or universal schema, and implic-
itly do entity resolution along with extraction and tagging. However, our work focuses
on resolving the same entities in a structured or semi-structured dataset, possibly ex-
tracted from different sources. In the outputted summary graph, our approach relates
one type of entities to another type with weighted edges, but it does not support tagging
the edge with a schema type such as “is-produced-by” between a product entity and a
manufacturer entity.

3 Problem Definition
3.1 Notations
Let G = (∪kt=1Vt,∪kt=1 ∪kt′=t+1 Ett′) be a k-type graph where each Vt denote a set of
vertices of type t, and each Ett′ denote the set of edges connecting two different types
of vertices. Note that Ett′ can be empty if none of the t-type vertices is connected to
t′-type vertices. In addition, we also allow connections between vertices with the same
type by introducing the similarity function sim. Each simt(x, y) ≥ 0 evaluates the
similarity between two t-type vertices x and y.

Given an input k-type graphG, a summary graph S(G) =(∪kt=1St,∪kt=1Ct,∪kt′>tLtt′)
is another k-type graph that consists of:

– k sets of super nodes {S1, · · · , Sk}, where each super node s ∈ St (t =1 to k)
denotes a cluster of t-type vertices in the original graph,

–
(
k
2

)
sets of super links Ltt′ where each weighted edge (st, st′) denotes the expected

probability that a t-type super node st is connected with a t′-type super node st′ ,
– k sets of “zoom-in” mappings {C1, · · · , Ck} such that each Ct denotes probabilis-

tic mapping between t-type vertices Vt and super nodes St.

Note that we use terms vertex and edge to refer to node and edge in original graph
and terms super node and super link to refer to node and edge in summary graph. For
simplicity, we use V to denote the set of vertices,E to denote the set of edges in original
graph G, S to denote the set of super nodes and L to denote the set of super links in



Table 1. Notations and explanations.

Notations Explanations.
n, m, p, q, k number of vertices, edges, super nodes, super links, types
V ,E,S,L the set of vertices, edges, super nodes, super links
Ett′ coreference links between t-type and t′-type vertices in the original graph
Ltt′ super links between t-type and t′-type super nodes
C ∈ Rn×p the mapping between vertices and super nodes
sim the similarity function between the same-type vertices
C(x) the xth row of a matrix C
d(x), CN(x, y) the degree of vertex x, the common neighbors of vertex x and y
J(x),J (x) Objective function, Lagrangian function of x
◦ element-wise multiplicative operator

summary graph S(G). The total number of vertices and edges in G are denoted as n
and m, and the total number of super nodes and super links in S(G) are denoted as p
and q. We use symbols with subscript t to denote notations that are related to type t. A
summary of all the notations and explanations are presented in Table 1.

3.2 Problem Formulation

As explained in Section 1, our goal is to reduce the entity resolution problem to a graph
summarization problem, where the nodes representing different mentions of the same
hidden entity are summarized, or condensed, into the same super node. There are nu-
merous ways to summarize a graph depending on specific objectives. We now provide
some intuition about what constitutes a good summarization in the context of the en-
tity resolution task. In particular, we postulate that the super nodes in our summary
graph need to be coherent, in the sense that the nodes comprising a given super node
should be similar to each other. The rationale behind this assumption is that differ-
ent mentions of the same hidden entity needs to share some similarities, otherwise the
problem becomes infeasible. Furthermore, we differentiate between inherent similarity,
as described by the content of those nodes themselves (e.g., string similarity between
their labels), and structural similarity, which reflects similar connectivity patterns in the
multi-type graph.

To accommodate for the first type of similarity, we define the following optimization
problem:

argmin
S(G)

∑
t

∑
x,y∈Vt

simt(x, y)‖Ct(x)− Ct(y)‖2F (1)

This objective function ensures that any summary graph in which two highly similar
vertices (x, y) are not mapped to the same super node, incurs a penalty. The intuition
behind this term is illustrated in the example in Figure 2. If the titles t1 and t2 are very
similar, then it is very likely that t1 and t2 will be condensed into the same super node.

