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Shape Design From Exemplar
Sketches Using Graph-Based
Sketch Analysis
We describe a new technique that works from a set of concept sketches to support the ex-
ploration and engineering of products. Our approach allows the capture and reuse of
geometric shape information contained in concept sketches, as a means to generate solu-
tions that can concurrently satisfy aesthetic and functional requirements. At the heart of
our approach is a graph-based representation of sketches that allows the determination
of topological and geometric similarities in the input sketches. This analysis, when com-
bined with a geometric deformation analysis, results in a design space from which new
shapes can be synthesized, or a developing design can be optimized to satisfy prescribed
objectives. Moreover, it facilitates a sketch-based, interactive editing of existing designs
that preserves the shape characteristics captured in the design space. A key advantage of
the proposed method is that shape features common to all sketches as well as those
unique to each sketch can be separately identified, thus allowing a mixing of different
sketches to generate a topologically and geometrically rich set of conceptual alternatives.
We demonstrate our technique with 2D and 3D examples. [DOI: 10.1115/1.4007147]

1 Introduction

Early design activities frequently involve the generation of a
wide variety of concepts [1]. Designers commonly record such
ideas in the form of conceptual sketches, which are recognized to
be critically important for product design and development [2–5].
These sketches help designers assess different concepts and gener-
ate new ones early on, but rarely get utilized in the digital phases
of the design process. This is mainly because current software is
severely limited when such informal representations are con-
cerned. In product form design specifically, while concept
sketches embody a rich set of geometric information regarding the
shape of the design, most of this information merely serves as
static visual references, rather than providing a means to expedite
the development and engineering of the product.

Furthermore, product form design is heavily affected by down-
stream engineering considerations, as the final product is required
to satisfy both aesthetic and functional requirements. Typically,
candidate designs generated by the styling teams have to be eval-
uated and validated by the engineering teams. This necessitates an
iterative process involving multiple parties, which can signifi-
cantly impact the design cost and duration. As a result, only a
handful of concepts may be adequately developed, while many
are prematurely eliminated.

In this work, we attempt to enhance the passive usage of con-
ceptual sketches. We propose a new method that converts the geo-
metric information stored in the sketches into a computationally
suitable form. The proposed method does so by automatically
identifying emerging shape ideas from the commonly appearing
patterns, and concept specific design features. These patterns and
features serve as means to computationally encode the shape ideas
contained in the sketches to construct a design space. This design
space allows (1) synthesis of novel forms through nonlinear mix-
ing of input sketches, (2) a style-preserving free-form exploration
of the design space through interactive sketching, and (3) produc-
tion of design solutions that satisfy prescribed engineering objec-
tives and constraints.

2 Related Work

We group the previous studies on computational conceptual
design systems in three categories. We give a summary of
example-based design approaches and related difficulties in prac-
tical applications. We then discuss generative design methods and
associated challenges. Finally, we review the major sketch-based
design systems that support conceptual design and geometric
modeling.

2.1 Example-Based Design Methods. Example-based design
methods are primarily based on geometric shape interpolation
techniques [6,7]. The first application to industrial design was pro-
posed by Chen and Parent in 1989 [8]. Wang [9] extended the
idea and combined shape interpolation with geometric transforma-
tion. Hsiao and Liu proposed using similar techniques for Com-
puter Aided Design (CAD) models [10] or for scan-digitized
geometries [11]. Similarly, Chen et al. [12] used image interpola-
tion to study the mapping between car shapes and their descriptive
characteristics. Kang and Lee [13] used mesh-based interpolation
on different 3D ship hull forms to generate new forms.

The majority of these techniques require input models to be
geometrically preregistered to resolve the mapping problem.
Hence, an automatic identification of such correspondences has
also been a popular research topic [7]. Despite these advances, the
strict correspondence requirement limits example-based design
approaches to mainly topologically equivalent geometries. More-
over, most approaches work from existing models, or require signif-
icant effort for model creation. In conceptual design, these methods
have found limited usage as the content at these stages is incom-
plete, exploratory, and may exhibit large intermodel variations. Our
work, on the other hand, is designed to work on geometrically and
topologically different conceptual sketches. A key advance is a
graph-based representation that enables the identification of a form
common to all sketches, as well as features unique to each sketch.

2.2 Generative Design Methods. Generative methods focus
on determining a parametrization and a set of generative rules for
a product, using a set of existing designs. New designs can be syn-
thesized from these learned rules. Cagan and Agarwal proposed
using shape grammars as a language for defining template topolo-
gies through geometric rules [14]. McCormack et al. used this
approach to study brand identity [15]. Orsborn et al. proposed
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combining different vehicle classes using shape grammars [16].
Although useful as a generative language, current shape grammar
techniques require the rules to be determined and defined man-
ually. In this work, we aim to circumvent rule specification using
an automatic geometric deformation analysis, which lends itself to
a generative design process.

Among the class of generative methods, genetic algorithms
(GA) have been a popular choice for design [17–21]. Smyth and
Wallace used GAs to synthesize aesthetic forms through manual vis-
ual inspection [17]. Frazer et al. utilized GAs to synthesize envelope
designs for sky scrapers [18]. Bezirtzis et al. extended these applica-
tions to 3D models [19]. Wannarumon et al. used similar techniques
together with prescribed aesthetic metrics for jewelry design [20].
Although GAs are successful in generating novel product forms, they
require the model parametrization to be specified a priori. Moreover,
parameter quality dictates the variety of designs that can be gener-
ated. This parameterization typically requires manual intervention.

2.3 Sketch-Based Design Systems. Recent years have seen
the development of many sketch-based computer interfaces for
CAD modeling. New methods allow the creation of curves and
surfaces via intuitive free-hand sketching. Earlier studies were
focused on creating primitive geometries [22,23] using sketch
input. Recent studies [24–28] attempt to enable free-form surface
creation from simple strokes and gestures. One group [24–26]
focuses on creating initial blobs on which more features can be
added while producing smooth surfaces. Another group [27,28]
suggests creating curves in 3D which are later utilized as con-
struction curves for free-form surfaces. A comprehensive analysis
of existing work on sketch-based modeling can be found in Ref.
[29]. These sketch-based methods primarily focus on using the
sketch input for geometry creation rather than using the shape
ideas in the geometries to generate new design concepts.

