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a b s t r a c t

Objective: We present a new non-photorealistic rendering method to render 3D scenes in
the form of pencil-like sketches.

Methods: This work is based on the observation that the dynamic feedback mechanism
involving the human visual system and the motor control of the hand collectively
generates the visual characteristics unique to hand-drawn sketches. At the heart of our
approach is a trajectory planning and tracking algorithm that generate the sketch in
multiple layers using a dynamic pen model. On each layer, a set of target strokes are
generated from the silhouette lines, edges, and shaded regions which serve as the target
trajectory for a closed-loop dynamic pen model. The pen model then produces the
rendered sketch, whose characteristics can be adjusted with a set of trajectory and
tracking parameters. This process continues in several layers until the tonal difference
between the sketch and the original 3D render is minimized.

Results: We demonstrate our approach with examples that are created by controlling
the parameters of our sketch rendering algorithms.

Conclusion: The examples not only show typical sketching artifacts that are common to
human-drawn sketches but also demonstrate that it is capable of producing multiple
sketching styles.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We describe a pencil-like sketch rendering method of
3D scenes using a range of styles spanning novice drawers
to trained artists. The proposed method produces the
visual features unique to sketching through a dynamic
modeling of the drawing process. The perceived style of
the resulting sketches can be manipulated using three
global parameters that simulate (1) the skill level of the
sketcher, (2) the neatness of the sketching behavior, and
(3) the desired detail level in the final sketch.

Previous studies in stylized pencil/ink rendering have
primarily focused on specific elements of interest. These

include rendering silhouettes, edges and contours [27,7],
hatching for shading [11,20], stippling [25], half-toning
[21], and texture and pattern rendering [28,2]. As sug-
gested in [8], however, hand-drawn sketches exhibit a
variety of other artifacts such as overtracing, hooks at the
stroke ends, tonal variation in stroke intensities, lifting
versus non-lifting strokes, and layered hatching and cross
hatching (Fig. 1). These features typically vary based on the
skill level of the sketcher, the sketcher's particular preci-
sion during sketching, the level of detail to be included in
the sketch, and on the dynamics of the pen, the hand and
the arm. Collectively, these phenomena give rise to a rich
set of stylistic variations in sketches, which have been
difficult to represent and reproduce algorithmically.

As one step toward addressing this challenge, we
describe a method to incorporate and control such effects
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using a two step process. This involves a stroke field design
and dynamic stroke tracking, all performed in multiple
layers using a feedback mechanism. At the heart of our
approach is the design of a 3D pen trajectory from render
buffers of a 3D scene through edge detection, region
clustering and stroke generation algorithms. When com-
bined with a dynamic pen model, this approach helps
produce the unique characteristics observed in pencil
sketches. The first step of stroke field design identifies
the silhouette, edge and hatching regions, and establishes
the stroking behaviors to be applied to them. This results
in a 3D target pen trajectory that serves as a reference to
be tracked. The second step involves the tracking of this
reference by a dynamic pen model. This model enables a
rich set of artifacts including a variation in tracking
accuracy, stroke skipping, overshoots, pen pressure, non-
lifting strokes, and muscle jitter through a set of dynamic
parameters. Each application of these two steps produces a
rendered sketch, which is then compared against the
original 3D render within a feedback loop. This allows
the final sketch to evolve in layers, until the tonal differ-
ence between the reference image and the resulting sketch
is minimized.

Inspired by [23] who categorizes line drawings into a
small set of qualitative descriptors, we develop three such
descriptors using which the resulting sketch characteris-
tics can be manipulated. These descriptors aim to mimic

(1) the skill level of the sketcher, (2) the precision or
neatness of the sketcher at the particular task, and (3) the
amount of detail the sketcher is permitted to articulate in
the sketch. These dimensions form a convenient basis to
generate and study the range of stylistic variations enabled
by our approach.