To accommodate for structural similarity, we note that if two t-type vertices are
connected to the same t′-type vertex (or a set of t′-type vertices representing the same
entity), it is likely that those two vertices are referring to the same entity as well. For in-
stance, as shown in Figure 2, since both record 1 and record 2 are connected to the man-
ufacturer “Sony” (and their connected titles/descriptions are very similar), it is likely
that the records 1 and 2 are about the same product. Based on this intuition, we define



the following optimization criterion 1:

argmin
S(G)

∑
t

∑
t′>t

‖Gtt′ − CtLtt′Ct′
T ‖2F (2)

Next, we combine Eq. (1) with Eq. (2) and formulate the following optimization
problem:

Problem 1. Given an input k-type graph G and the similarity function simt for each
vertex type t, find a summary graph S(G) forG that minimizes the following objective:

J(S(G)) =
∑
t

∑
x,y∈Vt

simt(x, y)‖Ct(x)− Ct(y)‖2F +
∑
t

∑
t′>t

‖Gtt′ − CtLtt′Ct′
T ‖2F (3)

It is worthwhile to note that while both terms in Eq. 3 tend to produce more coherent
super nodes, there are also certain important differences. Namely, the first term becomes
irrelevant if two nodes are very dissimilar (simt(x, y) ≈ 0), whereas the second term
will tend to assign structurally dissimilar nodes to different super nodes. Furthermore,
the second term favors a larger number of super nodes, whereas the first term tends to
condense similar nodes as much as possible. These differences introduce some non-
trivial tradeoffs in the optimization process, which allow us to arrive at good summary
graphs.

4 Methodology
4.1 Solution Overview
In this section, we introduce our solution to Problem 1. The overview of our solution
is as follows (as well as outlined in Algorithm 1): Start with a random summary graph
(Line 1), we first search for an improved summary graph with fewer super nodes, by
crossing out one or many super nodes (Section 4.3). The second step is to fix the number
of super nodes [p1, · · · , pk], and compute the vertex-to-clustering mapping C and super
links L (Lines 4–10). These two procedures are performed alternately, until they reach
a locally optimal summary graph (Lines 2–11).

4.2 Graph Summarization with given Super Nodes
We first study the summarization algorithms with a simplified condition, in which we
assume that the number of super nodes in the summary graph ([p1, · · · , pt] is given.
With this assumption, we show that the vertex to super nodes mapping C and the con-
nections among super nodes L can be computed with a standard multiplicative update
rule [22]. The intuition of the multiplicative rule is that whenever the solution is smaller
than the local optimum, it multiplies with a larger value; otherwise, it multiplies with a
smaller value.

Lemma 1. With a non-negative initialization of Ct ∈ Rnt×pt , Ct can be iteratively
improved via the following update rule:

Ct = Ct ◦

√ ∑
t′>tGtt′Ct′Ltt′

T + simtCt∑
t′>t CtEtt′Ct′

TCt′Ett′
T +DtCt

(4)

1 Note that since the input graphs we focused are undirected, we save the half computation by
assuming that types of vertices are ordered and restricting edges from a precedent type t to t′.



Algorithm 1 The graph summarization framework for k-partite graphs
Input: A k-type Graph G
Output: A k-type summary graph S(G)
01: Initialize a random k-type summary graph, with number of super nodes [n1, · · · , nk]
02: repeat

/∗ vertex allocation optimization (Section 4.3)∗/
03: S(G)=Search(G, S(G)) (see Alg. 2)

/∗ fix the number of super nodes, and optimize super nodes assignment (Section 4.2)∗/
04: do
05: for each t-type vertices
06: update Ct with Eq. (4)
07: for each non-empty edge set between t- and t′-type vertices
08: update Ltt′ with Eq. (5)
09: while C and L converge
10: construct the new summary graph S(G)
11: until J(S(G)) converges
12: return S(G)

where Dt is the diagonal weighted degree matrix of the similarity matrix simt, and ◦
(/) is the element-wise multiplicative (division) operator.