The above approaches aim to support product design by gener-
ating design alternatives, by learning design preferences from ex-
perience, and by creating 3D geometries from sketch input.
However, these studies provide little or no means to learning the
shape ideas contained in the conceptual design sketches and using
them to aid the design process. In this work, we aim to provide
support for shape design using explicitly encoded geometric infor-
mation extracted from conceptual design sketches. In contrast to
prior work, our approach is designed to be useful in the early
design stages where concepts are articulated in the form of simple
sketches. This allows working from a set of designs by automati-
cally identifying a common form and concept specific design fea-
tures, which then serve as a design space.

3 Method Overview and User Input

In this work, we introduce a new technique that works from a
set of concept sketches to support the design and engineering of
products. From a set of sample user-drawn sketches collected
from a digital pen interface, our approach learns a generative
shape model from which novel designs can be synthesized, or a
developing concept can be engineered to satisfy prescribed objec-
tives. At the heart of our approach is a graph-based representation
of design sketches that enables the extraction of a canonical shape
common to all sketches. The canonical shape serves as a means to
establish a design space that captures the geometric variations
among the input sketches, as well as features unique to each
design. Our approach consists of two main steps: (1) Canonical
form identification and detail extraction using topological match-
ing and (2) design space construction and exploration (Fig. 1). In
the first step, the input sketches are analyzed to identify features
common to all sketches, from which a canonical form is created.
For this, our method represents each sketch as a graph that enables
a topological comparison. In the second step, a deformation analy-
sis identifies the geometric variations among the canonical forms
of the sketches. This analysis produces a design space from which
new designs can be synthesized using nonlinear interpolation and
extrapolation. Once created, the user may impose geometric con-
straints on the design space, transfer unique features from the
original sketches onto the synthesized design, or modify the
resulting designs with their pen strokes.

A sketch-based interface is used as a graphical front-end to our
method. All interactions between the user and the system are
through a pressure sensitive tablet. The input to the system is a set
of sketches drawn by the user. The sketches are composed of
strokes that are sampled at a constant rate through the tablet.
Depending on the speed of the stylus, the distance between con-
secutively sampled points may vary proportionally. Our method is
designed to work for sketches consisting primarily of contour
curves, edges and character lines, without any shading or texture
strokes. A typical sketch is shown in Fig. 1. Users may interact
with the system through pen strokes to modify the curves for
design exploration and to define geometric constraints.

4 Canonical Form Identification and Detail
Extraction Using Topological Matching

Our system first beautifies the input sketches into vectorized
drawings and then analyzes these drawings to identify the com-
monalities and differences between these drawings. Three steps

Fig. 1 Proposed method works from user-provided conceptual sketches. It then develops these sketches into a design
space. The design space is either manually explored or used in integrated shape optimization.
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contribute to this process: (1) A trainable sketch vectorization
algorithm that converts raw sketches into vectorized drawings, (2)
A graph-based representation of the vectorized drawings, and (3)
A graph matching algorithm that identifies a topology common to
all drawings (which we call as the canonical form), as well as top-
ologies unique to each drawing.

4.1 Preprocessing and Geometric Representation. Users
draw their sketches on a pressure sensitive tablet which samples
the coordinates of the stylus at a constant rate. Typical sketches
may exhibit multiple oversketched strokes. Once a sketch is com-
pleted, it is converted into a vector drawing using a trainable
sketch vectorization algorithm we have previously developed
[30]. A typical vectorization is shown in Fig. 1. This method oper-
ates on stroke-level features that encode the geometric relation-
ships between the input strokes. This approach uses a training
sketch to learn a neural network that can parse the training sketch
into the intended stroke groups. The trained network is then
applied to parse future sketches into unique curve groups. Finally,
a parametric curve fitting algorithm beautifies each stroke group
into a single curve. In this work, the results of this curve fitting
are used to represent each curve as a single polyline. In our imple-
mentation, we used equal distance sampling when converting the
parametric curves into polylines. Although we choose polylines as
our underlying representation, our approach is similarly applicable
to curves defined parametrically. To facilitate discussions, we
refer to the resulting vectorized sketches as line drawings through-
out the paper.

4.2 Graph Representation of Line Drawings. At the end of
the previous step, input sketches are converted into line drawings
that consist of multiple polylines (Fig. 2(c)). The next task is to
analyze these vectorized sketches for distinctive features and a ca-
nonical form that is common to all designs. To this end, we have
found a pairwise analysis of the curves to provide useful informa-
tion. Specifically, the curves whose end points are proximate to
other curves to be particularly critical. To encode these relation-
ships, we define two types of curve interactions: (1) end point to

end point interaction (L joints) and (2) end point to intermediate
point interaction (T joints).

To facilitate the identification of such curve interactions, we
ask the user to demarcate those joints after the sketch is vector-
ized. Figure 2(d) demonstrates the idea. To form L joints, the user
simply picks two curves at their end points that are to define the
joint. Our system treats the first curve as fixed and uses affine
transformations to transform the second curve onto the first curve.
The distant end of the second curve is kept intact during this pro-
cess. To define T joints, the user picks the curve that forms the
base for the T joint and then picks the second curve. Through sim-
ilar transformations, the end point of interest on the second curve
is repositioned to the closest point of the base curve. The user
repeats this process until all joints are defined. Note that, during
this process, the system only uses uniform scaling and rotation
type transformations thus do not alter the shape of the curves rep-
resented by their curvature profiles.

We exploit the above types of joints to identify the similarities
and differences between different line drawings. As illustrated in
Fig. 3(a), sketches may contain curves that have multiple joints of
different types. To encode this information, we use a graph-based
representation of sketches which we call sketch graphs. In this
representation, curves and joints appear as different types of nodes
in the graph, and are connected by different types of links. With
our representation:

(1) Different joint types can be distinguished.
(2) A pair of curves may contain multiple joints of different

types.
(3) Different line drawings can be compared efficiently using

unique node and link labels.