2. Related work

2.1. Line rendering of 3D objects

2.1.1. Silhouette and edge rendering
We discuss the prior work on non-photorealistic ren-

dering of silhouettes and edges in three subgroups. The
first group of techniques aims to identify the most repre-
sentative set of silhouettes and edges that best articulate
the shape. DeCarlo et al. [7] described suggestive contours,
Kalogerakis et al. [16] introduced a real-time rendering
method that uses learned curvatures variations, Zhang
et al. [32] utilized the Laplacian of the surface illumination
for contour detection. Inspired by these works, we use
discrete Laplacian kernels on the depth and normal buffers
to identify the silhouettes and sharp edges from input
images. Without loss of generality, our techniques can
work with the these other contour extraction methods. In
our experiments, the choice of Laplacian kernels had a

Fig. 1. Commonly observed features in hand-drawn pencil sketches: (a) overtracing and overlapping strokes; (b, c) hatching for shading in multiple layers;
(d) a series of continuous (no pen lift) hatching strokes.

G. Orbay, L. Burak Kara / Journal of Visual Languages and Computing 25 (2014) 481–493482



minimal effect on the end results in terms of the variety of
sketch characteristics that can be produced.

The second group of work focuses on rendering identi-
fied silhouettes and edges in prescribed styles. Markosian
et al. [18] described real-time rendering algorithms com-
bined with stylized stroke rendering. Yeh and Ouhyoung
[31] developed stroke rendering algorithms that helps
mimic Chinese inking styles. Hertzmann et al. [10]
describe an algorithm to enable curve analogies by learn-
ing a statistical model from an input pattern and replicate
it on another curve. Barla et al. [2] developed statistical
models that can learn and produce a wider range of
patterns. Brunn et al. [4] developed a multi-resolution
framework for encoding and generating curve patterns.
Cole and Finkelstein [5] developed edge detection and
stylized render algorithms. Kalnins et al. [14], Bernard
et al. [3], and DeCarlo et al. [6] described coherent stylized
rendering algorithms that are invariant to animations and
view point changes. While these studies cover a large
variety of stylistic rendering, little or no emphasis is given
to pencil-like renderings. This leaves the simulation of
characteristic features contained in pencil sketches an
open challenge. This work aims to enable the generation
of such features within a wide variety of stylistic effects.

In the last group we find algorithms for modeling
stylistic variations observed in pencil and ink drawings.
Sousa and Buchanan [26] developed a rendering system
that produces graphite pencil sketches from 3D polygonal
models. Sousa and Prusinkiewicz [27] proposed calculating
a chain of lines that are smoothed to replicate commonly
observed dynamic effects. Goodwin et al. developed an
inking algorithm based on the abrupt changes on the
illumination intensities on the models to overlay multiple
silhouette renders mimicking overlapping strokes.
Although these methods individually produce one or more
characteristics seen in pencil sketches, shading through
hatching is not addressed. In this work, we develop a
generative model that incorporates multiple unique char-
acteristics pertinent to silhouettes, edges, and multi-layer
shading.

2.1.2. Hatching rendering
Winkenbach and Salesin [29] developed stroke textures

to render both textures and tone with line drawings.
Salisbury et al. proposed a similar approach that produces
scale-dependent renders on different scales of sketches.
Winkenbach and Salesin [30] later extended their work to
rendering parametric surfaces with lines following para-
metric derivatives on the surface. Salisbury et al. [24]
proposed an interactive design system that allows the
users to quickly design directional fields to support line
renderings.