Proof (sketch): The update rule can be derived following the similar proof procedure
proposed by Ding et al. [11] and Zhu et al. [37]. For each Ct, we introduce the La-
grangian multiplier Λ for non-negative constraint (i.e., Ct ≥ 0) in Eq. (3), which leads
to the following Lagrangian function J (Ct):

J (Ct) =
∑
t′>t

‖Gtt′ − CtLtt′Ct′
T ‖2F +

∑
x,y∈Vt

simt(x, y)‖Ct(x)− Ct(y)‖2F ) + tr(ΛCt
CT

t )

The next step is to optimize the above terms w.r.t. Ct. We set the deviation of J (Ct) to
zero (∇Ct

J (Ct)=0), and obtain:

ΛCt
= −2(

∑
t′>t

Gtt′Ct′Ltt′
T + simtCt) + 2(

∑
t′>t

CtEtt′Ct′
TCt′Ett′

T +DtCt)

Using the KKT condition ΛCt
◦ Ct=0 [20], we obtain:

[−2(
∑
t′>t

Gtt′Ct′Ltt′
T + simtCt) + 2(

∑
t′>t

CtEtt′Ct′
TCt′Ett′

T +DtCt)] ◦ Ct = 0

Since Ct is non-negative, we show that when the solution converges, the above
equation is identical to the fixed point condition of following term:

[−2(
∑
t′>t

Gtt′Ct′Ltt′
T + simtCt) + 2(

∑
t′>t

CtEtt′Ct′
TCt′Ett′

T +DtCt)] ◦ C2
t = 0

That is, either an entry of Ct or the corresponding entry of the left factor is zero. We
thus have:

Ct = Ct ◦

√√√√ ∑
t′>tGtt′Ct′Ltt′

T + simtCt∑
t′>t CtEtt′Ct′

TCt′Ett′
T +DtCt



This completes the proof.
Note that in Eq. (4), when we compute the vertex to super nodes mapping Ct for

t-type vertices, we utilize their connections to all the other t′-type vertices (i.e., Gtt′ )
and the vertex to super nodes mapping for all the other t′-type vertices (i.e., C ′t).

Similarly, the connections among super nodes Ltt′ ∈ Rpt×pt′ can be computed via
the following Lemma:

Lemma 2. The solution of Ltt′ can be approximated via the following multiplicative
update rule:

Ltt′ = Ltt′ ◦

√
Ct

TGtt′Ct′

CT
t CtLtt′Ct′

TCt′
(5)

Proof (sketch): The proof is omitted since it is similar to that of Lemma 1.
To develop some intuition about the above solution, let us again consider the exam-

ple in Figure 2. Assume that the product IDs 3 and 4 share many discriminative words
in their respective descriptions. After the first iteration of the algorithm, this evidence
will be captured by Lemma 1 and those nodes will be grouped together in CProduct

mapping. After this step, using Lemma 2, the links between the new super-node and
other-type nodes will be updated. The updated links show that “Bose” and “Bose Elec-
tronic” nodes in the manufacturer type have a common neighbor in the product type
(share the same product). This evidence, along with the similarity link between those
two nodes, will be captured by Lemma 1, so that those two nodes will be clustered
together.

4.3 Searching for the Optimal Number of Super Nodes
We have discussed the proposed algorithm that computes the “best-effort” summary
graph and mapping between the original graph and the summary graph with the as-
sumption that the number of super nodes in the summary graph is known in advance.
However, a remaining challenge is to determine the actual number of entities (super
nodes). A possible approach is to enumerate all the combinations of numbers of super
nodes for each type of vertices and then pick the “best” one with an exhaustive search.
Unfortunately, such trial-and-error procedures can be inefficient in practice. In the fol-
lowing, we propose a greedy local search algorithm that can automatically determine
the number of super nodes for each type of vertices. The intuition of our approach is to
utilize a backward search procedure: starting with an initialization of a summary graph,
where each type of vertices is assigned to a maximum number of clusters, it repeatedly
removes one or many super nodes from a summary graph with the lowest informa-
tion. The details of the above procedure are presented in Algorithm 2, where Info(s)
denotes the information of a super node s.

