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Abstract

This paper describes a new approach to industrial styling design
that combines the advantages of pen-based sketching with concepts
from variational design to facilitate rapid and fluid development
of 3D geometry. The approach is particularly useful for design-
ing products that are primarily stylistic variations of existing ones.
The input to the system is a 2D concept sketch of the object, and
a generic 3D wireframe template. In the first step, the underlying
template is aligned with the input sketch using a camera calibra-
tion algorithm. Next, the user traces the feature edges of the sketch
on the computer screen; user’s 2D strokes are processed and in-
terpreted in 3D to modify the edges of the template. The result-
ing wireframe is then surfaced, followed by a user-controlled re-
finement of the initial surfaces using physically-based deformation
techniques. Finally, new design edges can be added and manipu-
lated through direct sketching over existing surfaces. Our prelimi-
nary evaluation involving several industrial products have demon-
strated that with the proposed system, design times can be signif-
icantly reduced compared to those obtained through conventional
software.

CR Categories: H.5.2 [User Interfaces]: Graphical User In-
terfaces (GUI)—Pen-based interaction; 1.3.5 [Computational Ge-
ometry and Object Modeling]: Curve, surface, solid, and object
representations—Physically based modeling

Keywords: Pen computing, style design, 3D sketching, camera
calibration, physically-based deformation, surfacing.

1 Introduction

Advances in 3D shape modeling have resulted in a myriad of so-
phisticated software available for a range of different applications.
Most commercial systems, while versatile, are tedious to use due
to their intricate interface, and rely heavily on users’ knowledge of
the underlying mathematics for representing, creating and manip-
ulating 3D shapes. Moreover, these systems are typically tailored
toward the later stages of the design where ideas have sufficiently
matured and expected alterations to the design concept are not too
severe. Hence, these tools are typically used by computer modelers
downstream in the design cycle, who have little or no control on
the concept development. For years, this shortcoming has forced
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a gap in the design practice where concepts and computer models
are developed in different media by different personnel. Typically,
designers spend a considerable amount of time generating concept
sketches on paper, which are then handed over to computer mod-
elers who use these sketches as a visual reference during computer
modeling. This separation often results in conflicts between the
intended form and the digital model, requiring multiple iterations
between the two parties until the desired results are achieved. Nev-
ertheless, a key advantage of the conventional software is that it is
highly suitable for ‘variational design,” where the design process
mostly involves a modification of an earlier design. That is, rather
than forcing the designer to start from scratch, these systems help
designers use existing computer models as a starting point in their
current tasks.

To alleviate the shortcomings of conventional software, some re-
cent research has focused on “user-centered” techniques that aim
to provide more intuitive interfaces and interaction tools. These
systems allow users to quickly create and manipulate 3D forms, of-
ten through the use of a digital pen and a tablet, while freeing the
user from most mathematical details. Researchers have success-
fully demonstrated the utility of these systems in various domains
[Zeleznik et al. 1996; Igarashi et al. 1999; Karpenko et al. 2002;
Tsang et al. 2004; Bourguignon et al. 2004; Das et al. 2005; Masry
et al. 2005]. While these systems greatly facilitate 3D shape de-
velopment through an intelligent use of computer vision, human
perception and new interaction techniques, they are often limited to
simple shapes, or they impose constraints not suitable for industrial
styling design.

This work describes a new approach to industrial styling design that
combines the advantages of pen-based computer interaction with
the efficacy of variational design. The proposed method attempts to
improve the current practice by allowing designers to utilize their
paper sketches in conjunction with existing computer models to fa-
cilitate rapid and fluid development of 3D geometry. The method
is designed to enable those with sufficient drawing skills to easily
operate on 3D form without having to know much about the un-
derlying details. The input to the system is a scanned or digitally-
created concept sketch, and a generic 3D wireframe model, called a
template, that has the basic form of the object. In the first step, the
template is aligned with the digital sketch, bringing the projection
of the template as close as possible to the object in the sketch. Next,
using a digital pen, the user traces, in a moderately casual fashion,
the feature edges of the sketch on the computer screen. User’s 2D
strokes are processed and interpreted in 3D to give the desired form
to the template located underneath the image. In a similar way,
other sketches exposing different vantage points can be utilized to
modify different parts of the template. Alternatively, the user can
abandon the use of the input sketches and continue sketching di-
rectly on the template. Once the desired form is achieved, the re-
sulting template is surfaced to produce a solid model, followed by a
user-controlled refinement of the initial surfaces. While our current
surface modification tools support a limited class of deformations,
they are designed to be simple enough to allow users to explore
alternative surface shapes in a controllable and predictable way. Fi-
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Figure 1: Overview of the modeling process. The input to the system consists of: (a) User’s 2D concept sketch, and (b) A 3D template
model. (c) After aligning the template with the sketch, the user draws directly on the sketch. The strokes modify the underlying template.
(d) The final shape obtained after modifying the template and adding new feature edges. (e) The final solid model after surface creation and
modification. The final surfaces are designed using a pressure-based deformation tool.

nally, the model can be further enhanced by sketching new feature
edges on existing surfaces and manipulating them as necessary.