Inspired by the works of Winkenbach et al., a multitude
of methods was developed to render lines by tracing the
directional fields computed from 3D geometries. Hertzmann
and Zorin [11] presented a set of algorithms to calculate
hatching lines that follow directional fields defined on
surfaces. Praun et al. [22] proposed a method for real-time
rendering using tonal maps. Webb et al. [28] later used tonal
maps to enable enhanced tonal control. Palacios and Zhang
[20] described an interactive method for field design on

surfaces using rotational tensor symmetry. Paiva et al. [19]
proposed a physically inspired directional field design
method that calculates fluid-based hatching strokes. Jodoin
et al. [13] also used sample drawing methods that enable the
reproduction of recorded hatching patterns. Kalnins et al.
[15] incorporated similar pattern learning and reusing tech-
niques in an interactive non-photorealistic rendering system.
Similarly, Kalogerakiset al. [17] target learning hatching
preferences of an artist from a sample sketch that is drawn
over a 3D render.

Most of the prior work in this area is based on the
observation that hatching strokes are commonly drawn in
directions that closely align with the underlying geometry.
Although this observation is valid for in contexts where
precise and accurate 3D renderings are desired, it may not
apply in other contexts involving casually drawn pencil
sketches. For example, design sketches in [8] typically
contain quickly drawn hatching patterns whose directions
are primarily dictated by the shape of the shaded region
and not the underlying geometry. This difference in
hatching preferences plays an important role in distin-
guishing computed versus hand-made drawings. In this
work, we base our hatching patterns on the shape of the
shaded regions.

2.2. Simulation of pen dynamics

A group of studies used pen and arm models to mimic
the dynamic effects seen in ink drawings. Fujioka and
Kano [9] developed a two link arm model combined with a
3D brush to simulate inking dynamics. By controlling the
parameters associated with the arm and the 3D brush
model, they achieved different stroke transitions
with varying stroke thicknesses. House and Singh [12]
utilized a simpler dynamic pen model to render 3D object
silhouettes in various styles achieved through variations in
the dynamic properties. These works do not focus on the
design and the rendition of hatching strokes, thus strictly
producing ink renderings of silhouettes and edges. Almeraj
et al. [1] also utilize an arm model, however to render
silhouettes and edges together with equally spaced uni-
directional hatching strokes. Unlike the results seen in
other dynamic modeling works, the results contain little or
no cues of smooth, continuous transitions between con-
secutive strokes. Our method attempts to produce char-
acteristics more commonly in pencil-like sketches by
combining the effects related with the design of the
strokes and the effects related with the dynamics of the
drawing process.

3. Rendering approach

Our approach consists of three main steps: (1) refer-
ence trajectory design; (2) trajectory tracking via a
dynamic pen model; (3) multi-layer tonal matching via
visual feedback. Fig. 2 illustrates these components, which
are detailed in the following sections. Within each step, a
number of parameters are noted to facilitate the discus-
sions in Section 4. These parameters are highlighted at
their point of definition.
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3.1. Reference trajectory design

This step takes as input the conventional render,
normal and depth buffers of a 3D scene. From these
buffers, it produces the curves and regions to be rendered
with strokes. We use the depth and normal buffers to
identify the silhouettes and edges, and the render buffer
for shading region identification and tonal control.

From these buffers, our method generates a 2D stroke
pattern that traces the identified curves, and shades the
regions. For each stroke generated during this process, its
position, shape, length, and intensity variation are com-
puted using the render buffers. Spatial and angular per-
turbations are then applied to the strokes to simulate the
inaccuracies with the human motor control system.
Finally, this stroke pattern is transformed into a single,
time-dependent 3D space curve. The x and y components
of this resulting curve control the stroke's final shape in
the image plane, while the z coordinate dictates whether
the stroke leaves a trace on the paper, and if so, it dictates
the stroke's thickness and intensity as well. The transfor-
mation from a 2D pattern to a 3D curve allows the
subsequent pen model to follow a 3D path, thereby
allowing a rich set of visual artifacts to be created on its
projection to the image plane.