Note that this representation is different than a trivial represen-
tation in which the joints appear as nodes and the curves appear as
links. With such a representation, a curve can have at most two
joints and two joints can have at most one curve between them.
Similar difficulties would exist if the joints were encoded as links
and the curves were encoded as nodes.

Figure 3 demonstrates our representation on a drawing com-
posed of 9 curves and 12 joints of different kinds. For each curve

Fig. 2 Geometric representation of sketches. (a) Input sketch.
(b) A subset of stroke groups, each defining an individual
curve. (c) Vectorized curves. (d) T and L joints defined by the
user. (e) Resulting line drawing.

Fig. 3 (a) A line drawing of a flash drive. (b) Corresponding
graph representation. M denotes that the curve-joint link corre-
sponds to a midpoint connection on the curve, E denotes an
end point connection. The graph has 9 curve nodes and 12 joint
nodes.
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and joint, there is a unique node in the graph. For each joint
between a pair of curves, the corresponding curve nodes are con-
nected to the joint node. Multiple joint nodes may exist between
two curves nodes. The graph links connecting different types of
joints (i.e., T or L joint) have different labels. If a joint is located
along the interior of a curve, the graph link between this joint and
the curve is labeled as M denoting a middle point. Similarly, if a
joint is located at an end point of a curve, the graph link is labeled
as E denoting an end point. It should be noted that this choice of con-
nections implies that curve nodes can only be connected to joint
nodes, and vice versa. Thus, having a separate joint node in the graph
allows a curve to be connected to multiple joints in the graph.

4.3 Topological Graph Matching. After vectorization and
joint formation, all sketches are converted into sketch graphs as
described above. In this phase, the aim is to find a canonical form
common to all sketches, as well as design-specific features. For
this purpose, we seek to partition each sketch graph into two sub-
graphs, corresponding to a base graph representing the canonical
form, and a set of detail graphs unique to each sketch. These
graphs and their sizes are unknown a priori with only one con-
strain that the base graphs of each sketch are topologically identi-
cal. We use a graph-subgraph isomorphism algorithm to
determine the topologically identical (i.e., having exactly the
same node and link structure) subgraphs as candidates for the ca-
nonical form. Among those, we choose the one which is also geo-
metrically similar in all designs using a set of pairwise geometric
similarity features.

4.3.1 Graph Decomposition and Recomposition Model. We
initially assume that each graph in a given set is the union of an
unknown base subgraph and an unknown detail subgraph

G1 ¼ B1 [ d1

G2 ¼ B2 [ d2

..

.
(1)

where G, B, and d denote the sketch graph, the base and the detail
subgraphs, respectively (Fig. 4(a)). Here, the base subgraphs in all
sketch graphs are topologically identical. Our method will later
use this decomposition to synthesize new designs as a combina-
tion of a geometrically modified base, and a set of multiple modi-
fied detail graphs

Gsynthesis ¼ f ðB1;B2;…Þ [ g1ðd1Þ [ g2ðd2Þ [… (2)

where f and g denote functions that modify the shapes of geomet-
ric curves associated with a group without altering the topology
(Figs. 4(b) and 4(c)).

4.3.2 Identification of the Base Subgraph. This is the deter-
mination of the canonical form and involves the following two
steps: (1) Topological enumeration of all candidate subgraphs and
(2) identification of the subgraph that captures the highest level of

geometric commonality shared by the input sketches. Our sketch
graphs are attributed relational graphs (ARG) as they encode differ-
ent types of attributes on graph nodes and links. We use the VF2
method [31] to efficiently identify graph-subgraph isomorphisms.

In this problem, we consider two graphs G1(N1,L1) and
G2(N2,L2), where N and L denote the nodes and the links, respec-
tively. Let (u,v) represent an edge between nodes u and v. We
seek a nodal mapping M : N1 ! N02 $ N2 having the following
property: u; vð Þ 2 L1 , M uð Þ;M vð Þð Þ 2 L02 $ L2 where L02 con-
tains all links formed by the nodes in N02. Note that M is a bijective
mapping. This formulation aims to identify all subgraphs of G2

that are isomorphic to G1. Thus, the resulting subgraphs of G2 are
of the same size as G1.

For a set of graphs, the size of the largest common subgraph
can be at most as big as the smallest graph in the set. The size of
the subgraph representing the canonical form, on the other hand,
is unknown2. To identify the canonical form, we first set the small-
est graph as the reference graph G1, while the remaining graphs are
called target graphs. We then enumerate all subgraphs of G1 such
that each identified subgraph embodies a group of curves that are
directly or indirectly connected (i.e., devoid of islands)

SubgraphðG1Þ ¼ Si
n

! "
such that

n 2 f1; 2;…;Ncurvesg

8n : i 2 1;…;

Ncurves

n

0

B@

1

CA

8
><

>:

9
>=

>;

(3)

where S represent a subgraph of G1. Ncurves is the number of
curves in the corresponding reference sketch. n denotes the num-
ber of curves contained in the subgraph, and i indexes the sub-
graphs with n curves. We calculate candidate matches between
each subgraph S of G1, and the set of target graphs through pair-
wise comparisons. For each S, we compute a number of candidate
subgraph mappings from S to target graphs using the VF2 method.
We denote the resulting candidate mapping functions that have n
number of curves by Mn.

Each subgraph mapping aims to identify the similarity between
the two graphs that are matched. At the heart of this analysis are
three geometric features that measure the match between a pair of
curves as described below.

4.3.3 Curve Dissimilarity Features. To establish a congruent
basis for comparison, each sketch is uniformly scaled and center-
fit within a unit square. The similarity between two graphs is
based on the similarity between the curves in the two graphs. For
two curves (each belonging to a different graph), we use the fol-
lowing three features. Figure 5 shows the parameters used in these
features.

The first feature measures the mismatch between the locations
of the curves’ centroids in their respective sketches

esðc1; c2Þ ¼
jjd1 % d2jjffiffiffi

2
p (4)

where d is the distance vector measured from the center of the
sketch to the centroid of the curve.

