
INV ITED
P A P E R

Smart Camera Networks in
Virtual Reality
Simulated smart cameras track the movement of simulated pedestrians in
a simulated train station, allowing development of improved
control strategies for smart camera networks.
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ABSTRACT | This paper presents our research towards smart

camera networks capable of carrying out advanced surveil-

lance tasks with little or no human supervision. A unique

centerpiece of our work is the combination of computer

graphics, artificial life, and computer vision simulation tech-

nologies to develop such networks and experiment with them.

Specifically, we demonstrate a smart camera network com-

prising static and active simulated video surveillance cameras

that provides extensive coverage of a large virtual public space,

a train station populated by autonomously self-animating

virtual pedestrians. The realistically simulated network of

smart cameras performs persistent visual surveillance of

individual pedestrians with minimal intervention. Our innova-

tive camera control strategy naturally addresses camera

aggregation and handoff, is robust against camera and

communication failures, and requires no camera calibration,

detailed world model, or central controller.

KEYWORDS | Camera networks; computer vision; persistent

human observation; sensor networks; smart cameras; virtual
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I . INTRODUCTION

Future visual sensor networks will rely on smart cameras
for sensing, computation, and communication. Smart
cameras are self-contained vision systems, complete with

increasingly sophisticated image sensors, power circuitry,
(wireless) communication interfaces, and on-board pro-
cessing and storage capabilities. They provide new
opportunities to develop camera sensor networks capable
of effective visual coverage of extensive areasVpublic
spaces, disaster zones, battlefields, and even entire
ecosystems. These multicamera systems lie at the inter-
section of Computer Vision and Sensor Networks, raising
research problems in the two fields that must be addressed
simultaneously.

In particular, as the size of the network grows, it
becomes infeasible for human operators to monitor the
multiple video streams and identify all events of possible
interest, or even to control individual cameras directly
in order to maintain persistent surveillance. Therefore,
it is desirable to design camera sensor networks that
are capable of performing advanced visual surveillance
tasks autonomously, or at least with minimal human
intervention.

In this paper, we demonstrate a model smart camera
network comprising uncalibrated, static and active, simu-
lated video surveillance cameras that, with minimal
operator assistance, provide perceptive coverage of a large
virtual public spaceVa train station populated by auton-
omously self-animating virtual pedestrians (Fig. 1). Once a
pedestrian of interest is selected either automatically by
the system or by an operator monitoring surveillance video
feeds, the cameras decide among themselves how best to
observe the subject. For example, a subset of the active
pan/tilt/zoom (PTZ) cameras can collaboratively monitor
the pedestrian as he or she weaves through the crowd. The
problem of assigning cameras to persistently observe
pedestrians becomes even more challenging when multi-
ple pedestrians are involved. To deal with the myriad
possibilities, the cameras must be able to reason about the
dynamic situation. To this end, we propose a distributed
camera network control strategy that is capable of
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dynamic, task-driven node aggregation through local
decision-making and internode communication.

A. Virtual Vision
The type of research that we report here would be very

difficult to carry out in the real world given the expense of
deploying and experimenting with an appropriately
complex smart camera network in a large public space
such as an airport or a train station. Moreover, privacy laws

generally restrict the monitoring of people in public spaces
for experimental purposes.1 To bypass the legal and cost
impediments, we advocate virtual vision, a unique synthesis
of computer graphics, artificial life, and computer vision
technologies (Fig. 2). Virtual vision is an advanced
simulation framework for working with machine vision

Fig. 1. Plan view of the (roofless) virtual Penn Station environment, revealing the concourses and train tracks (left), the main waiting

room (center), and the shopping arcade (right). (The yellow rectangles indicate pedestrian portals.) An example camera network is illustrated,

comprising 16 simulated active (PTZ) video surveillance cameras. Synthetic images from cameras 1, 7, and 9 (from [1]).

Fig. 2. The virtual vision paradigm (image from [1]).

1See [2] for a discussion of privacy issues related to smart camera
networks.
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systems, including smart camera networks, that also offers
wonderful rapid prototyping opportunities. Exploiting
visually and behaviorally realistic environments, called
reality emulators, virtual vision offers significantly greater
flexibility and repeatability during the camera network
design and evaluation cycle, thus expediting the scientific
method and system engineering process.

In our work, we employ a virtual train station populated
by autonomous, lifelike virtual pedestrians, wherein we
deploy virtual cameras that generate synthetic video feeds
emulating those acquired by real surveillance cameras
monitoring public spaces (Fig. 3). Despite its sophistication,
our simulator runs on high-end commodity PCs, thereby
obviating the need to grapple with special-purpose hardware
and software. Unlike the real world, 1) the multiple virtual
cameras are very easily reconfigurable in the virtual space,
2) we can readily determine the effect of algorithm and
parameter modifications because experiments are perfectly
repeatable in the virtual world, and 3) the virtual world
provides readily accessible ground-truth data for the pur-
poses of camera network algorithm validation. It is important
to realize that our simulated camera networks always run
online in real time within the virtual world, with the virtual
cameras actively controlled by the vision algorithms. By
suitably prolonging virtual-world time relative to real-world
time, we can evaluate the competence of computationally
expensive algorithms, thereby gauging the potential payoff of
efforts to accelerate them through efficient software and/or
dedicated hardware implementations.

An important issue in camera network research is the
comparison of camera control algorithms. Simple video
capture suffices for gathering benchmark data from time-
shared physical networks of passive, fixed cameras, but
gathering benchmark data for networks that include any

smart, active PTZ cameras requires scene reenactment for
every experimental run, which is almost always infeasible
when many human subjects are involved. Costello et al. [3],
who compared various schemes for scheduling an active
camera to observe pedestrians, ran into this hurdle and
resorted to Monte Carlo simulation to evaluate camera
scheduling approaches. They concluded that evaluating
scheduling policies on a physical testbed comprising even a
single active camera is extremely problematic. By offering
convenient and limitless repeatability, our virtual vision
approach provides a vital alternative to physical active
camera networks for experimental purposes.

Nevertheless, skeptics may argue that virtual vision
relies on simulated data, which can lead to inaccurate
results. Fretting that virtual video lacks all the subtleties of
real video, some may cling to the dogma that it is
impossible to develop a working machine vision system
using simulated video. However, our high-level camera
control routines do not directly process any raw video.
Instead, these routines are realistically driven by data
supplied by low-level recognition and tracking routines
that mimic the performance of a state-of-the-art pedestrian
localization and tracking system, including its limitations
and failure modes. This enables us to develop and evaluate
camera network control algorithms under realistic simu-
lated conditions consistent with physical camera networks.
We believe that the fidelity of our virtual vision emulator is
such that algorithms developed through its use will readily
port to the real world.