The proposed approach is particularly useful in styling design
where the new product is primarily a stylistic variation of an ex-
isting one. For instance, the approach is well-suited to car body
design wherein a company can use previous years’ sedan models as
templates to facilitate the design of a new sedan. In many cases,
the repository of past designs serves as a natural pool of templates,
eliminating the need for extra investment in template generation.
Likewise, this approach is useful in cases where the basic form
is readily dictated by universal artifacts arising from social or er-
gonomic reasons. In car industry for example, seats customarily
consist of a headrest, a backrest, and a base. Hence, a generic tem-
plate model embodying these main parts can be used in the design
of a wide variety of seat models. However, to accommodate de-
signs that are markedly different than their predecessors, it is con-
ducive to generate and maintain a variety of different templates in
the database, and choose the most suitable one as needed.

The remainder of the paper is organized as follows. Section 2 re-
views existing approaches to 3D shape development. Section 3 de-
scribes the user interaction and an overview of the proposed ap-
proach. Section 4 details the alignment of the template model with
the input sketch. Section 5 explains the 3D modification of the tem-
plate based on users’ strokes. Section 6 describes the generation of
surfaces from the designed template and the associated modifica-
tion tools. Section 7 provides examples and discussions. Section 8
presents conclusions.

2 Related Work

Over the past years, 3D shape interpretation and modeling tech-
niques have evolved in parallel with enabling interaction technolo-
gies. In 3D interpretation from 2D input, the well-known issue of
one-to-many mapping (thus the lack of a unique solution) has re-
sulted in the development of various constraint and optimization
based methods. To date, much work has focused on interpreting
line drawings of polyhedral objects [Grimstead and Martin 1995;
Turner et al. 1999; Varley 2003; Varley 2004; Masry et al. 2005].
These methods typically use some form of a line-labeling algo-
rithm, followed by an optimization step, to produce the most plau-
sible interpretation. Results are shown to be improved by the use of
various image regularities such as symmetry, edge junctions, paral-
lelism and intersection angles. The difficulty of the problem setting
(usually a single drawing constructed from an unknown arbitrary
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viewpoint) makes these methods most suitable to objects with flat
faces and simple edge geometries. In our case, 3D interpretation is
facilitated through the use of templates thus alleviating some of the
difficulties faced by those systems. Similar to our approach, some
recent systems exploit topological templates to extend existing in-
terpretation principles to curved objects. [Mitani et al. 2000] use a
six-faced topological template for interpretation. The nature of the
template, however, limits the scope of the method to objects topo-
logically equivalent to a cube. [P.A.C.Varley et al. 2004] present an
approach most similar to ours. In their approach, a template is first
created by interpreting a drawing of a polyhedral object using line
labeling techniques. Next, curves are added by bending the edges
of the template through sketching. Since there are infinitely many
3D configurations of a curve corresponding to the 2D input, the best
configuration is determined based on the assumption that the modi-
fication produces a symmetrical distortion across the object’s major
plane of symmetry. The idea of templates has also been explored by
[Yang et al. 2005] who use 2D templates to recognize and convert
users’ sketches into 3D shapes. The recognition and 3D geome-
try construction algorithms make this approach suitable to a limited
number of objects with relatively simple geometry.

Some researchers have explored alternative methods to space curve
construction. [Cohen et al. 1999] exploit shadows to facilitate 3D
interpretation. In their system, a space curve drawn in a 2D inter-
face is complemented with a sketch of the same curve’s shadow
on a plane. However, this approach relies on user’s ability to ac-
curately visualize and depict a curve’s shadow. [Das et al. 2005]
describes an approach for free-form surface creation from a net-
work of curves. Their solution to 3D interpretation from 2D input
seeks to produce 3D curves with minimum curvature. This choice
is justified on the grounds that the resulting 3D curve will be least
surprising when viewed from a different viewpoint. As described in
Section 5, our formulation of the best 3D interpretation in based on
a similar rationale, except we minimize the spatial deviation from
the original template as opposed to curvature. [Tsang et al. 2004]
present an image-guided sketching system that uses existing images
for shape construction. Users create 3D wireframe models by trac-
ing 2D profiles on images that reside on orthonormal construction
planes. While their work is similar to ours in the way existing im-
ages are used, their approach relies primarily on the use of top, side
and front construction planes as opposed to an arbitrary viewpoint.
Additionally, profile creation uses a click-and-drag interaction in-
stead of a sketch-based interaction. Nevertheless, as described in
Section 5, our approach recognizes the utility of active contours
[Kaas et al. 1988] for curve manipulation similar to theirs.



From an interaction point of view, various gesture-based interfaces
have been developed for 3D shape creation [Zeleznik et al. 1996;
Eggli et al. 1995] and modification [Hua and Qin 2003; Draper and
Egbert 2003]. In these systems, designers’ strokes are used primar-
ily for geometric operations such as extrusion or bending, rather
than for depicting the shape. Silhouette-based approaches [Igarashi
et al. 1999; Karpenko et al. 2002; Bourguignon et al. 2004; Schmidt
et al. 2005; Cherlin et al. 2005] enable free-form surface generation.
In these methods, users’ strokes are used to form a 2D silhouette
representing an outline or a cross-section, which is then extruded,
inflated or swept to give 3D form. These systems are best suited
to creating cartoon-like characters or similar geometries. Systems
such as [Cheutet et al. 2004; Nealen et al. 2005] allow users to di-
rectly operate on existing surfaces to deform or add features lines
using a digital pen. The key difference of these systems compared
to gesture-based interfaces is that users’ strokes are directly repli-
cated in the resulting shape. However, these systems are most use-
ful during detail design where the main geometry is already avail-
able.