The second feature measures the alignment difference between
the two curves

eaðc1; c2Þ ¼
jju1 & u2jj
jju1jj ' jju2jj

(5)Fig. 4 (a) The sketch graphs are decomposed into base and
detail subgraphs. (b) The base graphs are used to define a
design space in order to synthesize new shapes from geometric
variations. (c) The resulting shape is then recombined with pre-
viously decomposed details.

2The size of the canonical form can be at most the size of the largest common
subgraph.
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where u represents the first principal direction of the curve’s
points computed using principal component analysis. The length
of these vectors estimates the spread of the curves in the drawing
plane.

The third feature measures the difference between the oriented
bounding box areas of the curves

erðc1; c2Þ ¼ 1% minðA1;A2Þ
maxðA1;A2Þ

$ %1
2

(6)

where A is the area of the bounding box aligned with the first and
second principal component vectors u and v. All three features are
designed such that they are bounded between [0,1], and are zero
when the curves are identical. We define pairwise curve similarity
as

rcurveðc1; c2Þ ¼ 1% 1

6
4esðc1; c2Þ þ eaðc1; c2Þ þ erðc1; c2Þð Þ (7)

The weights of the features were determined experimentally using
a set of test sketches. These tests have shown the spatial dissimi-
larity feature to be more critical than the other features.

4.3.4 Overall Graph Similarity. As described earlier, the goal
in graph matching is to identify the canonical form, which repre-
sents the highest level of geometric commonality between the
graphs. The above features help quantify the similarity between
the matched graphs during this process.

A distinction between topological and geometric similarity is
necessary. Topologically, while the largest common subgraph
could be chosen as the canonical form, this may not result in the
highest level of shape similarity. Instead, we seek to maximize the
geometric similarity between the graphs as computed using the
above features. This similarity may be maximized for subgraphs
containing fewer number of curves than that of the largest com-
mon subgraph. Hence, we decompose our analysis into multiple
levels in which similarity matching is performed separately for
groups of subgraphs each delineated with a unique topological
size.

For the ith subgraph of the reference graph G1 containing n
number of curves Si

n

& '
, we calculate the overall graph similarities

using the described curve features. Let Si
n be described as

Nci
n;Njin;L

i
n

& '
, where Nc and Nj are the curve and joint nodes of

Si
n, and Li

n are the links. Let Gk 2 fG2;…;GKg be a target graph.
Let Mj

n be the jth mapping between Si
n and Gk. Let ct t 2 f1; ::; ng

be a curve in Si
n. The overall graph similarity of the mapping Mj

n
is calculated as

rmatchðSi
n;Gk jMj

nÞ ¼
Xn

t¼1

g rcurve ct;M
j
nðctÞ

& '
; n

& '
(8)

where g(.,.) is a nonlinear scaling function (Fig. 6), we define as

gðx; nÞ ¼ 1%
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% xn
p

(9)

This function enables a comparison between mappings containing
different number of curves. Note that without this adjustment, the
cumulative similarity score rmatch would favor mappings with a
large number of constituent curves (n), even if the similarity
between individual curve pairs (rcurve) is weak. g suppresses weak
curve similarities as the number of curves increases.

The graph representing the canonical form Scanonical is then
identified as

ScoreðSi
nÞ ¼

1

K

XK

k¼1

max
j

rmatch Si
n;Gk jMj

n

& '
(10)

Scanonical ¼ arg min
n;i

ScoreðSi
nÞ (11)

The above decision rule identifies the canonical subgraph exhibit-
ing the largest level of geometric commonality between all
sketches. Once this subgraph is determined, the focus moves to
feature identification. For this, the canonical graph is subtracted
from all graphs {G1, …, GK}. For each graph, the remaining topol-
ogies are clustered into islands of fully or partially connected sub-
graphs using a greedy clustering algorithm. Each subgraph
identified in this way forms a feature of the corresponding sketch
and is made available to the designer during shape exploration
and synthesis.

Fig. 5 The basic geometric properties used for pairwise dis-
similarity features. Each vectorized sketch is uniformly scaled
into a unit square prior to feature calculation

Fig. 6 A nonlinear scaling function that is used to combine
curve scores in order to compare graph matches with different
sizes
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5 Design Space Construction and Exploration

At the end of the previous step, each sketch is vectorized into
curves, converted into a sketch graph, and decomposed into a base
graph (canonical form) and a number of feature graphs. Here, the
focus is on the canonical form, and its geometric variations among
the input exemplars. In this step, our system learns these varia-
tions in the canonical form to construct a design space.

We use a deformation-based shape interpolation method using
inverse kinematics [32], which allows the synthesis of shapes
from a set of registered exemplar shapes. This method is suitable
when large deformations exist between the exemplars and is not
limited by the distortions that typically arise with the use of linear
interpolation techniques.

5.1 Preparation for Deformation Analysis. As discussed in
Sec. 2, the shape interpolation problem requires a one-to-one map-
ping between the constituent geometries. Our method automati-
cally determines a correspondence between the canonical form in
each design as a byproduct of graph matching. The resulting
match has a one-to-one mapping on the curve and joint nodes.
However, for curve matches, a direction ambiguity still remains,
which is resolved using the joint information in the graph repre-
sentations. For instance, in Fig. 7, curve 1 in line drawing 1 and
curve 2 in line drawing 2 form joint 1 at different locations on the
curves. The joint on the former curve is located at the curve’s
starting point, whereas the joint on the latter curve is located at its
end. For curves which do not form any L joints, we compute the
correct alignment through a simple test between the vectors
formed between the end points of the curves.

Identifying the correct curve alignment is sufficient to ensure
that the individual line segments within each polyline is also
mapped correctly to the corresponding line segment in the match-
ing curve. This is due to the fact that all curves in our system are
uniformly sampled using the same number of points, thus ensuring
that each polyline curve has the same number of line segments.
However, T joints can invalidate polyline correspondence when
the matched joints are located at different points along the curve’s
arc length. To alleviate this issue, we split these curves at the T
joints and resample each resulting curve to the same number of
points as others, and accordingly update the joint information.