B. Smart Camera Network
Many of the challenges associated with sensor net-

works are relevant to our work. A fundamental issue is the
selection of sensor nodes that should participate in a

Fig. 3. Synthetic video feeds from multiple virtual surveillance cameras situated in the (empty) Penn Station environment.

Camera locations are shown in Fig. 1.
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particular sensing task [4]. The selection process must take
into account the informational contribution of each node
against its resource consumption or potential utility in
other tasks. Distributed approaches for node selection are
preferable to centralized approaches and offer what are
perhaps the greatest advantages of networked sensingV
robustness and scalability. Also, in a typical sensor
network, each node has local autonomy and can commu-
nicate with a small number of neighboring nodes, where
the neighborhood of a node can be defined automatically
as the set of nodes that are, e.g., within nominal radio
communications distance of that node [5]. Message delay
and message loss are common occurrences in sensor
networks due to bandwidth limitations, interference, etc.
One must also contend with nonstationary network topol-
ogy due to node failures, node additions, etc.

Mindful of these issues, we propose a novel camera
network control strategy that does not require camera
calibration, or a detailed world model, or a central con-
troller. The overall behavior of the network is the conse-
quence of the local processing at each node and internode
communication. The network is robust to node and
communication failures. Moreover, it is scalable because
of the lack of a central controller. Visual surveillance tasks
are performed by groups of one or more camera nodes.
These groups, which are created on the fly, define the
information sharing parameters and the extent of collab-
oration between nodes. A group evolvesVi.e., old nodes
leave the group and new nodes join itVduring the lifetime
of the surveillance task. One node in each group acts as the
group supervisor and is responsible for group-level deci-
sion making. We also present a novel constraint satisfac-
tion problem formulation for resolving interactions
between groups.

We assume the following communication model:
1) nodes can communicate with their neighbors, 2) mes-
sages from one node can be delivered to another node if
there is a path between the two nodes, and 3) messages
can be sent from one node to all the other nodes.
Furthermore, we assume the following network model:
1) messages can be delayed, 2) messages can be lost, and
3) nodes can fail. These assumptions ensure that our
virtual camera network faithfully mimics the operational
characteristic of a real sensor network.

C. Contributions and Overview
The contribution of this paper is twofold. We introduce

a novel camera sensor network framework suitable for
next-generation visual surveillance applications. We also
demonstrate the advantages of developing and evaluating
camera sensor networks within our sophisticated virtual
reality simulation environment. A preliminary version of
this work appeared in [6] and it extends that reported in an
earlier paper [7]. Among other extensions, we introduce a
novel Constraint Satisfaction Problem (CSP) formulation
for resolving group–group interactions.

The remainder of the paper is organized as follows:
Section II reviews relevant prior work. We explain the low-
level vision emulation and behavior models for camera
nodes in Section III. Section IV presents the sensor
network communication model. Section V discusses the
application of the model in the context of persistent visual
surveillance and presents our results. Section VI concludes
the paper and discusses future research directions.

II . RELATED WORK

In 1997, Terzopoulos and Rabie introduced a purely
software-based approach to designing active vision sys-
tems, called animat vision [8]. Their approach prescribes
the use of artificial animals (or animats) situated in
physics-based virtual worlds to study and develop active
vision systems, rather than struggling with hardwareVthe
cameras and wheeled mobile robots typically used by
computer vision researchers. They demonstrated the
animat vision approach by implementing biomimetic
active vision systems for virtual animals and humans [9].
The algorithms developed were later adapted for use in a
vehicle tracking and traffic control system [10], which
affirmed the usefulness of the animat vision approach in
designing and evaluating complex computer vision
systems.

Envisioning a large computer-simulated world inhab-
ited by virtual humans that look and behave like real
humans, Terzopoulos [11] then proposed the idea of using
such visually and behaviorally realistic environments,
which he called reality emulators, to design machine
vision systems, particularly surveillance systems. The work
presented here is a significant step towards realizing this
vision. Shao and Terzopoulos [1] developed a prototype
reality emulator, comprising a reconstructed model of the
original Pennsylvania Station in New York City populated
by virtual pedestrians, autonomous agents with functional
bodies and brains. The simulator incorporates a large-scale
environmental model of the train station with a sophisti-
cated pedestrian animation system including behavioral,
perceptual, and cognitive human simulation algorithms.
The simulator can efficiently synthesize well over 1000
self-animating pedestrians performing a rich variety of
activities in the large-scale indoor urban environment.
Like real humans, the synthetic pedestrians are fully auto-
nomous. They perceive the virtual environment around
them, analyze environmental situations, make decisions,
and behave naturally within the train station. They can
enter the station, avoiding collisions when proceeding
through congested areas and portals, queue in lines as
necessary, purchase train tickets at the ticket booths in the
main waiting room, sit on benches when tired, obtain
food/drinks from vending machines when hungry/thirsty,
etc., and eventually proceed to the concourses and descend
stairs to the train platforms. Standard computer graphics
techniques render the busy urban scene with considerable
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geometric and photometric detail (Fig. 1). Our camera
network is deployed and tested within this virtual train
station simulator.

In concordance with the virtual vision paradigm,
Santuari et al. [12], [13] advocate the development and
evaluation of pedestrian segmentation and tracking
algorithms using synthetic video generated within a virtual
museum simulator containing scripted animated charac-
ters. Synthetic video is generated via rendering, which
supports global illumination, shadows, and visual artifacts
like depth of field, motion blur, and interlacing. They have
used their virtual museum environment to develop static
background modeling, pedestrian segmentation, and
pedestrian tracking algorithms. They focus on low-level
computer vision, whereas our work goes beyond this to
focus on high-level computer vision issues, especially mul-
ticamera control in large-scale camera networks. Previous
work on multicamera systems has dealt with issues related
to low- and medium-level computer vision, namely,
identification, recognition, and tracking of moving objects
[14]–[18]. The emphasis has been on tracking and on
model transference from one camera to another, which is
required for object identification across multiple cameras
[19]. Multiple cameras have also been employed either to
increase the reliability of the tracking algorithm [20] (by
overcoming the effects of occlusion or by using three-
dimensional (3-D) information for tracking) or to track an
object as it moves through the fields of view (FOVs) of
different cameras. In most cases, object tracking is accom-
plished by combining some sort of background subtraction
strategy and an object appearance/motion model [21].
Numerous researchers have proposed camera network
calibration to achieve robust object identification and
classification from multiple viewpoints, and automatic
camera network calibration strategies have been proposed
for both stationary and actively controlled camera nodes
[22]–[24]. Schemes for learning sensor (camera) network
topologies have also been proposed [25]–[27].