Note that our algorithm differs from the traditional bottom-up merging or top-down
split algorithm. Bottom-up merging iteratively picks two clusters such that merging of
these two cluster leads to improved performance. Therefore, at each iteration, it requires
to search over all cluster pairs, which is computationally very expensive (p2 in a naı̈ve
implementation and p log pwith a heap implementation). In contrast, in our search algo-
rithm, we only have to decide whether a super node will be removed (lines 3–6), which
results in a time-complexity that is linear in the number of super nodes p. For the top-
down split algorithm, although the computational cost of searching for the best cluster



Algorithm 2 Search(G, S(G), p)
Input: A k-type Graph G, a summary graph S(G)
Output: A refined summary graph Snew(G)
01: for each t-type super nodes and vertices
02: θ = mins∈St

∑
v∈Vt

Ct(v, s)

03: for each s ∈ St

04: Info(s) =
∑

v∈Vt
Ct(v, s)

05: if Info(s) == θ and (J(S(G))− J(S \ {s}(G)) > 0
06: delete s from S(G)
07: return S(G)

to be split is linear, the algorithm requires sophisticated heuristics to perform a split,
which entails reassigning each vertex from one cluster to one of two smaller clusters.
In our algorithm, on the other hand, the vertices within a removed super node can be
merged into the remaining super nodes through the procedure presented in Section 4.2.

4.4 Complexity Analysis
Table 2. The time complexity for each basic operator with both dense and sparse matrices repre-
sentation. Here (nz)t is number of non-zero entries in the matrix simt.

Dense Sparse
Ct O(n2

tpt + nt

∑
t′>t(ntpt + ptpt)) O((nz)tpt +

∑
t′>t(mtt′ + ntqtt′))

Ltt′ O(ntp
2
t + pt(ntnt′ + pt′nt′ + ptpt′)) O(ntp

2
t + pt(mtt′ + qtt′ + ptnt′))

In this section, we analyze the time complexity of our proposed graph summariza-
tion algorithm. The time complexity for each basic operation is summarized in Table 2.
In addition, for the Algorithm 2, the computational cost is dominated by the computa-
tion of the objective function in Line 7. Fortunately, instead of computing the objective
function, we are only required to compute the change in the objective function after
removing a super node. The differences (i.e., J(S(G))− J(S \ {s}(G))) can be com-
puted in time that is linear in the number of nodes. Therefore, the time complexity of
Search(G, S(G), p) is O(

∑
t ptnt).

With the above analysis, the overall time complexity of Algorithm 1 is O(rori[
∑

t∑
t′>t ntnt′(pt + pt′)+

∑
t(nt)

2pt]) for dense matrices and O(rori[
∑

t

∑
t′>tmtt′ +

qtt′(nt + nt′)]) for sparse matrices, where ri/ro is number of iterations within inner
loops (Line 4–10)/outer loops (Line 2–11). Both ri and ro are small in practice, which
are around 20–200.

5 Experiments
5.1 Dataset and Comparable Methods
Data. We use two datasets from different domains: Product [19], and Citeseer [4].
Product consists of product entities from two online retailers Amazon.com and Google
Products. Each record has attributes ID, title, description, manufacturer and price. The
RDF schema of Product data is shown in Figure 1. Note that we only use a flat schema
to model the Product data because we cannot retrieve many-to-many relations (e.g.,
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many-to-many relations between products and manufacturers) due to the fact that only
the product field has a unique identifier. Based on the schema, we create an input multi-
type graph that consists of two types of vertices: product and word. Each product is
connected to a word that appears in the title, manufacturer, and description. In addition,
we also provide product to product similarity and word to word similarity. The available
ground truth presents product equivalences but not manufacturer equivalences.