5.2 Deformation-Based Shape Interpolation. We first de-
scribe how to interpolate two shapes using a deformation analysis
and then we extend it to multiple shapes. At this stage, all canoni-
cal forms among the exemplar shapes have a unique correspon-
dence. A typical polyline curve pair is illustrated in Fig. 8 with
the underlying line segments. Since the task is to deform one
curve into the other, we pick one to be the reference curve and the
other to be the target curve.

We start by calculating a transformation that would take one
line segment in one curve and transform it into the corresponding
line segment in the other curve. To compute a unique transforma-

tion, we define a third vertex for each line segment by rotating it
90 deg, and form a triangle (Fig. 8(c))

vj
3 ¼ vj

1 þ
0 %1
1 0

( )
ðvj

2 % vj
1Þ (12)

where v denotes the position vector (a 2& 1 column vector) that
stores the x and y coordinates of a vertex. Once all line segments
are converted into triangles, we define an affine transformation
that maps the jth triangle in the reference curve onto the corre-
sponding triangle in the target curve (Fig. 8(d))

UjðpÞ ¼ Tjpþ tj (13)

Tj is a 2& 2 matrix including rotation and scale transformations
and tj is a vector that encodes the translation component of the
affine transformation. p is a point on the reference triangle to be
transformed (suitably its vertices). To determine Tj in Eq. (13),
the translation component must be eliminated. This is achieved by
subtracting the equation for the third vertex, from the equations
for the original two vertices. From the two remaining equations,
the transformation matrix for the jth line segment is determined as
follows:

Tj ¼ ½ vj
1 % vj

3 vj
2 % vj

3
*:½ vj

1 % vj
3 vj

2 % vj
3
*%1 (14)

Here, v denotes the coordinate vectors of the reference shape
(C1), while v denotes the coordinate vectors of the deformed shape
(C2). It should be noted that Tj is linear in the coordinates of the
deformed shape.

Once the transformation matrices for all line segments are cal-
culated, we reshape each matrix into a column vector and com-
bine the vectors into a feature vector f. The linear relationship
between the actual coordinates of the deformed curve and the fea-
ture vector is

f ¼ Gx (15)

where x is a vector storing the global coordinates of the deformed
curve in the form of x¼ [x1, x2, x3,…, y1, y2, y3,…]T, f is the fea-
ture vector and G is a sparse block diagonal matrix whose coeffi-
cients only depend on the coordinates of the reference curve C1.
Note that x is a 2(nþm)& 1 column vector and G is a
4m& 2(nþm) matrix where n is the number of original vertices
(excluding the newly created ones) and m is the number of origi-
nal line segments. Feature vector f is the deformation that repre-
sents the deformed shape C2 in terms of the reference curve C1,
whereas G is the linear operator that maps the geometry space to
a feature space.

Given a reference shape and a feature vector f, a deformed
shape can be calculated by an inverse application of G on f.

Fig. 7 Curve directions are corrected using the corresponding joint information
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However, since G was constructed without the translation compo-
nent of the affine transformation, coordinates of at least one point
must be prescribed to ground the shape in space. In general, an ar-
bitrary number of vertices on the deformed shape may be con-
strained, which means that their coordinates are known. The
remainder of the deformed shape can then be solved in the least-
squares sense using the following minimization:

x ¼ arg min
x
jjGx% f % cð Þjj (16)

where c is the vector obtained by multiplying the constrained
coordinate(s) with the associated columns of G. c can also be
viewed as a feature vector that forces the free coordinates to align
with given constraints. Moreover, G is matrix G with the columns
associated with the constrained coordinates removed. Solving
Eq. (16) produces the new deformed shape x which deviates mini-
mally from the original deformed shape giving rise to f, while pre-
cisely satisfying all prescribed constraints. In practice, the
constraints on the geometry are defined by drawing modification
strokes as shown in Fig. 1.

5.3 Design Space Construction With Multiple Exemplars. In
cases of multiple exemplars, we arbitrarily choose one exemplar
as the reference shape. The remaining exemplars form the set of
deformed shapes. To facilitate subsequent calculations, we also
add a copy of the reference shape to the set of deformed shapes.

This allows the deformed shapes to encompass all exemplars
available to the system.

The feature vectors between the reference shape and each of
the deformed shapes are calculated3. A design space is then
defined as a weighted combination of the feature vectors fi using
weights wi as follows:

fðwÞ ¼
Xl

i¼1

wif i (17)

where l is the number of deformed shapes. A feature vector syn-
thesized in this way can be used to compute a new shape using
Eq. (16). Similar to interpolating absolute coordinates, an arbi-
trary combination (linear as above, or nonlinear) of the feature
vectors may result in distorted deformations in cases where large
bending and rotations are involved between the reference shape
and the deformed shapes. This is because the feature vectors con-
tain the cumulative deformations arising from distinct rotation
and scaling transformations, which become indistinguishable
when combined. To alleviate this issue, we decouple the rotation
deformation from other deformations. Transformation matrix Tj

of the jth line segment can be decomposed into a rotation (Rj) and
scaling-shear (Sj) component via polar decomposition [33] as

Tj ¼ RjSj (18)

Fig. 8 Transformation between exemplars: (a) Each line segment on both curves is converted
to a triangle. (b) jth triangle in C1 then undergoes an affine transformation to produce the corre-
sponding triangle in C2.

3Note that one of the feature vectors will be formed by identity transformation
matrices as the reference shape and one of the deformed shapes are identical.
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With this decomposition, a rotation and scale-aware weighting of
Tj can be calculated as

Tj ¼ exp w log Rj

& '& '
:wSj (19)

where w is the weight, and exp and log are the matrix exponential
and matrix logarithm operators, respectively. An example interpo-
lation is shown in Fig. 9. This approach can produce interpolations
as well as extrapolations involving large deformations.

Using Eqs. (17) and (19), a weighted transformation matrix is
calculated as follows:

Tj ¼ exp
Xl

i¼1

wi log Rij

& '
 !