Little attention has been paid, however, to the problem
of controlling or scheduling active cameras when there are
more objects to be monitored in the scene than there are
active cameras. Some researchers employ a stationary wide-
FOV camera to control an active camera [3], [28]–[30].
Generally speaking, the cameras are assumed to be cali-
brated and the total coverage of the cameras is restricted to
the FOV of the stationary camera. In contrast, our approach
does not require calibration; however, we assume that the
cameras can identify a pedestrian with reasonable accuracy.
To this end, we employ color-based pedestrian appearance
models.

The problem of forming sensor groups based on task
requirements and resource availability has received much
attention within the sensor networks community [4].
Mallet [27] argues that task-based grouping in ad hoc camera
networks is highly advantageous. Collaborative tracking,
which subsumes this issue, is considered an essential

capability in many sensor networks [4]. Zhao et al. [31]
introduce an information driven approach to collaborative
tracking that attempts to minimize the energy expenditure
at each node by reducing internode communication. A node
selects the next node by utilizing the information gain
versus energy expenditure tradeoff estimates for its
neighbor nodes. In the context of camera networks, it is
often difficult without explicit geometric and camera
calibration knowledge for a camera node to estimate the
expected information gain of assigning another camera to
the task, but such knowledge is tedious to obtain and
maintain during the lifetime of the camera network.
Therefore, our camera networks eschew such knowledge;
a node need only communicate with nearby nodes before
selecting new nodes.

The nodes in sensor networks are usually untethered
sensing units with limited onboard power reserves. Hence,
a crucial concern is the energy expenditure at each node,
which determines the lifespan of a sensor network [32].
Node communications have large power requirements;
therefore, sensor network control strategies attempt to
minimize the internode communication [31]. Presently,
we do not address this issue; however, the communication
protocol that we propose limits the communication to the
active nodes and their neighbors. IrisNet is a sensor
network architecture tailored towards advanced sensors
connected via high-capacity communication channels [33].
It takes a centralized view of the network, modeling it as a
distributed database that allows efficient access to sensor
readings. We consider this work to be orthogonal to ours.
SensEye is a recent sensor-network inspired multicamera
system [34]. It demonstrates the low latency and energy
efficiency benefits of a multitiered network, where each
tier defines a set of sensing capabilities and corresponds to
a single class of smart camera sensors. However, SensEye
does not deal with the distributed camera control issues
that we address.

Our node grouping strategy is inspired by the
ContractNet distributed problem solving protocol [35]
and it realizes group formation via internode negotiation.
Unlike Mallett’s [27] approach to node grouping, where
groups are defined implicitly via membership nodes, our
approach defines groups explicitly through group leaders.
This simplifies reasoning about groups; e.g., Mallett’s
approach requires specialized nodes for group termination.
Our strategy handles group leader failures through group
merging and group leader demotion operations.

Resolving group–group interactions requires sensor
assignment to various tasks, which shares many features
with Multi-Robot Task Allocation (MRTA) problems
studied by the multiagent systems community [36].
Specifically, according to the taxonomy provided in [36],
our sensor assignment formulation belongs to the single-
task (ST) robots, multirobot (MR) tasks, instantaneous
assignment (IA) category. ST–MR–IA problems are signi-
ficantly more difficult than single-robot-task MRTA
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problems. Task-based robot grouping arises naturally in
ST–MR–IA problems, which are sometimes referred to as
coalition formation. ST–MR–IA problems have been ex-
tensively studied and they can be reduced to a set parti-
tioning problem (SPP), which is strongly NP-hard [37].
However, heuristics-based set partitioning algorithms exist
that produce good results on large SPPs [38]. Fortunately,
the sizes of MRTA problems, and by extension SPPs,
encountered in our camera sensor network setting are
small because of the spatial or locality constraints inherent
to the camera sensors.

We model sensor assignments as a CSP, which we solve
using Bcentralized[ backtracking. Each sensor assignment
that passes the hard constraints is assigned a weight, and
the assignment with the highest weight is selected. We
have intentionally avoided distributed constraint optimi-
zation techniques (e.g., [39] and [40]) because of their
explosive communication requirements even for small
sized problems. Additionally, it is not obvious how they
handle node and communication failures. Our strategy lies
somewhere between purely distributed and fully central-
ized schemes for sensor assignmentVsensor assignment is
distributed at the level of the network, whereas it is
centralized at the level of a group.

III . SMART CAMERA NODES

Each virtual camera node in the sensor network is able to
perform low-level visual processing and is an active sensor
with a repertoire of camera behaviors. The virtual cameras
also render the scene to generate synthetic video suitable
for machine vision processing. Sections III-A–D describe
each of these aspects of a camera node.

A. Synthetic Video
Virtual cameras use the OpenGL library and standard

graphics pipeline [41] to render the synthetic video feed.
Our imaging model emulates imperfect camera color re-
sponse, compression artifacts, detector and data drop-out
noise, and video interlacing; however, we have not yet
modeled other imaging artifacts such as depth-of-field,
vignetting, and chromatic aberration. Furthermore, the
rendering engine does not yet support pedestrian shadows
and specular highlights. More sophisticated rendering
schemes would address these limitations. Noise is intro-
duced during a post-rendering phase. The amount of noise
introduced into the process determines the quality of the
input to the visual analysis routines and affects the perform-
ance of the pedestrian segmentation and tracking module.

We model the variation in color response across cam-
eras by manipulating the Hue, Saturation, Value (HSV)
channels of the rendered image. Similarly, we can adjust
the tints, tones, and shades of an image by adding the
desired amounts of blacks, whites, and grays, respectively
[42]. Our visual analysis routines rely on color-based
appearance models to track pedestrians; hence, camera

handovers are sensitive to variations in the color response
of different cameras.

Bandwidth is generally at a premium in sensor net-
works, especially so in camera networks. In many in-
stances, images captured by camera nodes are transmitted
to a central location for analysis, storage, and monitoring
purposes. Camera nodes routinely exchange information
among themselves during camera handover, camera
coordination, and multicamera sensing operations. The
typical data flowing in a camera network is image/video
data, which places much higher demands on a network
infrastructure than, say, alphanumeric or voice data.
Consequently, in order to keep the bandwidth require-
ments within acceptable limits, camera nodes compress
the captured images and video before sending them off to
other camera nodes or to the monitoring station.