3.1.1. Silhouettes and edges
To design the stroke trajectory for the silhouettes and

edges of an object, we use conventional edge detection
methods on the depth and normal buffers. However, other
methods such as suggestive contours [7,16,32] could also
be used without loss of generality. In our implementation,
we use the Laplacian convolution kernel on the depth and
normal buffers to identify the curves at which the depth
and normal vectors vary abruptly (Fig. 3). When combined,
this results in the extraction of silhouettes and sharp edges
of the model as a set of polylines. From this point onward,
we do not distinguish between a silhouette or an edge
curve, and instead simply refer to them as siledge curves.

While this analysis may produce clean siledges such as
those shown in Fig. 3, it may also produce disconnected
islands of such curves as shown in Fig. 2. In either case, we
assemble all siledge curves into a single chain using their

spatial proximity. We do so using a formulation akin to the
Traveling salesman problem (TSP) in which each siledge's
start and end points form the nodes to be visited, and each
siledge must lie on the resulting path. This assembly of the
siledges effectively establishes their temporal order of
rendition. In addition to its spatial configuration, the
siledge path also maintains information regarding the
underlying image intensity from the render buffer, which
is later used to generate the height (z) coordinates.

The next step involves stroke design on this siledge
path. The local curvature of the path has an influence on
the length of the strokes to be generated. As shown in
Fig. 1, high curvature regions typically result in shorter
strokes, while low curvature sections can be traced using
longer strokes. Once stroke lengths are determined, we
use a normal distribution to generate variations in the
amount of overlap between consecutive strokes, as a
function of the strokes’ lengths. Fig. 4b demonstrates this
idea. We control the average length of the strokes and the
overlap with two parameters, PLmean and Poverlap. Finally,
the stroke orientations, lengths and positions are ran-
domly perturbed. We do so using a single parameter
Psiledge that concurrently controls the standard deviations
of these attributes as shown in Fig. 4c.

Using the above parameters, strokes are sampled as
follows: we start by instantiating a curve segment on one
end of the siledge curve according to the stroke length
distribution. If the turning angle of the sampled segment,
which is the angular difference between end tangent and
start tangent vectors, exceeds a prescribed turning angle
(201 in our implementation), we truncate the segment
back until the point where the maximum turning angle is
reached. Subsequent curves are selected in a similar way.
However, their starting points are determined probabilis-
tically according to the stroke overlap distribution
(Poverlap), which creates overlapping final sampled strokes.

Once the size, shape and position of the strokes are
determined, points are sampled along the stroke to mimic
equal time intervals during traversal. Similar to stroke
length determination, we simulate the effect of the pen
slowing down around high curvature regions using
curvature-adaptive sampling. High curvature regions are
thus sampled more densely compared to low curvature

Fig. 2. The inputs to our system are the three render buffers. A series of silhouettes and edges are identified together with the regions to be shaded.
A reference trajectory is designed for a dynamic pen model and later tracked using a closed control loop. In the outer feedback loop, the resulting render is
compared to the reference render to minimize the tonal difference using hatching in multiple layers.
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regions. In the following sections, we discuss the effects of
the pen speed on tracking, and thus the stroke renditions
produced by our pen model.

3.1.2. Hatching
We use the render buffer to identify the regions to be

hatched for shading. For this, we apply a low pass Gaussian

filter to the render image and use an intensity cut-off value
ðPint"cutoff Þ to isolate the shading regions. The first row of
Fig. 5 illustrates the idea. This process results in a set of
bounded regions, each treated as a separate area to be
shaded. As described later, this region identification is
performed several times in multiple layers, each time on
progressively smaller regions arising from our feedback

Fig. 3. The input buffers: depth, normal, and render buffers. The silhouettes calculated from the depth buffer and the sharp edges identified from the
normal buffer are combined to identify the silhouettes and edges. The render buffer is later used for hatching.

Fig. 4. Each siledge is converted into a series of strokes. The stroke lengths are determined adaptively according to the curvature along the siledge.
The magnitude of overlap between consecutive strokes is determined probabilistically from a normal distribution. The strokes are altered by random
perturbations in orientation, length, and scale. Strokes are rendered thicker than normal for demonstration.
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system. Within each region, a hatching pattern is
designed that maintains a flow congruent with that
region's geometry.