In addition to pen and tablet based systems, a number of virtual
reality based systems have also been developed. Systems pro-
posed by [Bimber et al. 2000; Wesche and Seidel 2001; Diehl et al.
2004; Fleisch et al. 2004] allow users to construct 3D wireframes
in a virtual environment using specialized input devices and a head
mounted display. Once the wireframe is created, surfaces covering
the wireframe are added to produce a solid model. Inspired by tape
drawing commonly used in automotive industry, [Grossman et al.
2002] describe a system for constructing 3D wireframe models us-
ing a digital version of the tape drawing technique. [Llamas et al.
2005] describe a method for deforming 3D shapes based on a vir-
tual ribbon. The ribbon serves as a flexible spline controlled by the
user that, when attached to the solid object and deformed, allows
the object to be deformed in parallel. A common difficulty in such
systems is that users’ unfamiliarity with the input devices and in-
teraction techniques makes these methods less attractive to those
accustomed to traditional tools.

In addition to the above 3D shape modeling techniques, a number
of techniques have been devised to understand users’ hand-drawn
sketches [Kara and Stahovich 2004; Gennari et al. 2004; Alvarado
and Randall 2004; Hammond and Davis 2004; Shilman and Viola
2004; LaViola and Zeleznik 2004]. Given the context in which the
sketches are created, the primary goal in these methods is to have
the computer reliably parse and identify the objects suggested by
the pen strokes. While the work in sketch understanding has made
the pen an attractive alternative for inputting graphical information,
to date, most studies have focused on 2D scenes, with little or no
concern for the stylistic or aesthetic aspect of users’ strokes.

3 User Interaction and Overview

The main input device is a pressure sensitive digitizing tablet with
a cordless pen. The drawing surface of the tablet is an LCD display,
which allows users to see digital ink directly under the pen. Users’
strokes are collected as time sequenced (x,y) coordinates sampled
along the stylus’ trajectory. The user interface consists of a main
drawing region, and a side toolbar for accessing commonly used
commands.

Figure 1 summarizes the main steps of the approach. In a typical
session, the user begins by loading a scanned or digitally-created
sketch of the design object, and an appropriate template model. The
input sketch and template are independent in that the creation of one
does not require the knowledge of the other, and vice versa. How-
ever, given the design sketch, the user must choose the appropriate

151

template from the database. This means, if the design object in
question is a car seat, the user must choose a car seat template, if
it is a sedan car, a sedan template must be chosen etc. If there are
multiple candidate templates that could be used with the sketch, it
is preferable to choose the template that most closely resembles the
sketch.

Since input sketches may have been drawn from arbitrary vantage
points, the first step involves geometrically aligning the template
with the sketch until the projection of the template to the image
plane matches the sketch. This requires a reliable identification of
the camera properties suggested in the sketch. These properties cor-
respond to the position, orientation, and lens parameters of a virtual
camera that, if directed at the design object, would produce the im-
age in the sketch. To uncover these parameters, the user is asked
to sketch a virtual bounding box enclosing the object in the sketch
and mark its eight corners. 2D coordinates of these eight corners
trigger a calibration algorithm that determines the unknown cam-
era parameters. The computed parameters are then applied to the
template model, thus bringing the template in close correspondence
with the sketch.

The above alignment sets the stage for an image-guided sketching
process in which the user replicates the input sketch (or parts of
it) by retracing its characteristic edges with the digital pen. Each
edge can be retraced using any number of strokes, drawn in any
direction and order, thus accommodating casual sketching styles.
After retracing an edge, the user invokes a command that processes
the accumulated strokes to tacitly modify the corresponding edge of
the template in 3D (details are presented in Section 5). At any point,
the user may reveal the underlying template by hiding the sketch,
and continue sketching directly on the template. This feature is
useful when bulk of the template has been modified by retracing
the reference sketch, but further touches are necessary to obtain the
final shape. In such cases, with the template visible, the user can
change the vantage point and modify the edge from the new view.
When necessary, the reference sketch and the associated camera
properties can be recalled to realign the template with the sketch.
Alternatively, other sketches drawn from different vantage points
may also be used. When using a new sketch, however, the user must
perform camera calibration to orient the template according to the
new vantage point. If desired, the program will preserve symmetry
across a user-specified plane. This allows users to work solely on a
single side of a symmetrical object; the geometry is automatically
replicated on the other side. Note that although this work advocates
the use of existing concept sketches to facilitate modeling, their
use is optional. Without loss of benefits, designers may elect to
work directly on the template by navigating around the model and
modifying its edges as necessary.

Once the desired form is achieved, the newly designed wireframe
is automatically surfaced, followed by a user-controlled modifica-
tion and refinement of the initial surfaces. The surface modification
tool, inspired by the physical deformation of a thin membrane un-
der a pressure force, allows the user to inflate or flatten a surface
by a controllable amount. The intuitive nature of this deformation
tool enables different surface shapes to be quickly and straightfor-
wardly explored. Surfaces may be further refined using a method
inspired by mechanical springs. This method works to minimize
the variation of mean curvature, producing surfaces that are fair and
aesthetically pleasing. Finally, with the new surfaces in place, the
user can enhance the model by sketching new design edges directly
on the surfaces and manipulating them as necessary.