Compression artifacts together with the low resolution
of the captured images/video pose a challenge to visual
analysis routines and are therefore relevant to camera
network research. We introduce compression effects into
the synthetic video by passing it through a JPEG
compression/decompression stage before providing it to
the pedestrian recognition and tracking module. Fig. 4
shows compressed and uncompressed versions of a
1000! 1000 image. The compressed version (24 kb) is
about 10 times smaller than the uncompressed version
(240 kb). Notice the compression artifacts around the
color region boundaries in Fig. 4(d).

We simulate detector noise as a data-independent,
additive process with a zero-mean Gaussian distribution
[Fig. 5(a)]. The standard deviation of the Gaussian distri-
bution controls the amount of noise introduced into the
image. Data dropout noise is caused by errors during data
transmission within the imaging device [Fig. 5(b)]. The
corrupted pixels are either set to the maximum value
(snow) or have their bits flipped. Sometimes pixels are
alternatively set to the maximum value or zero (salt and
pepper noise). The amount of noise is determined by the
percentage of corrupted pixels.

We simulate interlaced video by rendering frames at
twice the desired frequency and interlacing the even and

Fig. 4. Compression artifacts in synthetic video. (a) Uncompressed

image. (b) Enlarged region of the rectangular box in (a).

(c) JPEG-compressed image. (d) Enlarged region of the

rectangular box in (c).
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odd rows of sequential frames. Fig. 6 shows a 640! 480
deinterlaced frame. The frame was generated by weaving
two fields that were rendered 1/60th s apart. Pedestrians
that are moving across the image plane appear jagged
around the edges proportional to their speed. Interlacing
effects also appear during panning and zooming operations
in active PTZ cameras. Deinterlacing artifacts can be
mitigated [43], but not removed entirely.

B. Visual Processing
The sensing capabilities of a camera node are deter-

mined by the low-level visual routines (LVR). The LVRs,
such as pedestrian tracking and identification, are com-
puter vision algorithms that directly operate upon the
synthetic video generated by the virtual cameras. They
mimic the performance of a state-of-the-art pedestrian
segmentation and tracking module. In particular, pedes-
trian tracking can fail due to occlusions, poor segment-
ation, bad lighting, or crowding (Fig. 7). Tracking
sometimes locks on the wrong pedestrian, especially if
the scene contains multiple pedestrians with similar visual
appearance; i.e., wearing similar clothes. Additionally, the

virtual world affords us the benefit of fine tuning the
performance of the recognition and tracking module by
taking into consideration the ground truth data readily
available from the virtual world.

We employ appearance-based models to track pedes-
trians. Pedestrians are segmented to compute robust
color-based signatures, which are then matched across
subsequent frames. Color-based signatures have found
widespread use in tracking applications [44], but they are
sensitive to illumination changes. This shortcoming can be
mitigated, however, by operating in HSV color space
instead of RGB color space. Furthermore, zooming can
drastically change the appearance of a pedestrian, thereby
confounding conventional appearance-based schemes. We
employ a modified color-indexing scheme [45] to tackle
this problem. Thus, a distinctive characteristic of our
pedestrian tracking routine is its ability to operate over a
range of camera zoom settings. It is important to note that
we do not assume camera calibration.

Conventional pedestrian segmentation is difficult for
active PTZ cameras due to the difficulty of maintaining a
background model. We match pedestrian signatures across
frames through color indexing. Proposed by Swain and
Ballard [45], color indexing efficiently identifies objects
present in an image using their color distributions in the
presence of occlusions as well as scale and viewpoint
changes. It was adapted by Terzopoulos and Rabie [8] for
active vision in artificial animals. In color indexing, targets
with similar color distributions are detected and localized
through histogram backprojection, which finds the target
in an image by emphasizing colors in the image that belong
to the observed target.

For target histogram T and image histogram I, we
define the ratio histogram as RðiÞ ¼ TðiÞ=IðiÞ for
i ¼ 1; . . . ; n, where n is the number of bins and TðiÞ,
IðiÞ, and RðiÞ are the number of samples in bin i of the
respective histograms, and we set RðiÞ ¼ 0 when IðiÞ ¼ 0.
Histogram R is backprojected into the image, which
involves replacing the image pixel values by the values of R
that they index: Bðx; yÞ ¼ Rðmapðcðx; yÞÞÞ, where Bðx; yÞ
is the value of the backprojected image at location ðx; yÞ,
and where cðx; yÞ is the color of the pixel at location ðx; yÞ
and the function mapðcÞ maps a 3-D HSV color value to
the appropriate histogram bin. The backprojected image is
then convolved with a circular disk of area equal to the
expected area of the target in the image: Br ¼ Dr % B,
where Dr is the disk of radius r. The peak in the convolved
image gives the expected ðx; yÞ location of the target in the
image. We refer the reader to [45] for a thorough
description of this process.

The last step of the color indexing procedure assumes
that the area of the target in the image is known a priori.
Active PTZ cameras violate this assumption, as the area
covered by the target in the image can vary greatly
depending on the current zoom settings of the camera. We
propose a novel scheme to localize targets in a histogram

Fig. 6. Simulating video interlacing effects. (a) A deinterlaced video

frame computed by weaving two fields. (b) Close-up view of a

pedestrian in (a).

Fig. 5. Simulating noise in synthetic video. (a) Detector noise.

(b) Data dropout noise.
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backprojected image when the size of the targets in the
image is not known beforehand. Our scheme is based on
the observation that when the size of the target is equal to
the size of the localization kernel (i.e., the disk Dr), the
filter response forms a peak at the Btrue[ location of the
target. On the other hand, the filter response forms a
plateau centered at the Btrue[ location of the target in the
image for kernel sizes that are either too large or too small
relative to the size of the target in the image. Fig. 8 illus-
trates this phenomenon. Fig. 9 details and demonstrates

Fig. 8. Multiscale target localization in histogram backprojected

images: Convolving an idealized 7-pixel 1-D backprojected image Iwith

1-tap, 3-tap, and 5-tap summing kernels. The image is extended with

0 borders for convolution purposes.

Fig. 9. Target localization in backprojected images. The algorithm

is detailed (top) and demonstrated on synthetic data using

ð6l þ 1Þ ! ð2l þ 1Þ rectangular summing kernels. (a) An ideal 2-D

backprojected image that contains four different-sized targets.