If the previously computed siledge path crosses
through an identified region, that region is further sub-
divided into smaller regions. Since siledges correspond to
discontinuities in the depth and normal maps, this sub-
division helps our system to produce distinct hatching
patterns within each subregion. This desirably helps the
hatching to preserve such discontinuities.

As shown in the second row of Fig. 5, the identified
regions often exhibit complex boundaries. This prevents
a straightforward adoption of a hatching direction, as
the resulting hatching behavior would require frequent

pen-up/pen-down motions. Artists typically prefer to
shade such regions by dividing it into multiple smaller
groups that can be continuously hatched with a series of
strokes. Inspired by this observation, we compute the
medial axis of the region, which reduces our analysis to
a group of branches. To identify the salient regions to be
distinguished, we seek to merge branches that are con-
nected with smooth transitions. This is done by studying
the curvature of a compound curve that is formed by
joining the two branches. If the discrete curvature of the
compound curve at the joint is less than a threshold, the
branches are merged (Fig. 5f). This process is repeated
until no more mergers are available. Next, short branches
are identified and removed, thereby leaving a small set of

Fig. 5. Identification of hatching regions. (a) The render buffer is processed to determine (b) the hatching regions and shading tones (c) resulting in islands
of regions. (d) For each region, the skeleton is calculated (e) and the branches are segmented. (f) Continuous branches are merged to produce compound
branches from which a reduced set of regions are determined.
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skeletal curves forming the axes of the subregions to be
hatched.

We next generate a hatching pattern for each identified
region using each region's medial axis branch as a refer-
ence. Fig. 6 illustrates this process. For a given region, the
hatching strokes are created from arc segments sharing a
fixed radius. This mimics the arc-like strokes caused by the
motion of the fingers and the wrist of the artist about a
virtual pivot point. The orientation of the hatching strokes
is chosen such that the generated pattern is a function of
the region's shape. For slender regions, the strokes are
configured such that they are always offset by a prescribed
angle relative to the medial axis. In such cases, the
hatching pattern closely follows the shape of the medial
axis. However, this requirement is relaxed for wider
regions so that the long hatching strokes produced for
wider regions do not form fan-like patterns in an effort to
follow the tight turns of the medial axis. This effect is
formulated by assigning an offset angle along the medial
axis, and smoothing this angle vector in relation to the
region's width along the medial axis.1 After the hatching
strokes are generated, parts of the strokes falling outside
the region are masked out, leaving the hatching only in the
region to be shaded.

Similar to siledges, perturbations are applied to the
orientation, position and size of the hatching strokes in
order to simulate the inaccuracies of the human arm. This
is controlled with a single parameter Phatching. Additionally
two other parameters in this process control the mean
frequency of the hatching strokes Phtc"freq, and the devia-
tion of the hatching frequency within the region
Phtc"freq"dev . Similar to the siledge strokes, hatching
strokes are lastly sampled to generate points along their
traversal. Since hatches are formed by constant radius arcs,
the curvature-sensitive sampling produces equally
sampled points along these strokes.

3.1.3. Stroke connections
At this point, the image intensity values along the

siledge and hatching strokes (obtained from the render
image) are used to create the height (z) coordinates for
each stroke. This is facilitated by considering a virtual
paper surface representing the z¼0 plane. All strokes
generated thus far lie below this plane as this indicates
the pen being in contact with the paper. Darker inten-
sities are transformed into deeper z coordinates whereas
lighter ones are interpreted as shallow depths. Image
intensities in the range [0,1] are linearly mapped to the
z coordinates ½0;Pzbase &, where Pzbase is the parameter
governing the maximum penetration depth as shown
in Fig. 7.