Figure 2: Template alignment. (a) User draws an approximate
bounding box on the sketch and marks its eight corners. (b) The
default configuration of the template is an orthographic side view.
(c) The camera calibration algorithm closely aligns the template
with the sketch. In an ideal alignment, the corners of the template
bounding box would exactly match the red dots marked by the user.

4 Template Alignment

To align the template with the sketch, the user is asked to draw
a bounding box enclosing the object in the sketch, and mark its
eight corners. It is assumed that the sketch is depicted from a gen-
eral viewpoint with all eight corners of the bounding box distinctly
revealed. The 2D coordinates of the eight corner points set up a
camera calibration algorithm that aligns the user-drawn bounding
box with that of the template!. Adopting the convention used in
[Forsyth and Ponce 2003], the camera model relating a homoge-
neous world coordinate P =[x y z l]T to a homogeneous image

coordinate p = [u v 1]7 can be described as follows:
1
p=-K[R t|P
s
where s is an unknown scale factor. R and t are the extrinsic camera

properties corresponding to the rotation and translation matrices. K
is the camera intrinsic matrix and is given by:

o —acot(f) ug

K=] 0
sin(g)  °
0 0 1

with (ug, vg) the coordinates of the camera center, ¢ and 3 the scale
factors in image u and v axes, and 6 the skew angle in radians be-
tween the two image axes. Given the eight corner points indicated
by the user and the corresponding eight world coordinates of the
template corners, the goal is to reliably identify matrices K, R, ¢,
and the unknown scalar s. Once these parameters are determined,
they can be applied to the virtual camera directed at the template to
align the projection of the template with the sketch.

The calibration process can be decomposed into two parts [Forsyth
and Ponce 2003]: (1) Computing a 3x4 projection matrix M; the
product (1/s)-K-[R t], (2) Estimating intrinsic and extrinsic pa-
rameters from M.

'Drawing the bounding box provides a visual guide to the user and is
optional. Only the eight corner points are required by the calibration algo-
rithm.
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For the solution of the first part, we use the Linear Direct Trans-
form method [Abdel-Aziz and Karara 1971]. In this method, n im-
age coordinates and their corresponding n world coordinates yield
a system of 2n homogenous linear equations in the twelve unknown
coefficients of M. When n > 6 (in our case n is 8), the twelve coef-
ficients can be obtained in the least-squares sense as the solution of
an eigenvalue problem.

The second step extracts s, K, R and t from M. This is facilitated by
the fact that the rows of the rotation matrix have unit length and are
orthonormal. Without presenting the details, the unknown camera
parameters can be found as follows (see [Forsyth and Ponce 2003]
for details):

Rewrite M = [A3x3b3x;]. Note that A and b are trivially determined
from M. Let a;, a, and a3 be the three column vectors of A. Letry,
r; and rj3 be the three unknown column vectors of R. Then:

s = *1/|[as],
ry = sas,
uy = sz(al ~a3),
Vo = s2(32~a3),
X . X
cos(f) = — (@) xa;)- (3 xay) ,
llar x as][ - [|az x as]|

a = sl xas]|-sin(6),

B = 5 llayxas]|-sin(6),
r ap X az

| = —

|la x a3||’

rp = 1I3Xrj,

t = s-K''b

Two R matrices can be computed depending on the sign of s. Typ-
ically, the sign of #; is known in advance; it is positive if the origin
of the world coordinate system is in front of the camera. An inspec-
tion of the computed t vector thus allows a unique selection of R.
Figure 2 shows the calibration result for a car seat.

Compared to alternative methods, such as a manual alignment of
the template, this calibration method has the advantage that extrin-
sic and intrinsic camera parameters can be simultaneously com-
puted. While manually adjusting the position and orientation of
the template might be feasible, a manual calibration of the intrinsic
parameters is not trivial. One key issue in the above approach, how-
ever, is whether designers can accurately portray the bounding box
in the sketch, and if not, how sensitive the approach is to such in-
accuracies. Our informal observations involving several users have
indicated that most can draw bounding boxes accurately enough, es-
pecially for sketches exhibiting conventional vantage points. Nev-
ertheless, even if the user’s depiction of the bounding box is quite
inaccurate, the least-squares nature of the calibration yields satis-
factory results in most practical settings.

Once the template is aligned with the sketch using this method, the
resulting intrinsic and extrinsic camera properties can be saved in
a text file, and can later be recalled with a single button click. As
the results are available for later use, the user has to perform cali-
bration only once through out the design cycle. This is especially
useful where multiple sketches depicting different vantage points
are used for design. In such cases, the user may calibrate the tem-
plate separately once for each sketch. During the design process,
individual calibration data can be quickly retrieved, thus allowing a
fluid switching between different sketches.