(b) Noise is added to the image to exacerbate the localization problem.

(c) Our multiscale localization procedure successfully identifies all

four regions, whereas the procedure in [45] yields poor localization

results for kernel sizes 3 (d), 5 (e), and 7 (f).

Fig. 7. (a) The LVRs are programmed to track Pedestrians 1 and 3. Pedestrian 3 is tracked successfully; however, track is lost of Pedestrian 1

whoblends into thebackground. The tracking routine losesPedestrian 3when she is occludedbyPedestrian2, but it regains trackofPedestrian 3

when Pedestrian 2 moves out of the way. (b) Tracking while fixating on a pedestrian. (c) Tracking while zooming in on a pedestrian.

(d) Camera returns to its default settings upon losing the pedestrian; it is now ready for another task.
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our algorithm for target localization in backprojected
images. We use ð6lþ 1Þ ! ð2lþ 1Þ rectangular kernels,
where l is chosen as a fraction of h=7, with h the height
of a video frame in pixels. Typically, l ¼ ð0:1; 0:2;
. . . ; 1Þ ! h=7.

Algorithm for target localization in backprojected images

Step 1: Compute Bl ¼ B % Kl, where B is the back-
projected image, Kl is the kernel of size l, and
l ¼ 1; . . . ;m.

Step 2: Find ðx%; y%Þ ¼ argmaxðx;yÞ
Pm

l¼1 Bl.
Step 3: Find ðx%l ; y%l Þ ¼ argmaxðx;yÞ2KBl, where K is

the domain of Kl centered at ðx%; y%Þ.
Step 4: Find

l% ¼ argmax
l

X

ðx;yÞ 2 K
ðBlðx%l ; y

%
l Þ ' Blðx; yÞÞ2=jKj:

Step 5: Construct the n-bin color histogram H of
the region of size l centered at ðx%; y%Þ using
the original image.
If

Pn
i min TðiÞ;HðiÞð Þ=

Pn
i TðiÞ 9 !, a

user-specified threshold,
then output the region of size l at
location ðx%; y%Þ, else quit.

Step 6: Remove from Bl a region of size l centered at
ðx%; y%Þ by setting the values of all the pixels
in the region to 0.
Repeat steps 1 through 6.

Each camera can fixate and zoom in on an object of
interest. The fixation and zooming routines are image-
driven and do not require any 3-D information such as
camera calibration or a global frame of reference. The
fixate routine brings the region of interestVe.g., the
bounding box of a pedestrianVinto the center of the image
by rotating the camera about its local x and y axes. The
zoom routine controls the FOV of the camera such that
the region of interest occupies the desired percentage of
the image. Refer to [46] for the details.

C. Camera Node Behavioral Controller
Each camera node is an autonomous agent capable of

communicating with nearby nodes. The camera controller
determines the overall behavior of the camera node, taking
into account the information gathered through visual
analysis by the LVRs (bottom-up) and the current task
(top-down). We model the camera controller as an
augmented hierarchical finite state machine (Fig. 10).

In its default state, Idle, the camera node is not
involved in any task. It transitions into the Computing-
Relevance state upon receiving a queryrelevance message

from a nearby node. Using the description of the task that
is contained within the queryrelevance message, and by
employing the LVRs, the camera node can compute its
relevance to the task (see Section III-D). For example, it
can use visual search to find a pedestrian that matches the
appearance-based signature forwarded by the querying
node. The relevance encodes the expectation of how
successful a camera node will be at a particular sensing
task. The camera node returns to the Idle state if it fails to
compute its relevance because it cannot find a pedestrian
matching the description. Otherwise, when the camera
successfully finds the desired pedestrian, it returns its
relevance value to the querying node. The querying node
passes the relevance value to the supervisor node of the
group, which decides whether or not to include the camera
node in the group. The camera goes into the Performing-
Task state upon joining a group, where the embedded child
finite state machine (FSM) hides the sensing details from
the top-level controller and enables the node to handle
transient sensing (tracking) failures. All states other than
the PerformingTask state have built-in timers (not shown in
Fig. 10) that allow the camera node to transition into the
Idle state rather than wait indefinitely for a message from
another node.

The child FSM [Fig. 10 (inset)] starts in Track state,
where video frames are processed to track a target without
panning and zooming a camera.Wait is entered when track
is lost. Here camera zoom is gradually reduced in order to
reacquire track. If a target is not reacquired during Wait,
the camera transitions to the Search state, where it per-
forms search sweeps in PTZ space to reacquire the target.

A camera node returns to its default state after finishing
a task, using the reset routine, which is a PD controller that
attempts to minimize the difference between the current
zoom/tilt settings and the default zoom/tilt settings.

D. Computing Camera Node Relevance
The accuracy with which individual camera nodes are

able to compute their relevance to the task at hand
determines the overall performance of the network. The

Fig. 10. The top-level camera controller consists of a hierarchical FSM.

The inset (right) represents the child FSM embedded within the

PerformingTask and ComputingRelevance states in the top-level FSM.
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computation of the relevance of a camera to a video
surveillance task encodes the intuitive observations that
1) a camera that is currently free should be chosen for the
task, 2) a camera with better tracking performance with
respect to the task at hand should be chosen, 3) the turn
and zoom limits of cameras should be taken into account
when assigning a camera to a task; i.e., a camera that has
more leeway in terms of turning and zooming might be
able to follow a pedestrian for a longer time, and 4) it is
better to avoid unnecessary reassignments of cameras to
different tasks, as doing so may degrade the performance
of the underlying computer vision routines.

Upon receiving a task request, a camera node returns to
the leader node a list of attribute-value pairs quantifying its
relevance to the current task along multiple dimensions
(Fig. 11). The leader node uses them to compute a rele-
vance metric whose result is a scalar relevance value r, as
shown in (1),

r¼ exp ' ð"'"̂Þ2
2#"2

'ð$'$̂Þ2
2#$2

'ð%'%̂Þ2
2#%2

! "
; if the camera is free

0; if the camera is busy

(

(1)

where "̂ ¼ ð"min þ "maxÞ=2, $̂ ¼ ð$min þ $maxÞ=2, and
%̂ ¼ ð%min þ %maxÞ=2. Here, "min and "max are extremal
FOV settings, $min and $max are extremal vertical rotation
angles around the x-axis, and %min and %max are extremal
horizontal rotation angles around the y-axis. The values of
the variances #", #$, and #% associated with each attribute
are chosen empirically (in our experiments, we set
#" ¼ #$ ¼ #% ¼ 5:0), where $, %, and " denote the
camera pan, tilt, and zoom values, respectively, required to
center the pedestrian in the field of view of the camera.
The distance between the camera and the pedestrian can
be approximated by the declination angle, which may be
estimated from % under a ground-plane assumption.
Fig. 12 illustrates the relevance of cameras subject to their
pan/zoom settings. See [46] for additional details.