After stroke heights are computed, successively gener-
ated strokes are attached to each other using virtual
transition strokes. This simulates the pen lifting off the

Fig. 6. Hatching stroke generation. A series of arcs are oriented along the medial axis. The arcs are trimmed with the hatching region, and perturbed in
orientation and scale generating the final hatching strokes.

1 Note that the medial axis encodes the distance to the closest
boundary points, thereby allowing the thickness of the region to be
trivially computed as the medial axis is traversed.
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surface after one stroke ends, and reentering the paper for
the next stroke. We model this effect using cubic Beziér
curves as shown in Fig. 7. The design of these strokes is
critical, as they govern segments of the trajectory that our
dynamic pen model will be tracking. To this end, we
introduce a control parameter Pzceiling that determines the
maximum height the pen is allowed to ascend during
transitions. Additionally, to account for longer strokes
causing higher resistance for the pen to change direction

at the liftoff point, we extend a vector proportional to the
stroke's length. We use the right triangle formed by the
ceiling, and the extension vector of the stroke to determine
the tangent vectors of the Beziér curve. This allows a
natural follow through for each of the transition strokes,
based on the strokes they connect. Using this formulation,
we generate a single trajectory that the dynamic pen
model will next follow. Fig. 8 shows the final 3D trajectory
produced in this way.

Fig. 7. The virtual transition strokes connect consecutive strokes. The strokes attain z coordinates based on the underlying intensities. The virtual transition
strokes ascend into þz space, though not exceeding zceiling . The follow through of the transition strokes parallel to the virtual paper is determined by the
underlying stroke's length.

Fig. 8. (a) A series of strokes sampled in 2D. (b) The resulting rendered strokes. (c) 2D strokes are transformed into 3D reference trajectory that intersects
the virtual plane at multiple locations. (d) The reference trajectory (gray) is tracked using a dynamic pen (black), producing the render in (a).
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Using the above method, we generate a single reference
trajectory for the collection of siledge strokes, and another
one for the entire set of hatching strokes. We maintain the
difference between the two trajectories to allow the
dynamic pen model to utilize type-sensitive dynamic
properties for tracking.

3.2. Dynamic pen model

The calculated reference trajectory is next tracked by a
dynamic pen model which produces the final rendered
strokes (Fig. 9). The model consists of a closed loop control
system representing the visual system and the motor control
of the human. A free point mass represents the lumped pen,
hand, and arm masses. The input to the system is the
continuous 3D reference trajectories computed previously,
and the output is the actual 3D trajectory traced by the point
mass. A muscle model mathematically equivalent to a PID
controller is used for tracking. This formulation is similar to
that used in [12]. We enhance this model by adding random
muscle jitter to the guidance force applied to the point mass.
The jitter is modeled by a first order low pass filter that
rejects frequencies above a cut-off frequency. The equivalent
mass is controlled by the parameter Pmass, while the amount
of jitter and the filter cut-off frequency are linearly controlled
by the parameter Pjitter.

We model the motion in three dimensions as three
independent systems of equations and use a Runge Kutta
solver to obtain the pen's motion in space as a function of

time. The dynamic pen properties can be adjusted in the (x,y)
and z directions independent from each other. Fig. 8d shows
the reference trajectory (gray) and the resulting pen trajectory
(black) produced using this process. The final rendered
strokes are computed from the intersections of the calculated
pen trajectory with the virtual plane. The segments of the pen
trajectory under the z¼0 plane form the strokes to be
rendered. Furthermore, using the penetration depths of the
trajectory, intensity values are assigned along the strokes
similar to the way they were computed in Section 3.1.3.

3.3. Visual feedback and multi-layer rendition

While the previous step generates a rendered sketch
image, the shading tones and the intensity of the sketch often
do not match the tones of the original 3D render image.
This is because, unlike the continuous tonal shades present in
the render image, the hatching strokes form a discrete
pattern. Additionally, the dynamics in the pen model causes
the resulting strokes to deviate from the true tonal intensities
in the render image.