While the bounding box provides a suitable set of eight points that
facilitates calibration, the approach can be extended to a more gen-
eral setting using a more obvious set of calibration points. For in-
stance, instead of using the bounding box corners of a car seat, one
may elect to use the bottom four corners of the seat base, the inter-
section points of the base and the backrest, the intersection points
of the backrest and the headrest etc. Likewise, in car body design,
the centers of the four wheels, the corners of the roof, the intersec-
tion points between the hood and the windshield etc., can be used as
suitable calibration points. As long as six or more such points can
be identified (preferably dispersed around the entirety of the object
to achieve the best overall fit), the above algorithm can be readily
applied without any modification. For a given design object, how-
ever, the user must know which points are used by the algorithm so
as to be able to mark the corresponding points on the sketch. Cur-
rently, all of our design objects use the bounding box corners as the
calibration points.

5 Pen-based 3D Shape Modification

After the template is aligned with the sketch, the user begins tracing
the edges in the sketch as if the sketch was recreated on the com-
puter. While sketching is a purely 2D operation, the key here is that
input strokes are used to modify the template in 3D. The challenge
is to compute a modification that results in the best match with the
sketch, while generating the most appropriate 3D form. To facili-
tate analysis, the approach is designed such that edges are modified
one at a time, with freedom to return to an earlier edge. At any
point, the edge that the user is modifying is determined automat-
ically as explained below, thus allowing the user modify edges in
arbitrary order. After each set of strokes, the user presses a button
that processes accumulated strokes, and modifies the appropriate
template edge. For the purposes of discussion, we shall call users’
input strokes as modifiers, and the template edge modified by those
modifiers as the rarget edge or target curve.

Modification of the template is performed in three steps. In the first
step, edges of the template are projected to the image plane result-
ing in a set of 2D curves. It is assumed that the user intends to
modify the edge whose projection lies closest to the input strokes.
Hence, in this step, the projected curve that lies nearest to the mod-
ifiers is taken to be the target curve. The spatial proximity between
a projected curve and the modifiers is computed by sampling a set
of points from the curve and the modifiers, and calculating the ag-
gregate minimum distance between the two point sets. In the sec-
ond step, the target curve is deformed in the image plane using an
energy minimization algorithm until it matches well with the mod-
ifiers. In the third step, the modified target curve is projected back
into 3D space. The following sections detail curve modification in
the image plane and projection back into 3D space.

5.1 Curve modification in 2D image plane

Given the set of modifiers and the target curve, this step deforms
the target curve in the image plane until it closely approximates the
modifiers. The solution is facilitated by the use of energy minimiz-
ing splines based on active contour models [Kaas et al. 1988]. Ac-
tive contours (also known as snakes) have long been used in image
processing applications such as segmentation, tracking, and regis-
tration. The principal idea is that a snake moves and conforms to
certain features in an image, such as intensity gradient, while min-
imizing its internal energy due to bending and stretching. This ap-
proach allows an object to be extracted or tracked in the form of a
continuous spline.

153

Original curve
(Snake)

Maodifiers Modified curve

(a) (b)

Figure 3: Modification of a 2D curve. (a) Original curve and the
modifier strokes. (b) New shape of the target curve. The original
curve is shown dashed for reference.

Our method adopts the above idea for curve manipulation. Here,
the target curve is modeled as a snake, whose nodes are sampled
directly from the target curve. The nodes of the snakes are con-
nected to one another with line segments making the snake geo-
metrically equivalent to a polyline. The set of modifier strokes,
on the other hand, is modeled as an unordered set of points (point
cloud) extracted from the input strokes. This allows for an arbitrary
number of modifiers, drawn in arbitrary directions and order, thus
accommodating casual drawing styles. With this formulation, the
snake converges to the shape of the modifiers, but locally resists ex-
cessive bending and stretching to maintain smoothness (Figure 3).
Mathematically, this can be expressed as an energy functional to be
minimized:

Esnake = ZEint(Vi) + Eext (Vi)
i

where v; = (x;,y;) is the i'th node coordinate of the snake. Ej is
the internal energy arising from the stretching and bending of the
snake. It involves first and second order derivatives of v; with re-
spect to arc length. Since minimizing Ej, in its original form is
computationally intensive, we resort to a simpler approximate solu-
tion of applying a restitutive force F,.y which simply moves each
snake node toward the barycenter of its neighboring two nodes (Fig-
ure 4). However, to prevent the snake from shrinking indefinitely,
its two ends are pinned to the two extremal points of the modifiers
prior to modification.

Figure 4: Internal energy due to stretching and bending is mini-
mized approximately by moving each snake node to the barycenter
of its neighbors similar to Laplacian smoothing.

External energy E,,; describes the potential energy of the snake due
to external attractors, which arise in the presence of modifiers. The
modifiers’ influence on the snake consists of two components: (1)
location forces, (2) pressure forces. The first component moves the
snake toward the data points sampled from the modifiers. For each
snake node v;, a force Fy,.(v;) is computed corresponding to the
influence of the location forces on v;:



m, —
—n=n
[y, — v

Vi
Fioc(vi) = :

)y

nck_neigh

(n)

where m,, is one of the k closest neighbors of v; in the modifiers
(Figure 5). w(n) is a weighting factor inversely proportional to the
distance between m,, and v;. In other words, at any instant, a snake
node v; is pulled by k nearest modifier points. The force from each
modifier point m,, is inversely proportional to its distance to v;, and
points along the vector m, — v;. Using k neighbors has the desir-
able effect of suppressing outliers, thus directing the snake toward
regions of high ink density.

my

Modifiers

Figure 5: Location force on a node.