In the Citeseer data set, each publication has a title and multiple authors. We
modeled the Citeseer data in two ways, with a multi-object schema preserving
author-to-paper, paper-to-author, and author-to-author relations (see Figure 3(c)), and
with a flat schema only preserving author-to-paper and paper-to-author relations (see
Figure 3(a) and Figure 3(b)). Compared to the flat schema, the former model is more in-
formative in terms that it supports accessing the list of co-authors in a paper for each au-
thor. However, some entity resolution systems need the data to be in CSV/XML format,
and the latter flat model is more suitable for such systems. Based on the flat schema,
we create a multi-type graph that consists of four types of vertices: normalized name,
author ID, paper ID, and word. Each author ID is connected to its normalized name
and its related paper ID; while each paper ID is connected to words from its title and
authors. In addition, we also provide the author to author similarity and paper to paper
similarity. The ground truths are whether two paper IDs refer to the same publication
and whether two author IDs refer to the same author entity.

The statistics of two multi-type graphs are summarized in Table 3.

Table 3. The statistics of graphs.

Data #types # records # nodes # edges # entities Full input mapping
Citeseer 4 2892 8591 17521 author:1165, paper:899 8.4 Million
Product 2 4589 12397 41165 product:1104 4.4 Million

Comparable approaches. We compare our approach (CoSum) with representative
state-of-the-art unsupervised entity resolution systems Limes [30], Silk [15], and Serf [3].
For Product data, we also report the best performance achieved by all the entity
resolution approaches and unsupervised entity resolution approaches reported in the
original paper that provide the data [19]. For Citeseer data, we report the best per-



Table 4. Configurations of different systems on Product Data.

Name
(N)

Price
(P)

Description
(D)

Manufacturer
(M)

Acceptance
Metric

Limes
Trigrams

Normalized
difference

Cosine - N>0.6 AND P>0.5 AND D>0.5
Silk Trigrams

Jaro
20N+10M+5P+D 2

Serf Jaccard+4-grams N>0.6 AND P>0.5 AND D>0.5

formance achieved by the collective entity resolution method [4]. Moreover, Limes and
Silk support reading data from a RDF store, which takes advantage of the graph rep-
resentation and therefore more complicated data models. Thus, for Limes/Silk, we use
Limes-F/Silk-F to denote running Limes/Silk using flat models (e.g., Figure 3(a) and
Figure 3(b)), and Limes-MO/Silk-MO using multi-object models (e.g., Figure 3(c)).

Note that various graph summarization techniques have been proposed in terms of
other purposes such as compressing minimum description length [33, 27, 24]. We also
compare our approach to one representative minimum-description-length-based graph
summarization approach GSum [33] in terms of entity resolution task.
Evaluation metrics. We evaluate the entity resolution quality using the usual mea-
sures: precision, recall, and F-measure. We also report the running time comparison of
different approaches, although the comparison is unfair since they are implemented in
different languages C++ (GSum), Java (Serf, Limes and Silk), and Matlab (CoSum).
All the experiments are conducted on a single machine, with a 4-core 2.7GHZ CPU
and 16 GB memory.

5.2 Configuration
Limes and Silk require a configuration file, describing the input/output format, as well
as the acceptance metric and thresholds which determine whether a pair of records are
the same or not. In Serf, the user is required to implement a decision-maker function
that receives a pair of records and returns a true/false decision. For all the three systems,
we need to determine which attribute/field to choose, their best similarity metrics, and
how important their roles are in the acceptance decision. In our experiments, we tried
our best to choose the best fitted metric functions based on what each system offers and
the characteristic of data. Tables 4 and 5 illustrate a summary of the acceptance metrics
for different systems on Product and Citeseer domains respectively. The details
are described as follows.