IV. CAMERA NETWORK MODEL

The camera network communication scheme that enables
task-specific node organization functions as follows: A

human operator presents a particular sensing request to
one of the nodes. In response to this request, relevant
nodes self-organize into a group with the aim of fulfilling
the sensing task. The group, which represents a collabo-
ration between member nodes, is a dynamic arrangement
that evolves throughout the lifetime of the task. At any
given time, multiple groups might be active, each per-
forming its respective task. Group formation is determined
by the local computation at each node and the commu-
nication between the nodes. Specifically, we employ the
ContractNet protocol, which models auctions (an-
nouncement, bidding, and selection) for group forma-
tion [35] (Fig. 13). The local computation at each node
involves choosing an appropriate bid for the announced
sensing task.

We distinguish between two kinds of sensing task
initializations: 1) where the queried camera itself can
measure the phenomenon of interestVe.g., when the
operator selects a pedestrian to be observed in a particular
video feedVand 2) when the queried camera node is
unable to perform the required sensing and must route
the query to other nodesVe.g., when the operator tasks
the network to count the number of pedestrians wearing
green tops. To date we have experimented only with the
first kind of task initializations, which are sufficient for

Fig. 11. Quantities associated with computing the relevance metric

of a camera node relative to a surveillance task.

Fig. 12. The effect of the pan and zoom settings of a camera on its

relevance to a visual sensing task. (a) Both cameras can track the

pedestrian; however, Camera 2 is at the limit of its pan angle,

so (1) computes a lower relevance for it. (b) All three cameras can

track the pedestrian, but 2 and 3 can do so only at the limits of

their zoom settings; (1) computes a higher relevance for Camera 1.

Fig. 13. Task auction supports coalition formation. The red cross

indicates a lost message.
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performing collaborative persistent observation tasks;
however, this is by no means a limitation of our proposed
communication model.

A. Node Grouping
Node grouping commences when a node n receives a

sensing query. In response to the query, the node sets up a
named task and creates a single-node group. Initially, as
node n is the only node in the group, it is chosen as the
leader. To recruit new nodes to the current task, node n
begins by sending queryrelevance messages to its neigh-
boring nodes, Nn. This is akin to auctioning the task in the
hope of finding suitable nodes. A subset N0 of Nn respond
by sending their relevance values for the current task
(relevance message). This is the bidding phase. Upon
receiving the relevance values, node n selects a subsetM of
N0 to include in the group and sends join messages to the
chosen nodes. This is the selection phase. When there is
no resource contention between groupsVe.g., when only
one task is active, or when multiple tasks that do not
require the same nodes for successful operation are
activeVthe selection process is relatively straightforward;
node n picks those nodes from N0 that have the highest
relevance values. Otherwise, when multiple groups vie for
the same nodes, a conflict resolution mechanism is neces-
sary. In Section IV-B, we present a conflict resolution
method to handle this situation. A node that is not
already part of any group can join the group upon re-
ceiving a join message from the leader of that group. After
receiving the join message, a subset M0 of M elect to join
the group.

For groups comprising more than one node, if a group
leader decides to recruit more nodes to the task at hand, it
instructs group nodes to broadcast task requirements. This
is accomplished by sending queryrelevance to group nodes.
The leader node is responsible for group-level decisions, so
member nodes forward to the group leader all the group-
related messages, such as the relevance messages from
potential candidates for group membership. During the
lifetime of a group, member nodes broadcast status
messages at regular intervals. Group leaders use these
messages to update the relevance information of the group
nodes. When a leader node receives a status message from
another node performing the same task, the leader node
includes that node into its group. The leader uses the most
recent relevance values to decide when to drop a member
node. A group leader also removes a node from the group if
it has not received a statusmessage from that node by some
preset time limit.2 Similarly, a group node can choose to
stop performing the task when it detects that its relevance
value is below a predefined threshold. When a leader
detects that its own relevance value for the current task is

below the threshold, it selects a new leader from among
the member nodes. The group vanishes when the last
member node leaves.

B. Conflict Resolution
A conflict resolution mechanism is needed when

multiple groups require the same resources. The problem
of assigning cameras to the contending groups can be
treated as a Constraint Satisfaction Problem (CSP) [47].
Formally, a CSP consists of a set of variables fv1; v2;
v3; . . . ; vkg, a set of allowed values Dom½vi) for each va-
riable vi (called the domain of vi), and a set of constraints
fC1; C2; C3; . . . ; Cmg. The solution to the CSP is a set
fvi  ai j ai 2 Dom½vi)g, where the assignments satisfy all
the constraints.

We treat each group g as a variable whose domain
consists of the nonempty subsets of the set of cameras with
relevance values (with respect to the task associated with g)
greater than a predefined threshold. The constraints
restrict the assignment of a camera to multiple groups.
We define a constraint Cij as ai \ aj ¼ f!g, where ai and aj
are camera assignments to groups gi and gj, respectively;
k groups give rise to kðk' 1Þ=2 constraints. We can then
define a CSP as P ¼ ðG;D; CÞ, where G ¼ fg1; g2; . . . ; gkg
is the set of groups (variables) with nonempty domains,
S ¼ fDom½gi) j i 2 ½1; k)g is the set of domains for each
group, and C ¼ fCij j i; j 2 ½1; k); i 6¼ jg is the set of
constraints.

A node initiates the conflict resolution procedure upon
identifying a group–group conflict; e.g., when it intercepts
a queryrelevance message from multiple groups, or when it
already belongs to a group and it receives a queryrelevance
message from another group. The conflict resolution
procedure begins by centralizing the CSP in one of the
supervisor nodes, which uses backtracking to solve the
problem. The result is then conveyed to the other super-
visor nodes.

Fig. 14 shows a camera network consisting of
three cameras. The camera network is assigned two tasks:
1) observe Pedestrian 1 with at least two cameras and
2) observe Pedestrian 2 with one or more cameras.

2The relevance value of a group node decays over time in the absence
of new status messages from that node. Thus, we can conveniently model
node-dependent timeouts; i.e., the time interval during which at least one
status message must be received by the node in question.