The second component of E,y; is related to pressure with which
strokes are drawn. The force created due to this energy pulls the
snake toward sections of high pressure. The rationale behind con-
sidering the pressure effect is based on the observation that users
typically press the pen harder to emphasize critical sections while
sketching. The pressure term exploits this phenomenon by forc-
ing the snake to favor sections drawn more emphatically. For each
snake node v;, a force Fp,s(v;) is computed as:

)y

nek_neigh

m, —Vv;

Fpres(vi) = p(n)

[l —vill

where p(n) is a weight factor proportional to the pen pressure
recorded at point m,,.

During modification, the snake moves under the influence of the
two external forces while minimizing its internal energy through
the restitutive force. In each iteration, the new position of v; is
determined by the vector sum of Fyeg, Fioe and F s, whose rel-
ative weights can be adjusted to emphasize different components.
For example, increasing the weight of F,,g will result in smoother
curves with less bends. On the other hand, emphasizing F s will
increase the sensitivity to pressure differences with the resulting
curve favoring high pressure regions.

5.2 Unprojection to 3D

In this step, the newly designed 2D curve is projected back into 3D
space. Theoretically, there is no unique solution because there are
infinitely many 3D curves whose projections match the 2D curve.
Therefore the best 3D configuration must be chosen based on cer-
tain constraints. The nature of the problem, however, provides some
insights into these constraints. Trivially, the 3D curve should ap-
pear right under the user’s strokes. Additionally, if those strokes
occur precisely over the original target curve (i.e, the strokes do not
alter the curve’s 2D projection), the target curve should preserve
its original 3D shape. Finally, if the curve is to change shape, it
must maintain a reasonable 3D form. By “reasonable,” we mean a
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Figure 6: Modification of a car hood near the headlight. (a) User’s
strokes. (b) Surface S created by the rays emanating from the user’s
eyes and passing through the strokes, and the minimum-distance
lines from the original curve. (c) Resulting shape. (d) Resulting
shape from the top view.

solution that the designer would accept in many cases, while antic-
ipating it in the worst case.

Based on these premises, we choose the optimal configuration as
the one that minimizes the spatial deviation from the original target
curve. That is, among the 3D curves whose projections match the
newly designed 2D curve, we choose the one that lies nearest to the
original target curve. This can be formulated as follows:

Let C be a curve in R? constrained on a surface S.> Let C°"8 be
the original target curve in R3 that the user is modifying. The new
3D configuration C* of the modified curve is computed as:

Ct = argminz [|ICi— CfrigH
c

where C; denotes the i'th vertex of C. With this criterion, C*
is found by computing the minimum-distance projection points of

C?""8 onto S (Figure 6b).

The rationale behind this choice is that, by remaining proximate to
the original curve, the new curve can be thought to be “least sur-
prising” when viewed from a different viewpoint. Put differently,
under normal usage, it is difficult to generate a curve unexpectedly
different from the original curve. The only exception is when the
user attempts to modify a curve from an odd viewpoint (e.g., trying
to draw the waistline of a car from the front view). However, such
situations are not frequently encountered as users naturally tend to
choose suitable viewpoints. Nevertheless, if the new curve is not
satisfactory, users can redraw the curve from other viewpoints. Be-
cause the curve deviates minimally between modifications, each
step will introduce its own changes while preserving the changes
made in the previous steps. This allows the desired shape to be
obtained in a relatively few steps.

28 is the surface subtended by the rays emanating from the user’s view-
point and passing through the newly designed 2D curve. This surface ex-
tends into 3D space and is not visible from the original viewpoint.



The above processes may cause originally connected curves of the
template to be disconnected. In these cases, the user may invoke a
“trim” command that merges curve ends that lie sufficiently close
to one another. However, instead of simply extending or shortening
the curves at their ends, each curve is translated, rotated, and scaled
in its entirety until its ends meet with other curves. This eliminates
kinks that could otherwise occur near the ends. Additionally, by
manipulating the curve as a whole, it preserves the shape estab-
lished by the user without introducing unwarranted artifacts. Note
that since edge ends to be trimmed are usually sufficiently close
to one another, scaling effects are hardly noticeable. At the end,
a well-connected wireframe is obtained that can be subsequently
surfaced. Details of the surfacing process are described in the next
section.

After surfacing, new feature curves can be added to the model by di-
rectly sketching on existing surfaces. In these cases, the 3D config-
urations of the input strokes are trivially computed using the depth
buffer of the graphics engine. Once created, the new curves can
be manipulated the same way original template curves are manip-
ulated. Additionally, they can be used in the construction of new
surfaces.

6 Surface Creation and Modification

In the last step, the newly designed wireframe model is surfaced to
obtain a solid model. Once the initial surfaces are obtained, the user
can modify them using simple deformation tools. The following
sections detail these processes.

6.1 Initial surface creation

Given the wireframe model, this step creates a surface geometry for
each of the face loops in the wireframe. In this work, it is assumed
that the wireframe topology is already available with the template
model and therefore all face loops are known apriori®. Each face
loop may consist of an arbitrary number of edge curves. For each
face loop, the surface geometry is constructed using the method
proposed in [Inoue 2003]. In this method, each curve of the wire-
frame is represented as a polyline, and the resulting surfaces are
polygonal surfaces consisting of purely triangular elements.