We first select the set of attributes according to different systems. For instance, in
Limes, the user first introduces all the attributes he wants to use for record comparison,
and Limes requires all the specified attributes to be available in both records in order
to compare them. As a result, we had to ignore the manufacturer name in Product
domain, since more than 90% of the records in Google product dataset do not have the
manufacturer name. The configuration in Silk is very similar to Limes, except that Silk
allows the user to specify which attributes are not required for record-pair comparison
and can be ignored if their value is missing. Therefore, we still use the manufacturer
attribute in Silk. With the selected attributes and the details reported in the original
work [4, 19] that provide these two benchmark datasets, we have tried combinations of

2 In Silk, when choosing the weighted average score aggregation, the user just introduces rejec-
tion thresholds and weights for each attribute.



Table 5. Configurations of different systems on Citeseer data.

Papers Author Acceptance Metric
Title
(T)

First-author
(F)

Authors
(A)

Name
(N)

Co-authors
(C)

Papers Authors

Limes-F

Trigrams
Jaro-

Winkler

Jaccard
Jaro-

Winkler

- 0.5T+0.4F+0.1A
>0.75

N>0.85
Limes-MO Jaccard 0.8N+0.2C>0.85

Silk-F
soft

Jaccard

-
20T+20F+A

N>0.85

Silk-MO
soft

Jaccard
6N+C

Serf -
0.5T+0.4F+0.1A

>0.75
N>0.85

various string and set similarity measures that are available in the systems (including
Levenshtein, Jaro, N-grams, and Jaccard) as metrics. Finally, we perform multi-level
grid search for optimal weights of attributes and the threshold. For instance, we search
for the best acceptance threshold for Limes by a top-level grid search between [0, 1]
with step size 0.2, following the bottom-level grid search with step size 0.01. Therefore,
our manual configuration performs better than the active learning method within Silk
because the learning method is based on a genetic algorithm (ActiveGenLink [14]).

For graph summarization approaches, the configuration is much easier. We do not
need any acceptance metric since the decision is automatically given by the summary
graph. In addition, if no domain knowledge is available, we could simply compute
the similarity between the same-type vertices using graph proximity measures. In the
experiments, CoSum-B denotes that the similarity between t-type vertices are com-
puted using the weighted common neighbor approach proposed by [1]. That is, for each
x, y ∈ Vt,

simt(x, y) =
∑

z∈CN(x,y)

1

log d(z)
(6)

where CN(x, y) is the set of common neighbors shared by vertices x and y in the given
k-type graph, and d(z) denotes the weighted degree of vertex z. CoSum-P denotes
that we use the string similarity metrics between the same-type vertices configured in
Tables 4 and 5.

5.3 Quality Comparisons
In this section, we evaluate the performance of proposed approach in terms of precision,
recall and F-measure for entity resolution tasks.

Question 1 F-measure: How does CoSum perform compared to the state-of-the-art
entity resolution systems?

Result 1 CoSum outperforms several existing state-of-the-art generic entity resolution
systems (including Limes, Silk, Serf) in terms of F-measure. In addition, the quality is
comparable to the best performance reported in the literature on both Citeseer and
Product.

Question 2 Algorithm: How does the proposed CoSum perform compared to other
graph summarization algorithms?



Result 2 The poor quality achieved by GSum shows that minimum-description-based graph
summarization algorithms may not work well for the entity-resolution task. On the contrary,
the significant improvement achieved by CoSum compared to Gsum verified the advantage
of the proposed graph summarization algorithm.

Table 6. Quality comparisons of different approaches.