To alleviate these differences, we adopt a feedback
informed multi-layer hatching process. In essence, this
mimics the human visual system which continuously
compares a developing sketch with a real or mental
reference image. In our algorithm, this comparison is
calculated between the rendered strokes and the tones
on the reference image. We convert our strokes into
a tonal map image using a Gaussian kernel (Fig. 10b,c).

Fig. 9. Dynamic pen model is a closed loop control system that guides a pen/arm mass along a reference trajectory. The force on the pen (i.e. the force that
the muscle model applies to the pen inertia) is perturbed to model the jitter in the motor control system.

Fig. 10. (a) Original render buffer image. (b) First layer of rendered sketch. (c) A tonal map computed on the first layer using Gaussian kernels. (d) The
difference image between (a) and (c) results in new regions to be sketched in the next layer of hatching.
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This map is next compared with the reference image. The
difference is fed back to the trajectory design step where
the shading regions that require additional hatching are
identified from which a new reference trajectory is calcu-
lated. This process continues until the tones on the
rendered sketch match the tones of the reference image.
Fig. 10d, e illustrates an example.

In each rendered layer, the general orientation of the
hatching strokes relative to the medial axis is determined
such that they cross the already rendered hatching strokes at
maximally right angles. This arrangement is necessary to
ensure that each layer of strokes causes an substantial
increase in the tone intensities. As we do not limit
the number of layers that can be rendered, our method can
produce a variety of cross hatching patterns, created
in a multitude of layers. In the following section, we demon-
strate these aspects of our method with example sketch
renderings.

4. Results and discussions

In this section, the rendered sketches may be best
studied using the zoom functions of the digital viewers.

4.1. Performance

Our method is implemented in MATLAB. The hatching
region extraction described in Section 3.1.2 is currently the
most time consuming step. The computational cost of other
calculations including stroke generation and perturbation,
reference trajectory design, reference tracking using the
dynamic pen model and image differencing is negligible
compared to the region extraction step. The time required
for the calculations depends on the resolution of the render
buffers, the number of silhouette edges generated, the total
area of the regions to be hatched, and the number of layers it
takes to minimize the tonal difference between the sketch

Fig. 11. Results on various models. Note the hatching behaviors and dynamic effects illustrated in the blow out views.

Fig. 12. Results on various models. Note the hatching behaviors and dynamic effects illustrated in the blow out views. In the dancing children sketch in
particular, the short but hastily drawn strokes produce a unique impression.
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and the reference render. For the sketches generated in this
paper, the overall processing time varies between 30 s (apple)
and 3min (dancing children) on a Core 2 Duo computer with
3 GBs of RAM.

4.2. Examples

Figs. 11 and 12 present example renderings produced
by our system. The input renders are obtained from soft-
ware that can export such buffers. The blow out windows
show various phenomena generated from our dynamic
tracking and layers, including variations in siledge strokes,
continuous versus distinct hatching strokes, cross hatching
strokes, varying pen pressure and stroke intensities.

4.3. Sketch characterization and generation

Inspired by the categorization of line drawings presented
in [23], we develop three qualitative descriptors that we use

to systematically generate different visual effects. Each
descriptor encodes a conjoint variation of a subset of the
parameters that we have described in the previous sections.

Our qualitative descriptors aim to mimic (1) the skill
level of the sketcher, (2) the precision or neatness of the
sketcher at the particular task, and (3) the amount of detail
the sketcher is permitted to articulate in the sketch. The
skill level descriptor represents the amount of control and
confidence a virtual artist has with the pencil. Such effects
are manifested in the lengths and overlaps of the sampled
strokes on siledges, the perturbations on siledge and
hatching strokes, the variations on the hatch spacings,
and the amount of jitter in the tracking model. By varying
this parameter, our system can mimic short, unskilled
strokes versus long, confident, and precise strokes.