:
Xl

i¼1

wiSij (20)

where Rij and Sij are the rotation and scaling-shear matrices of the
jth triangle of the ith exemplar, respectively. Note that a feature
vector f is formed by stacking the T matrices of an exemplar into
a column vector. Similar to Eq. (16), geometric constraints can be
imposed, and the resulting geometry is calculated as

x ¼ arg min
x;w
jjGx% fðwÞ % cð Þjj (21)

This expression generates designs that deviate minimally from the
design space, while satisfying the prescribed constraints. Note that
this minimization concurrently determines the final shape, and the
optimum weights of the exemplars that produce it.

In our system, the user may control the weights of the exem-
plars directly through a widget. In this case, the provided weights
are used in Eq. (20) to calculate the resulting feature vector, and
Eq. (16) is used to generate the final geometry.

However, the key utility of the proposed system is realized
when the exemplar weights are determined automatically using
Eq. (21). This corresponds to the case where the user imposes geo-
metric constraints through the graphical user interface by picking,
dragging, and sketching over the input exemplars. In this case,
any modification concentrated to a particular region can be
extended to the whole shape through the design space. This allows
the synthesized designs to be bear the characteristics of the exem-
plars in the design space. In effect, the exemplars provide the set
of meaningful deformations that are encoded in the design space.
This approach helps any alteration to a working design to result in
shapes that are globally congruent with the exemplars in the
design space.

Figure 10 demonstrates the idea. The first four modifications
shown in Fig. 10(b) are the user’s sketch modifications to the first
exemplar. The first modification forces a concavity on the right
leg. Since the second exemplar happens to exhibit this feature, the
resulting deformation produces a shape that inherits the character-
istics of the second exemplar. Likewise, the second modification
intends to create a convex right leg. This deformation is achieved
through a negative contribution of the second exemplar, which
helps deform the other legs in similar ways. Subsequent deforma-
tions illustrate the resulting deformations and the calculated
exemplar contributions when arbitrary modifications are applied.

5.4 Scale Invariance. The deformation gradient formulation
is scale dependent as the scaling component of the feature vectors
also encode the size changes among the input sketches. As a
result, as the weight of a larger sketch is increased, the overall
scale of the synthesis also increases. We introduce a modification
to the feature space formulation to alleviate this dependency. This
modification allows the size of the resulting shape to be deter-
mined from the geometric constraints only.

The first modification is to the feature vectors of the exemplars.
We normalize the scaling component of the deformation gradients
for each sketch with respect to the reference sketch

w0i ¼ wi
jjIjj
jjwijj

(22)

Fig. 9 Shape synthesis using a nonlinear design space: (a)
While deformation from the first exemplar to the second (b) can
be interpolated with either (left) positive or (middle) negative
amounts, a nonlinear design space can also handle (right)
extrapolations involving large deformations

Fig. 10 Sketch modification using automatic weight calculation propagates local modifications to the remainder
of the sketch using the geometric deformations learned from the exemplars
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where w0i and wi are the normalized and original scaling feature
vectors, which are constructed the same way as the features vec-
tors. I is the scaling feature vector which is constructed from iden-
tity transformation matrices, and k.k is the matrix norm operator.
This normalization scales the exemplars to the scale of the refer-
ence sketch such that the scale transformation between each
exemplar to the reference shape is an identity matrix. This nor-
malization also helps preserve the overall size of the reference
shape when only one point is constrained. Note that at least two
points are required to uniquely define the size. In these cases, we
use Eq. (16) with the normalized feature vectors.

For cases in which the user constrains more than one point and
assigns the exemplar weights manually (i.e., f(w) is known), we
introduce a free scaling parameter to Eq. (16) as

x ¼ arg min
x;a
jjGx% afðwÞ % cð Þjj (23)

where a is the unknown scaling parameter. This scaling parameter
introduces an additional degree of freedom that allows a uniform
scaling of the final shape in cases where the exemplar weights are
externally prescribed.

In cases where the user constrains more than one point and lets
the system calculate the set of weights, the introduction of a is no
longer necessary. This is because the presence of the reference
shape in the set of deformed shapes allows the associated weight
computed by Eq. (21) to serve as the free scaling parameter.

5.5 Design Space Exploration and Shape Optimization. Our
system presents the canonical form of the reference design as
the initial shape (i.e., a working design). For design exploration,
the user may impose geometric constraints and attach one or
more of the identified features to the working design. The geomet-
ric constraints can be added and modified by picking/moving
gestures of the stylus, or by directly sketching over the working
design. In case of sketch modifications, our system automatically
determines the portions of the shape to be modified using a prox-
imity check. It then moves the points selected for modification
onto the modification strokes. These points are subsequently
treated as constrained points. The user may also pick one or
more design-specific features and attach them to the working
model. For each added feature, the user first picks a point on
the feature and then picks an attachment point on the working
design. The user may also define further constraints on the
features.

Shape variations can be achieved through a manual or auto-
matic control of the exemplar weights. In the first case, the user
adjusts the weights of each exemplar through a widget, which
interactively changes the shape. In the second case, the user speci-
fies the geometric constraints. The resulting shape is then deter-
mined according to Eq. (21).

Our approach is also conducive to constrained shape optimiza-
tion when geometric objective functions are specified. Current
shape optimization techniques typically require parameterized
geometries. Often times, this parameterization is not trivial and
has to be established by the designers. In our approach, the graph-
based sketch analysis and the subsequent design space construc-
tion alleviates this need. During optimization, the exemplar
weights serve as the optimization parameters, whose combination
leads to an optimum design. Section 7 demonstrates this capability
on different examples.

6 Computational Complexity Analysis

The computational complexity of our system is dictated primar-
ily by the canonical form identification and detail extraction step,
as graph matching is an nondeterministic polynomial-time (NP)-
complete problem.