Precision Recall F-measure
Author Paper Product Author Paper Product Author Paper Product

Limes-F 0.958 0.827 0.446 0.864 0.761 0.160 0.909 0.792 0.236
Silk-F 0.846 0.877 0.459 0.986 0.756 0.348 0.910 0.812 0.395
Gsum 0.727 0.668 0.01 0.569 0.624 0.587 0.638 0.645 0.02

CoSum-B 0.993 0.871 0.58 0.940 0.611 0.477 0.966 0.718 0.524
Limes-MO 0.912 0.827 0.446 0.944 0.761 0.160 0.928 0.792 0.236
Silk-MO 0.932 0.877 0.459 0.958 0.756 0.348 0.945 0.812 0.395

Serf 0.985 0.837 0.436 0.687 0.808 0.186 0.809 0.822 0.261
CoSum-P 0.999 0.771 0.639 0.997 0.997 0.695 0.998 0.87 0.666

Best in
Literature

NA NA
0.615
[19]

NA NA
0.63
[19]

0.995
[4]

NA
0.622
[19]

Question 3 Modeling: What’s the effect of modeling on state-of-the-art entity resolu-
tion systems?

Result 3 As shown in Table 6, both Limes and Silk are very sensitive to modeling. For
publication entity resolution performance, Limes-MO and Silk-MO perform much better
than Limes-F and Silk-F by using the multi-object modeling that captures the co-authorship
information.

Question 4 Similarity: What’s the effect of similarity measures to the proposed CoSum
approach?

Result 4 Compared to CoSum-B, CoSum-P achieves much better performance in disam-
biguating publication and product entities. This is because for publication, title information
is a dominant feature and thus calculating paper to paper similarity using additional title
trigram similarity improves the performance. Similarly, in Product data, using additional
word-to-word similarity calculated with Jaro-Winkler captures correlation between noisy
texts (e.g., Apple and Apple R©)

5.4 Efficiency Comparisons
In this section, we evaluate the scalability of the proposed approach. Unfortunately,
examining the total running time only is unfair since the compared approaches are im-
plemented in different languages: C++ (GSum), Java (Limes, Silk and Serf) and Matlab
(CoSum). Therefore, we report how running time varies with the size of data to evaluate
the scalability.

Question 5 Scalability with Sample Size: How does the proposed CoSum scale com-
pared to other approaches?
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Fig. 4. Running time comparisons for different approaches.

Result 5 Among all the approaches, Limes is the most efficient and highly scalable with
sample size. In terms of total running time, GSum is the most efficient because it is imple-
mented in C++. However, we observed that the run-time for GSum, Serf and Silk scales
super-linearly with the sample size, while for CoSum and Limes it scales almost linearly.

Question 6 CoSum-B Versus CoSum-P: How does the proposed CoSum scale com-
pared to other approaches?

Result 6 Compared to CoSum-B, CoSum-P requires more I/O time on Product data
because the word to word string similarity is much denser than weighted common neighbor
similarity. However, the word to word string similarity is very informative and thus it helps
convergence. Therefore, on product data, when the sample size is small, the I/O time is
dominant for CoSum-P and thus CoSum-P is slower than CoSum-B. When the sample size
becomes larger, the CPU time is dominant and thus CoSum-P is more efficient than CoSum-
B (faster convergence). On Citeseer data, both paper-to-paper string similarity and
paper-to-paper weighted common neighbor similarity are sparse. Therefore, the running
time of CoSum-B and CoSum-P are very close.

6 Conclusion

In this work, we proposed a multi-graph co-summarization-based method that simulta-
neously identifies entities and their connections. This framework is very generic, and
does not require any domain-specific knowledge such as RDF modeling or tuning the
pairwise similarity threshold. We applied the proposed approach to real multi-type
graphs from different domains and obtained good results in terms of F-measure for
entity-resolution tasks. The proposed method has some limitations. First, the quality of
entity-resolution solution depends on the quality of the user-supplied same-type vertex
similarity. We plan to extend the current method by adaptively refining the same-type
vertex similarity with a small number of training samples. Second, if the same-type ver-
tex similarity matrices and the observed graphs are very dense, the proposed algorithm
is not scalable. In the future, we will improve the efficiency bottleneck by embedding
the blocking techniques with the graph summarization algorithm. Finally, we plan to
apply the graph summarization algorithm to the entity linking tasks, to evaluate the
quality of super links in summary graphs.
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