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Motivation - Leveraging existing maps

Earthquake map Population density

Alignment

Estimate of potential damage



The problem
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Result of search for maps on internet



ldentifying maps among images
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Repository

Our system : Mapfinder

» Extract features

 Find similar images

* Classify image
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[Our method

Extract features from query image
= Water-filling features

Find images similar to query image from
repository
= Content based image retrieval (CBIR)

Classify query image
= k- Nearest neighbor classification (k-NN)



[Our method

Extract features from query image v/
= Water-filling features



Extract features

= Water-filling features

o  Zhou, X.S. et al. - Waterfilling: A novel way for image structure feature
extraction, 1999, Intl. conference on Image Processing

o  Works well on images with strong edges

Source: Census 2000 Summary File 1 Sevie@: GEALys 2000 Surnsry Bl 1

O Works on standard Canny edge maps of original images
- Color invariant



[Water—filling algorithm

= Edge map has disjoint segments.
= Simulates flow of water through each segment




Simulation on one segment
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FC: Fork Count FT: Filling Time WA:Water Amount



[Relevance of features

Fork count (FC)

o Complexity of segment

Filling time (FT)
o Length of segment

Water amount (WA)
o Size of segment



Extracting features to build vectors

» Features computed for each segment
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= Normalized histogram - size invariant

of segments
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Fork Count

No

= 3 features x 8 buckets = 24 element feature vector



[Our method

Find images similar to query image from
repository
= Content based image retrieval (CBIR)



Content Based Image Retrieval (CBIR)

1o Non-map
ors Map repository repository

020 )\ CBIR* (find 5 most similar images) ‘

Query image feature vector
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[Our method

Classify query image v/

= k- Nearest neighbor classification (k-NN)



k - Nearest neighbor classification
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Previous work on map identification

SVM using Law’s Textures (Desai, et. al. 2005)

Support Vector Machine
v Trained on labeled examples
v Learns a model of the class

Law’s Texture
Convolution of gray-scale image with 5 texture masks
v Distribution of intensity values on resulting images



Comparison of experiment parameters

Claim 1.
o CBIR better than SVM
Compare methods when both use Water-Filling
o 1600 training images (repository)
800 maps/ 800 non-maps
o 1600 testing images
800 maps/ 800 non-maps

Claim 2:
o Water-Filling better than Law’s Textures
Compare features when both use SVM



Experiments

Given: collection of images
Task: separate maps/non-maps

Source of image Total number | Number of Number of non-
(Keyword used) of images map images map images

Los Angeles Maps 378 327 91
Seattle Maps 132 87 45
Chicago Maps 480 376 104
Pittsburgh Maps 139 92 47
New York Maps 143 87 56
New Delhi Maps 188 124 64
City maps 624 611 13
N/A (CALTECH 101) 3,082 0 3,082
ALL 5,166 1,704 3,462




Results

Method Precision | Recall | F,-Measure
CBIR w/ Water-Filling |87.14 77.36 |81.96
SVM w/ Water-Filling |88.80 56.00 |68.69
SVM w/ Law’s Textures | 69.50 47.43 |56.38

* Precision : percentage of images correctly classified as maps

 Recall : percentage of maps identified

= CBIR outperforms SVM
= Water-Filling is better than Law’s Textures




[Results (2)

Varying the repository size (amount of training data) w/ Water-Filling features
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Results (3)

Varying the repository size across all methods (F,-Measure)
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Reasons

SVM class modeling issues
o Learns 1 model for all maps

O

Needs to be trained for all distinct classes

More scalable

O

Addition to repository index; SVM needs to be
re-trained

Law’s Texture has many more features and
takes more time to extract them per image



Related Work

Classifying maps

o SVM using Law’s Textures (Desai, et. al. 2005)
Law’s Textures: generates intensity maps based on textures
o SVM Requires training, Law’s generates many, many features
O  Outperformed by our method

CBIR-based k-NN

o Classify images in the medical domain (Lehmann, et. al. 2005)
Used for classification/querying, not harvesting

Other features for CBIR

o salient points as features (based on wavelets) (Tian, et. al. 2001)

o shape similarity features (Latecki & Lakamper, 2000)
Could plug-in to our method as future work



Scope for improvement

m Common classification error

o A non-map gets repeatedly included in the set of
similar images due to map-like features

o Remove with relevance feedback from user




Conclusions

Automatically harvest maps from the Web
o Accurate

o Fast

o Scalable

o Cost-effective

Future work

o Remove non-map images with map-like features
o Explore other classifiers/features
o Plug into georeferencing framework