The neatness descriptor encodes the time and care the
virtual artist invests. Roughly speaking, it can be measured
by the time the artists are permitted to spend on a given
sketch, for a fixed number of strokes. A lack of neatness is
characterized by stroke skipping, undesired extensions at
stroke ends, and continuous, zigzag hatching patterns
representing hastily drawn shadows.

The level of detail descriptor controls the amount of
information presented in a sketch. This is measured by the
size of covered regions, and the number of number
sketched strokes. High level of detail corresponds to larger
shaded regions hatched with denser strokes, and also with
multiple layers of hatching. We can indirectly force more
layers by assigning low intensities to drawn layers through
the base z value. As a result, the system needs to produce
many layers to achieve tonal matching.

Table 1 shows the qualitative relationships we establish
between the parameters described in the previous sections
and the three sketch descriptors. The sense of the correla-
tion determines whether an increase in a parameter
increases or decreases a sketch descriptor.

Table 1
Table of parameters and their variations with skill, neatness and detail
level.

Parameters Skill ↗ Neatness ↗ Detail ↗

Psiledge " "
Phatching " "
Phtc"freq þ
Phtc"freq"dev " "
Pzbase þ
Pzceiling þ
PLmean þ
Poverlap "
Pmass þ
Pjitter þ
Pint"cutoff þ

Fig. 13. Neatness versus level of detail (constant skill): the renders resulting from different values of sketch parameters according to Table 1. Increased
level of detail results in more number of strokes and larger shaded regions. Increased neatness level results in higher precision in the rendered strokes.
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Figs. 13 and 14 show the variation in sketch styles we
obtain as a function of the three sketch descriptors. In each
diagram, two descriptors are varied, while the third is kept
constant.

4.4. Limitations

Our region segmentation analysis is able to produce
accurate partitions for smooth boundary regions. However,
in cases where the boundaries exhibit significant waviness,
the algorithm may produce fragmented regions. These
regions, when hatched, can cause undesirable hatching
patterns that are visually unappealing (in Fig. 11, the left leg
of the second child from the right). A similar situation occurs

when a short siledge is trapped within a large hatching
region. As shown in Fig. 15, this causes fragmented regions,
where the hatching angles change abruptly within the region.
One solution may involve a region analysis algorithm that
also takes into account additional factors such as intensity
variations within the region, together with the image skele-
ton approach we use.

5. Conclusion

We described a new non-photorealistic rendering
method to render 3D objects in the form of pencil-like
sketches. Our method is based on the observation that the
dynamic feedback mechanism involving the human visual

Fig. 14. Left: Skill versus level of detail (constant neatness). Right: Skill versus neatness (constant level of detail): the renders resulting from different
values of sketch parameters. In both diagrams, increased skill level results in higher stroke qualities and longer, more confident strokes especially in the
siledge strokes. Left: Higher levels of detail results in more strokes and larger shaded regions. Right: Higher neatness results in tidier sketches.

Fig. 15. Our region analysis may produce fragmented shading strips in case of intricate edges and boundaries, causing undesirable hatching patterns.

G. Orbay, L. Burak Kara / Journal of Visual Languages and Computing 25 (2014) 481–493492



system and the motor control of the hand collectively
generates the visual characteristics unique to hand-drawn
sketches. To this end, we developed a stroke planning and
dynamic tracking algorithm that produces a sketch render
in multiple layers using silhouette, edge and hatching
strokes. This approach allows visual artifacts unique to
hand-drawn sketches to be reproduced.

The mapping between our algorithmic parameters and
the three sketch descriptors we present provides a con-
venient basis for studying the stylistic variations produced
by our system. We believe this opens a new avenue for
future work where the technical parameters can be
learned and mapped to the descriptor parameters using
data-driven approaches, thereby providing a link between
artistic and algorithmic languages. We also believe that
our system may also serve as a training and visualization
tool, as our approach helps produce a progression of
sketches in layers.
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