Let ne¼ total number of exemplars, nc¼maximum number of
curves in an exemplar, and nj¼maximum number of joints in an

exemplar. As described earlier, we calculate and evaluate all
possible graph matches between a reference sketch and all other
sketches. In the graph representation, the number of nodes, N, is
the summation of number of curves and joints (i.e., ncþ nj). We
assume the worst case scenario of all nodes connecting to one
another. Thus, the number of connected subgraphs of the refer-
ence graph to be matched with other graphs is 2N% 1. For each
subgraph, the VF2 algorithm determines graph matches at a cost
of O(N!N) [31]. Combined, the worst case complexity of this step
is O(N!N2N).

The design space exploration step is far less demanding. Equa-
tions (16) and (21) both require the solution of a linear system
which can be efficiently done using QR, Cholesky matrix decom-
positions or similar methods. Our implementation works at inter-
active speeds that allow users to work fluently. Detailed
discussion of the computational complexity of this step can be
found in Ref. [32].

7 Example Design Cases

Secs. 7.1 and 7.2, we demonstrate (1) canonical form identifica-
tion, detail extraction, shape exploration, and synthesis and (2)
constrained shape optimization under engineering objectives.

7.1 Canonical Form Identification, Detail Extraction,
Shape Exploration, and Synthesis. We demonstrate our method
with four design cases. The first three examples are user-drawn
and are simplified with the stroke clustering and vectorization
method described earlier. The last example is created with a
sketch-based 3D modeling interface, thus did not require curve
vectorization.

The first example demonstrates the design of a mug from four
sketches as shown in Fig. 11. These designs have a common con-
tainer part with different handle types. The handle of the third
design is attached to the mug at only one point whereas other
designs have handles attached at two points. As a result, the ca-
nonical form does not include the handle. A new design is synthe-
sized through exemplar weight control (i.e., using Eq. (16)), and
through a series of geometric constraint definitions and
modifications.

The second example demonstrates a car body design from four
side view sketches as shown in Fig. 12. These designs have a
common set of curves defining the shape of the body as well as
design-specific features such as different headlights and character
lines. For instance, the first design has two pairs of headlights
whereas the fourth design has no visible headlights. The canonical
form thus excludes the headlights and several character lines. As
shown in Fig. 12, a number of new designs are synthesized by the
user through exemplar weight control (i.e., using Eq. (16)). By
attaching individual features from different exemplars, and by
defining and modifying several geometric constraints (Fig. 12,
column 3), three new designs are developed.

The third example demonstrates the automatic exploration
of the design space through sketch-based modifications of three
different hair dryers as shown in Fig. 13. Notice that several
parts, such as the nozzle of the second exemplar, are not
included in the canonical form and are identified as design-
specific features instead. The user sketches modifications to the
canonical form. The weights of the exemplars are determined
using Eq. (21). As the user makes local modifications, the re-
mainder of the drawing is adjusted automatically using the
learned deformations.

The fourth example involves 3D wireframes, whose skinned
surfaces are also shown in Fig. 14. Three handheld devices which
have different handle configurations are automatically analyzed to
reveal the canonical form and the design-specific features. The
main body is identified as the canonical form, while the handles
are distinguished as features. After attaching the handles from the
first and the third designs, and a series of user-guided manipula-
tions, the final design is achieved.
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Fig. 12 Design of a new car from four different designs

Fig. 11 Design of a new mug from four different designs
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7.2 Shape Optimization

7.2.1 Shape Optimization Under Engineering Constraints. We
demonstrate shape optimization under engineering constraints on
a bottle design example. Three bottles are sketched and beautified
as shown in Fig. 15. To illustrate the extent of the design space,
Fig. 15(c) shows two shapes that are synthesized using exemplar

weight control. Note that the weights also exhibit negative values,
which still result in plausible solutions

Using this design space, a minimum-weight bottle enclosing a
prescribed liquid capacity is to be designed. The constraints are
shown in Fig. 15(d). The sum of exemplar weights is kept at unity
while the upper and lower bound for the weights are set at 1.2 and
%0.5, respectively. The radius of the bottle mouth is constrained,

Fig. 13 Design of a new hair dryer from three different designs

Fig. 14 Synthesis from 3D wireframes. (Top row) Analysis of three handheld device designs represented as 3D curve
networks for canonical form (dark) and feature (light) identification. The three designs and the selected features are com-
bined to produce a new design. (Bottom row) Surfaced exemplars and the final design.
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while the height is controlled by a scaling parameter. A skin pro-
file whose thickness increases linearly toward the bottom is
adopted. There are four design parameters: three exemplar
weights and the free scaling parameter. The objective function to
be minimized is the weight of the bottle, which is easily calculated
by revolving the thickness profile around the vertical axis. Figure
15(e) shows the resulting design. This design resembles mostly
the third exemplar, as the resulting exemplar weights indicate.
The negative weight associated with the first exemplar suggests
that the first exemplar originally promotes a small liquid volume
to bottle weight ratio, which the objective function is trying to
reverse.

7.2.2 Shape Optimization Under Spatial Constraints. Figure 16
shows the design of a computer mouse. A mouse which embodies
the internal structures, while fitting to the human hand is sought.
Two design spaces are defined for the top and side views, each
consisting of three exemplars. For consistency, each exemplar
uses the same weight in the two design spaces. The objective
function for the optimization is defined as the total area of inter-
ference between the mouse, and the internal and external spatial
constraints. The sum of exemplar weights is kept at unity while
the upper and lower bounds for the weights are set at 1.2 and
%0.2. There are five optimization parameters: three exemplar
weights, one position (the position of the mouse relative), and one
scale parameter (freely scales the resulting shape). The resulting
shape satisfies the internal and external constraints as shown in
Fig. 16(f). The resulting shape has nearly equal contributions from
the three designs.

7.2.3 Shape Optimization for Aesthetics. This example dem-
onstrates the synthesis of curvature variation minimizing designs.
Curvature minimization is a fundamental objective commonly
used for aesthetic curve design [34]. We define a length-weighted,
minimum curvature variation over a set of curves as follows:

jvar ¼
XN

i¼1

Li

ð1

0

~jiðsÞ
ds

++++

++++

++++

++++
2

ds (24)

where i is the index of the curve, N is the total number of curves,
Li is the length of the ith curve, ji(s) is the curvature, and s is the
normalized chord length parameter. The term Li scales the curva-
ture variation integral of a curve by its length to favor curvature
minimization of the longer curves over the short ones.