Fig. 14. Conflict resolution for camera assignment.
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Pedestrian 1 is visible in Cameras 1 and 3, and Pedestrian 2
is visible in all three cameras. Treating each task (or group)
as a variable, we cast camera assignment as a CSP. The
valid camera assignments listed in Fig. 14 define the
domain of the two variables. The domain of each task (or
group) is the powerset of the set of cameras that can carry
out the task (i.e., that can be a member of the corre-
sponding group). Since each camera can carry out only one
task (or be a member of only one group) at any given time,
a valid camera assignment will not assign any camera to
more than one task (group). We express this restriction as
a binary constraint by enforcing the intersection of the set
of cameras assigned to any two tasks to be the null set. In
the above scenario, Cameras 1 and 3 are assigned to
Pedestrian 1 and Camera 2 is assigned to Pedestrian 2
(highlighted rows in Fig. 14).

CSPs have been studied extensively in the computer
science literature and there exist several methods for
solving them. We employ backtracking to search system-
atically through the space of possibilities in order to find an
optimal camera assignment. The naive backtracking
method, which we denote AllSolv, enumerates every
solution in order to find the best solution. Instead, we
store the currently best result and backtrack whenever the
current partial solution is of poorer quality. We call this
method BestSolv. Using this strategy, we can guarantee an
optimal solution under the assumption that the quality of
solutions increase monotonically as values are assigned to
more variables. When P does not have a solution, we solve
smaller CSPs by relaxing the node requirements for
each task.

Table 1 compares our method (BestSolv) with naive
backtracking (AllSolv). The problem is to assign three
sensors each to two groups. The average number of
relevant nodes for each group is 12 and 16. AllSolv finds
all the solutions, ranks them, and picks the best one,
whereas BestSolv computes the optimal solution by
storing the currently best solution and backtracking
when partial assignment yields a poorer solution. As ex-
pected, the BestSolv solver outperforms the AllSolv solver.
Typically, BestSolv will outperform AllSolv, but equally
importantly, BestSolv cannot do worse than AllSolv. Note
that AllSolv and BestSolv explore the same solution space,
so in the worst case both schemes will do the same amount
of work. Typically, however, BestSolv can backtrack on

partial solutions, thereby saving a potentially exponential
amount of work.

A key feature of our proposed conflict resolution
method is centralization, which requires that all the re-
levant information be gathered at the node that is re-
sponsible for solving the CSP. For smaller CSPs, the cost of
centralization is easily offset by the speed and ease of
solving the CSP. One can perhaps avoid centralization by
using a distributed constraint satisfaction scheme [40].

C. Node Failures and Communication Errors
The proposed communication model takes into con-

sideration node and communication failures. Commu-
nication failures are perceived as camera failures. In
particular, when a node is expecting a message from
another node, and the message never arrives, the first node
concludes that the second node is malfunctioning. A node
failure is assumed when the supervisor node does not
receive the node’s status messages within a set time limit,
and the supervisor node removes the problem node from
the group. Conversely, when a member node fails to re-
ceive a status message from the supervisor node within a
set time limit, it assumes that the supervisor node has
experienced a failure and selects itself to be the supervisor
of the group. An actual or perceived supervisor node
failure can therefore give rise to multiple single-node
groups performing the same task.

Multiple groups assigned to the same task are merged
by demoting all the supervisor nodes of the constituent
groups except one. Demotion is either carried out based
upon the unique ID assigned to each nodeVamong the
conflicting nodes, the one with the highest ID is selected to
be the group leaderVor when unique node IDs are not
guaranteed, demotion can be carried out via the procedure
in Fig. 15. The following observations suggest that our
leader demotion strategy is correct in the sense that only a

Table 1 Finding an Optimal Sensor Node Assignment

Fig. 15. Group merging via leader demotion.
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single leader node survives the demotion negotiations and
every other leader node is demoted: 1) The demotion
process for more than two nodes involves repeated
(distributed and parallel) application of the demotion
process between two nodes. 2) The demotion process
between two leader nodes either succeeds or fails. It
succeeds when one of the two nodes is demoted. Demotion
between two nodes is based on the contention manage-
ment scheme that was first introduced in the ALOHA
network protocol [48], which was developed in the late
1960s and was a precursor to the ubiquitous Ethernet
protocol (see [49] for the details). In its basic version, the
ALOHA protocol states the following.

• If you have data to send, send it.
• If there is a collision, resend after a random

interval.
The important thing to note here is that the demotion

process between two nodes will eventually succeed and
one of the two leader nodes will be demoted.

V. PERSISTENT SURVEILLANCE

Consider how a network of smart cameras may be used in
the context of video surveillance (Fig. 16). Any two
camera nodes that are within communication range of
each other are considered neighbors. A direct conse-
quence of this approach is that the network can easily be
modified through removal, addition, or replacement of
camera nodes.

A human operator spots one or more mobile pedes-
trians of interest in a video feed and, for example, requests
the network to Bzoom in on this pedestrian,[ Bobserve this
pedestrian,[ or Bobserve the entire group.[ The successful
execution and completion of these tasks requires an
intelligent allocation of the available cameras. In par-
ticular, the network must decide which cameras should
track the pedestrian and for how long.

The accuracy with which individual camera nodes are
able to compute their relevance to the task at hand
determines the overall performance of the network (see
Section III-D and [46] for the details). The computed
relevance values are used by the node selection scheme
described above to assign cameras to various tasks. The
supervisor node gives preference to the nodes that are
currently free, so the nodes that are part of another group
are selected only when an insufficient number of free
nodes are available for the current task.

A detailed world model that includes the location of
cameras, their fields of view, pedestrian motion prediction

Fig. 16. A camera network for video surveillance consists of camera

nodes that can communicate with other nearby nodes. Collaborative,

persistent surveillance requires that cameras organize themselves to

perform camera handover when the observed subject moves out of

the sensing range of one camera and into that of another.

Table 2 Camera Network Simulation Parameters for Figs. 17–19

Fig. 17. A pedestrian of interest walking through the train station

for 15min is automatically observed successively by Cameras 7, 6, 2, 3,

10, and9 (refer toFig. 1) as shemakesherway fromthearcade through

the main waiting room and into the concourse. The dashed contour

shows the pedestrian’s path. The camera numbers are color coded and

the portion of the path walked while the pedestrian is being observed

by a particular camera is highlighted with the associated color.
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models, occlusion models, and pedestrian movement
pathways may allow (in some sense) optimal allocation
of camera resources; however, it is cumbersome and in
most cases infeasible to acquire such a world model. Our
approach eschews such detailed knowledge. We assume
only that a pedestrian can be identified with reasonable
accuracy by the camera nodes.