Figure 7 illustrates the creation of a surface geometry on a bound-
ary loop. In the first step, a vertex is created at the centroid of
the boundary vertices. Initial triangles are then created that use the
new vertex as the apex, and have their bases at the boundary. Next,
for each pair of adjacent triangular elements, edge swapping is per-
formed. For two adjacent triangles, this operation seeks to improve
the mesh quality by swapping their common edge (Figure 8a). The
mesh quality is based on the constituent triangles’ quality. For a
triangle, it is defined as the radius ratio, which is the radius of the
inscribed circle divided by the radius of the circumscribed circle.
Next, adjacent triangles are subdivided iteratively, until the longest
edge length in the mesh is less than a threshold (Figure 8b). Be-
tween each iteration, edge swapping and Laplacian smoothing is
performed to maintain a regular vertex distribution with high qual-
ity elements. At the end, the resulting surface is refined using a
physically-based mesh deformation method, called the V-spring op-
erator. This method, which will be presented in detail in Section
6.2.2, iteratively adjusts the initial mesh so that the total variation

31f the topology is unknown, it has to be computed automatically, or it
must be manually specified by the user. Currently, we are working toward
automatically computing the wireframe topology.
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Figure 7: Surface creation. (a) Initial boundary loop consisting of
four curves. (b) Preliminary triangulation using a vertex created at
the centroid. (c) Edge swapping (d) Final result after face splitting
and mesh smoothing using V-spring method.
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Figure 8: (a) Edge swapping. Diagonals of adjacent triangles are
swapped if minimum element quality increases. (b) Triangle subdi-
vision.

of curvature is minimized. Once the initial surfaces are created in
this way, new feature curves can be added to the model by direct
sketching, as described in the previous section. Figure 9 shows the
final surface generated for the car seat. Note that new feature curves
are added, which were not part of the original template model .

6.2 Surface modification

Often times, the designer will need to modify the initial surfaces to
give the model a more aesthetic look. In this work, we adopt a sim-
ple and intuitive modification scheme that allows users to explore
different surface alternatives in a controllable and predictable way.
Unlike most existing techniques, our approach operates directly on
the polygonal surface without requiring the user to define a control
grid or a lattice structure.

Our approach consists of two deformation methods. The first
method uses pressure to deform a surface. With this tool, resulting
surfaces look rounder and inflated, with more volume. The second
method is based on the V-spring approach described by [Yamada
et al. 1999]. In this method, a network of mechanical springs work
together to minimize the variation of surface curvature. A discus-
sion of the practical utility of this type of surface can be found in
[Hou 2002]. In both methods, deformation is applied to the interior
of the surface while keeping the boundaries fixed. This way, the
underlying wireframe geometry is preserved, with no alterations to
the designed curves.



Figure 9: The initial surfaced model.

6.2.1 Surface modification using pressure force

This deformation tool simulates the effect of a pressure force on a
thin membrane. The tool allows surfaces to be inflated or flattened
in a predictable way. The extent of the deformation depends on the
magnitude of the pressure, which is controlled by the user through a
slider bar. Different pressure values can be specified for individual
surfaces, thus giving the user a better control on the final shape of
the solid model.

The equilibrium position of a pressurized surface is found itera-
tively. In each step, each vertex of the surface is moved by a
small amount proportional to the pressure force applied to that ver-
tex. The neighboring vertices, however, resist this displacement by
pulling the vertex toward their barycenter akin to Laplacian smooth-
ing. The equilibrium position is reached when the positive dis-
placement for each node is balanced by the restitutive displacement
caused by the neighboring vertices. Figure 10 illustrates the idea.

The algorithm can be outlined as follows. Let p be the pressure
applied to the surface. Until convergence do:

for each vertex v;
e Compute the unit normal n; at vertex v;
e Compute the pressure force on v;
Fi= p_A}Jaronoi

e AV =F;-m;

1 & . .
. Avﬁ“”lc = (E Z Vij) — Vi, where v;; is one of the K adjacent
j=1

vertices of v;

laplc)

o Vi Vi ((1- E)AV"™ + yAY!

1

+ vAv

end for
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Figure 10: A pressure force applied to a vertex moves the vertex
along its normal direction. The neighboring vertices, however, pull
the vertex back toward their barycenter. Equilibrium is reached
when displacements due to the pressure force and the neighbors
are balanced.

The vertex normal n; is updated in each iteration and is computed
as the average of the normals of the faces incident on v;, weighted
by the area of each face. A;°"""" is the Voronoi area surrounding v;.
It is obtained by connecting the circumcenters of the faces incident
on v; with the midpoints of the edges incident on v; (Figure 11).
& and y are damping coefficients that control the convergence rate.
Too low values of £ or ¥ may cause instability in convergence.

Voronoi area

Figure 11: Voronoi area surrounding vertex v;.

The above algorithm is applied to all surface vertices while keeping
the boundary vertices fixed. Figure 12 shows an example on the
seat model. If necessary, negative pressure can be applied to form
concavities.

Figure 12: Modification of a seat base using pressure force.