Three mouse designs with curvature profiles are shown in
Fig. 17. Note that, the exemplars show fluctuations in the curva-
ture profiles, which indicate a lower aesthetic quality. A design
space is created using the three exemplars, and a design that has
the minimum curvature variation is sought. The objective function
to be minimized is the above functional, and the optimization pa-
rameters are the weights of the exemplars. The weights of the
exemplars are constrained such that the size of the weights vector
is one. Starting from a weight set having equal contributions from
each exemplar, the optimum solution is calculated using sequen-
tial quadratic programming. The resulting design is shown in
Fig. 17 with the associated weights. Note that, the curves of the op-
timum design show significantly smaller variations in the curvature
profiles compared to the exemplars. This is achieved by mixing the
curvature profiles of the exemplar curves with the right proportions
such that their curvature fluctuations cancel each other. Numeri-
cally, the exemplar designs have total curvature variations of 3.33,
3.62, and 3.24, while the optimum design has a total curvature vari-
ation of 1.40 as computed from the above functional.

8 Discussions

We demonstrated our system with design examples covering
user-guided design exploration, and shape optimization under var-
ious constraints. Although, these examples were successfully
designed using our system, there exists cases that cannot be
handled with our method. During our experiments, we have iden-
tified a few major causes for these inefficacies. We discuss them
here by evaluating the two consecutive steps of our method, the
first influences the second.

The first is sketch vectorization in which a hand-drawn sketch
is converted into a set of parametric curves. For this purpose, we
use our prior work on understanding and beautifying sketches

Fig. 15 (a) and (b) Bottle design consisting of soda, wine, and beer bottles as exemplars. The bottle is formed by revolving
the sketched contours. The size variation among the exemplars should be noted. (c) Example design obtained by exemplar
weight control. (d) Geometric constraints. (e) Optimum design and resulting exemplar weights.

Fig. 16 Mouse design from top views and side views. Internal and external constraints are imposed. Optimization aims
to minimize interference with these constraints.
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using a trainable stroke clustering algorithm and curve fitting.
This algorithm is designed to analyze and learn the artists’ stroke
drawing preferences to automatically identify geometrically inde-
pendent groups of strokes each of which defines a continuous
curve. It does so using a set of pairwise stroke features that encode
how proximate and aligned the strokes are and how likely it is for
them to form a smooth, continuous curve if grouped. As a conse-
quence, the algorithm is sensitive to breaking points which form
intended discontinuities between the curves that are closely posi-

tioned at their end points. Figures 18(a) and 18(b) shows grouping
of strokes that resulted in a smooth curve and zigzagged curves.
Although this vectorization process is reliable in itself [30], the
results directly impact the robustness of the following analyses as
it may result in different sketch graph topologies for geometrically
similar shapes (Fig. 18(c)). As a result, acceptable topological sol-
utions may share relatively lower geometric similarity, and geo-
metrically similar solutions might not be identified with
topological matching.

Fig. 17 Minimizing curvature variation. A design which has the least variation of curvature is
sought.

Fig. 18 The vectorization of sketches directly impact the resulting graph structure. (a) Strokes that define continuous or
disconnected sets (b) are converted into single or multiple curve segments (c) resulting in different graph structures. (d)
Matching of geometrically similar, (e) yet topologically different curves is possible by simplifying graphs through forming
compound curves.

Fig. 19 Visual similarities (shown in red circles) among complicated geometries is difficult to
detect with corresponding curves at the local level.
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In our experiments, we identified the most problematic cases
which results in visually unacceptable matches. When studied at
the local level, these cases typically contain geometrically similar
curves or curve groups that are topologically different due to dif-
ferent numbers of breaking points. Figures 18(d) and 18(e) illus-
trates a simple example case. As a result of the vectorization
process, the “S” shaped curve on the left was produced as a single
curve, while a similar configuration on the right contains two
curves that roughly correspond to the S curve. Although, the simi-
larity may be obvious to the eye, the resulting graphs are different
(Fig. 18(e)). However, attaching the first and the second curves
(on the right) results in a compound curve and a topologically
suitable graph which can then be matched with the other graph.
Such potential curve pairs are typically curves that are connected
at their end points forming slight kinks rather than sharp corners.
In our experiments, we found that considering compound curves
to be a major improvement on the robustness of the graph match-
ing step.

On the other hand, visual similarities that appear at a global
scale might not always have a topological matching solution that
is suitable for the design space formation. Figure 19 shows six
helmet design representing significantly different structures.
Although, similar patterns are noticeable to the human eye (Fig.
19, see demarcated straps), a curve-to-curve correspondence
matching solution does not exist. In such situations, our method
begins to generate unacceptable results as the complexity of the
exemplar drawing increases. This difficulty is partially a conse-
quence of the curve-based representation of the geometry, and
may be alleviated through other suitable forms of representations.
One potential form might be a simpler abstraction of the drawings
that can represent visually similar patterns with topologically
identical sets of curves. Given such abstractions, our formulations
are suitable to use the simpler representation to create and use the
resulting design spaces.

9 Conclusion and Future Work

We describe an exemplar based shape synthesis and exploration
method that uses the differences between the exemplars to form a
design space. The contributions of our work is twofold. First, our
approach allows design sketches to form a library of design ideas,
from which novel design solutions can be synthesized. Second, it
allows geometric constraints to be fluidly incorporated into the
design process, thereby allowing such knowledge to be useful dur-
ing the exploratory phases of design. Our approach alleviates the
need for designers to manually parametrize their models and
instead computes a natural parameterization defined by the defor-
mation differences among the exemplars.

Our future directions include further studies on the inherent am-
biguity of geometric correspondence. For this, geometric registra-
tion methods that utilize additional information beyond curves,
such as regions, as well as multilevel abstraction methods that an-
alyze input sketches at varying granularity are needed.
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