A. Results
To date, we have simulated our smart camera network

with up to 16 stationary and/or PTZ virtual cameras in the
virtual train station populated with up to 100 autonomous
pedestrians, with network simulation parameters per Table 2.

For the 15-min simulation illustrated in Figs. 17 and 18,
with 16 active PTZ cameras in the train station as indicated

in Fig. 1, an operator selects the female pedestrian with the
red top visible in Camera 7 [Fig. 18(e)] and initiates an
observe task. Camera 7 forms a task group and begins
tracking the pedestrian. Subsequently, Camera 7 recruits
Camera 6, which in turn recruits Cameras 2 and 3 to
observe the pedestrian. Camera 6 becomes the supervisor
of the group when Camera 7 loses track of the pedestrian
and leaves the group. Subsequently, Camera 6 experiences
a tracking failure, sets Camera 3 as the group supervisor,
and leaves the group. Cameras 2 and 3 persistently observe
the pedestrian during her stay in the main waiting room,
where she also visits a vending machine. When the
pedestrian enters the portal connecting the main waiting
room to the concourse, Cameras 10 and 11 are recruited
and they take over the group from Cameras 2 and 3.

Fig. 18. 15-min persistent observationof a pedestrian of interest as shemakesherway through the train station (refer to Fig. 17). (a)–(d) Cameras

1,9, 7, and8monitoring the station. (e)Theoperator selects apedestrianof interest in thevideo feed fromCamera7. (f) Camera7haszoomed inon

the pedestrian, (g) Camera 6, which is recruited by Camera 7, acquires the pedestrian. (h) Camera 6 zooms in on the pedestrian. (i) Camera 2.

(j) Camera 7 reverts to its default mode after losing track of the pedestrian and is now ready for another task. (k) Camera 2, which is recruited

by Camera 6, acquires the pedestrian. (l) Camera 3 is recruited by Camera 6; Camera 3 has acquired the pedestrian. (m) Camera 6 has

lost track of the pedestrian. (n) Camera 2 observing the pedestrian. (o) Camera 3 zooming in on the pedestrian. (p) Pedestrian is

at the vending machine. (q) Pedestrian is walking towards the concourse. (r) Camera 10 is recruited by Camera 3; Camera 10 is

observing the pedestrian. (s) Camera 11 is recruited by Camera 10. (t) Camera 9 is recruited by Camera 10.
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Cameras 2 and 3 leave the group and return to their default
states. Later, Camera 11, which is now acting as the group’s
supervisor, recruits Camera 9, which observes the pedes-
trian as she enters the concourse.

Fig. 19 illustrates camera assignment and conflict
resolution. First, Cameras 1 and 2 situated in the main
waiting room successfully form a group to observe the first
pedestrian that enters the scene, and there is only one
active task. When the user specifies a second taskVfollow
the pedestrian wearing the green topVthe cameras decide
to break the group and reassign themselves. They decide
among themselves that Camera 1 is more suitable for
observing the pedestrian in the green top. Camera 2
continues observing the first pedestrian that entered the
scene. Note that the cameras are able to handle the two
observation tasks completely autonomously and also that
the interaction between them is strictly localVthe other
14 cameras present in the network (Fig. 1) are not involved.

We have observed that the camera network correctly
assigns cameras in most cases. The problems that we
encountered are usually related to pedestrian identification
and tracking. The task of persistently observing a
pedestrian moving through an extensive space will fail if
the low-level visual analysis routines cannot correctly
identify the pedestrian from camera to camera. As we
increase the number of virtual pedestrians in the train
station, the identification and tracking module experiences
increasing difficulty, which increases the chances that the
persistent surveillance task will fail. Note that in the
absence of global 3-D information from calibrated cameras,
our proposed approach is unable to assist the low-level
visual analysis routines. Similarly, the high-level task has
no way of knowing if the visual analysis routines are
performing satisfactorily. While it is beyond the scope of
our current model, information about the 3-D location of
pedestrians (which our simulator can readily provide) can

be utilized to detect pedestrian identification errors. More
sophisticated visual analysis routines should be developed
to improve pedestrian identification in multiple cameras.
We refer the reader to [46] for a more detailed discussion.

VI. CONCLUSION

We envision future video surveillance systems to be
networks of stationary and active cameras capable of main-
taining extensive urban environments under persistent
surveillance with minimal reliance on human operators.
Such systems will require not only robust, low-level vision
routines, but also new camera network methodologies. The
work presented in this paper is a step toward the realization
of such smart camera networks and our initial results
appear promising.

The overall behavior of our prototype smart camera
network is governed by local decision making at each node
and communication between the nodes. Our approach is
novel insofar as it does not require camera calibration, a
detailed world model, or a central controller. We have
intentionally avoided multicamera tracking schemes that
assume prior camera network calibration which, we believe,
is an unrealistic goal for a large-scale camera network
consisting of heterogeneous cameras. Similarly, our ap-
proach does not expect a detailed world model which, in
general, is hard to acquire. Since it lacks any central
controller, we expect our approach to be robust and scalable.

A unique and important aspect of our work is that we
have developed and demonstrated our prototype video sur-
veillance system in virtual realityVa realistic train station
environment populated by lifelike, autonomously self-
animating virtual pedestrians. Our sophisticated camera
network simulator should continue to facilitate our ability
to design such large-scale networks and conveniently
experiment with them on commodity personal computers.

Fig. 19. Camera assignment and conflict resolution. (a) Camera 1 (top row) and Camera 2 (bottom row) observe the main waiting room.

(b) Camera 2 starts observing a pedestrian as soon as she enters the scene. (c)–(d) Camera 1 recognizes the target pedestrian by using

the pedestrian signature computed by Camera 2. Cameras 1 and 2 form a group to observe the first pedestrian. (e) The operator issues

a second task for the camera network, to observe the pedestrian wearing green. The two cameras pan out to search for the latter.

They decide between them which will carry out each of the two tasks. (f) Camera 1 is better suited to observing the pedestrian

in the green top while Camera 2 continues observing the original pedestrian.
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We are currently experimenting with more elaborate
scenarios involving multiple cameras situated in different
locations within the train station, with which we would
like to study the performance of the network in per-
sistently observing multiple pedestrians during their
extended presence in the train station. h
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