6.2.2 Surface modification using V-spring method

This method creates surfaces of minimized curvature variation
based on a discrete spring model. This scheme produces fair sur-
faces that vary smoothly, which is known to be an important crite-



rion for aesthetic design purposes [Nickolas S. Sapidis 1994]. Ad-
ditionally, when applied to a group of adjacent surfaces, it reduces
sharp edges by smoothing the transition across the boundary curves.

In this method, a spring is attached to each surface vertex. Neigh-
boring springs usually form a “V” shape, thus giving the name to
the method. The spring length approximately represents the local
curvature. During modification, the springs work together to keep
their lengths equal, which is equal to minimizing the variation of
curvature (Figure 13). Each vertex thus moves under the influence
of its neighbors until the vertices locally lie on a sphere.

Figure 13: V-spring. (a) Displacement of v; due to v;. (b) Net
displacement due to all neighbors.

Based on this model, the displacement of v; due to a neighboring
vertex v; is given as follows (see [ Yamada et al. 1999] for details):

1 (vj—vi)-(n;+n;)

AV =
[lv;—vill 1+ (n; - nj)

i

where n; and n; are unit normal vectors at v; and v;. The total dis-
placement of v; is computed as the average of displacements due to
neighboring vertices. However, to maintain a regular vertex distri-
bution throughout iterations, each vertex is also moved horizontally
along its current tangent plane toward the barycenter of its neigh-
bors. In each iteration, the positions and normals of the vertices are
updated. The iterations are continued until the net displacement of
each vertex is less than a threshold. Figure 9 shows the output of
this method on the seat model. The initial surfaces are by default
created using this scheme. Since surfaces are treated independently,
however, transitions across boundary edges are not smoothed.

7 Example and Discussions

Figure 14 illustrates the proposed approach applied to car body de-
sign. Given the input sketch and the template, it took about 70
minutes to obtain the surfaced model at the bottom. About 50% of
the time was spent during template modification, 20% for surface
generation and refinement, and 30% for adding and modifying new
design edges.

Our informal tests have shown that it takes a relatively proficient
user about three to four hours in Discreet®3ds max®to create a
comparable model. While these findings are not conclusive, we be-
lieve they are useful to the demonstrate the utility of our approach.

Currently, the snake-based curve modification algorithm assumes
that a target curve is modified in its entirety. That is, local mod-
ifications to a curve are not permitted. Likewise, the current ap-
proach does not allow two or more curves connected in series to
be modified by a single set of modifiers. Hence, for a successful
modification, the user needs to know the start and end points of
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each template edge. Currently, this information is conveyed visu-
ally by rendering the ends of the template edges in a slightly dif-
ferent color. This helps the user easily distinguish different edges
of the template. However, when the user is working through the in-
put sketch, the template becomes invisible. In such cases, the user
may temporarily need to hide the sketch to identify the edge ends.
While this causes some inconvenience, we have not found it to be
too constraining. Nevertheless, we plan to alleviate this difficulty
by extending our snake-based modification algorithm to enable lo-
cal modifications to a single curve, and global modifications to two
Or more Curves.

Another observed difficulty involved the selection of a target curve.
When the template contains a large number of edges, the target
curve selection scheme becomes fragile. This is because during
the curve modification in the image plane, too many candidates oc-
cur near the set of modifiers, which makes it difficult to identify the
intended curve based on spatial distance. To alleviate this difficulty,
we added an option of “focused design” to the interface, which al-
lows the user to mark a specific curve and work exclusively on that
curve as long as desired. When the program is in this mode, all
modifiers affect this selected curve, regardless of how far the mod-
ifiers occur from the curve in the image plane. We have found this
feature to greatly facilitate the design process.

8 Conclusions

In this work, we presented a new technique for 3D styling design
that uses a pen-based computer interface as the main interaction
medium. The main novelty of the proposed method is that it allows
designers to utilize their concept sketches in conjunction with ex-
isting computer models to facilitate rapid and fluid development of
3D geometry. The approach is particularly useful for styling design,
where the new product is a stylistic variation of an existing one, or
some other canonical shape.

At the heart of our approach is a shape modification algorithm that
uses 2D input strokes to modify a 3D template. In a typical op-
eration, the template and the digital sketch are first aligned using
a camera calibration algorithm. Next, to create the 3D form, the
user simply traces the feature edges in sketch. The input strokes
are interpreted to appropriately modify the corresponding edge of
the template in 3D. This work has shown that within the scope of
the problem, the best 3D interpretation of a 2D curve is the one that
minimizes the spatial deviation from the curve’s original 3D config-
uration. After the template edges are modified using this principle,
the newly designed template is surfaced to produce a solid model.
Finally, the user can refine the initial surfaces using two physically-
based deformation methods, and add new feature edges as desired.

Our experience so far, and the feedback from external users have
indicated that the proposed system is a viable alternative to exist-
ing style design tools. In the near future, we plan to conduct field
studies to further assess its performance.
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Design in progress

Final template

Surfaced model

Figure 14: Design of a car using our system. Top left: Input sketch. Top right: Initial template model. Middle left: Design in progress.
The sketch is hidden to reveal the template. Middle right: Resulting wireframe model. Bottom: Surfaced model. Surfaces are refined using

pressure force and V-spring. Also shown is a close up of the triangular mesh near the headlight. Notice the strong feature edge near the front
grill, which is also apparent in the original sketch.
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