
Co-Constrained Handles for Deformation in Shape Collections

Mehmet Ersin Yumer Levent Burak Kara

Carnegie Mellon University

Figure 1: Top: Co-constrained handles (light gray) learned from a dataset of 19 car models. Middle left to right: Co-constrained abstraction
of a car, the set of shape manipulators on the handles, and the four most significant soft constraints learned in the form of conditional
probability distributions. Bottom: A variety of deformed shapes (gold) generated using the constrained handles.

Abstract

We present a method for learning custom deformation handles for
an object, from a co-analysis of similar objects. Our approach iden-
tifies the geometric and spatial constraints among the different parts
of an object, and makes this information available through abstract
shape handles. These handles allow the user to prescribe arbitrary
deformation directives including free-form surface deformations.
However, only a subset of admissible deformations is enabled to
the user as learned from the constraint space. Example applications
are presented in shape editing, co-deformation and style transfer.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Applications;

Keywords: co-constraints, 3D shape deformation, shape sets, co-
deformation, constraint learning, style transfer.

Links: DL PDF

1 Introduction

Man-made shape deformation is a central task in digital content cre-
ation. Intuitive and fast deformation paradigms enable digital artists
to build upon prior work, product designers to explore shape varia-
tions, and engineers to incorporate new functionality into prior de-
signs. However, man-made objects are particularly difficult to ma-
nipulate in meaningful ways, as these models often embody a large
set of tacit constraints stemming from functional, aesthetic, struc-
tural, and fabrication considerations. Moreover, due to the even-
tual manufacturing and assembly methods, these models are often
constructed in multiple sub-assemblies, giving rise to many discon-
nected and intersecting geometric elements. As a result, translat-
ing the high-level design intentions into geometric directives is of-
ten challenging, and moreover, such intentions cannot be reverse-
engineered reliably from a single instance of the designed artifact.

As a result, unlike organic shape modeling which may be governed
by well-understood energy minimizers, man-made shape manipula-
tion requires a deeper analysis prior to editing. Previous approaches
to man-made shape deformation analyze a single model and present
the user a set of on-object handles [Gal et al. 2009], or part-based
bounding-volume handles [Kraevoy et al. 2008; Zheng et al. 2011].
However, such single-model analysis is only useful for extracting
low-level geometric relationships readily computable from a given
model. We contrast this with the observation that many design con-
straints common to a product family may be implemented in ge-
ometrically unique ways on the individual models of the set (Fig-
ure 2). We therefore argue that an analysis of man-made objects for
deformation purposes requires an understanding of the set of shapes
that the model belongs to.

http://doi.acm.org/10.1145/2661229.2661234
http://portal.acm.org/ft_gateway.cfm?id=2661234&type=pdf

Figure 2: Models from the same shape family may exhibit many
topological and geometrical differences. Above, the wheel housings
are either purely cylindrical, sharp cornered, or free-form.

Co-Constraints. We address the problem of learning meaningful
constraint spaces for a family of shapes. Figure 1 illustrates the
idea. Given a collection of compatibly segmented models [Sidi
et al. 2011; Golovinskiy and Funkhouser 2009] as input, an ab-
stract shape proxy is computed using the techniques described in
[Yumer and Kara 2012]. Initially, each distinct segment of a model
is abstracted separately, giving rise to multiple abstract segments
in a model. We then apply feature extraction and clustering to the
individual surfaces of these abstract segments in preparation for a
statistical shape analysis. The subsequent analysis learns the in-
trinsic and extrinsic shape variations across the similarly clustered
surfaces in the form of probabilistic constraints. This results in a
refined abstract model we call co-constrained abstraction, whose
eventual surfaces serve as deformation handles (Figure 1, top and
middle rows). The user deforms the object using through these han-
dles. When a surface is deformed, the system works to preserve
the learned constraints by automatically adjusting all other handles
through an optimization scheme. Our work differs from those in-
volving deformation spaces [Sumner et al. 2005; Kry et al. 2002].
Instead of computing a space spanned by the different deforma-
tions of a canonical model, we reveal the shape constraints from
a set of topologically and geometrically distinct models. This al-
lows any model in the shape collection to be deformed according to
the identified constraints, without undesirably inheriting the shape
characteristics unique to the other models in the set.

Shape Deformation. Our handles are the surfaces of co-
constrained abstractions (Figure 1). The user interacts with these
handles through manipulators or free-form sketch input to apply a
deformation. As shown in Figure 3, our handles are not on-model
handles, as man-made objects often consist of many disconnected
parts. An important feature of our approach is thus the deforma-
tion transfer from the handles to the embedded object. We accom-
plish this using a physically-based deformation method introduced
in Section 5. This method deforms the underlying model such that
the boundary of the volume may undergo an arbitrary free-form de-
formation. Prior to deformation, we compute an anisotropic stiff-
ness field that maps original shape features into a propensity for de-
formation. This helps salient shape features of the original model
to remain intact relative to the regions devoid of features.

Utility. Our method is geared toward applications involving guided
shape editing, where the learned statistics are enforced as soft and
hard constraints. Since our method can register all handles of the
models in the shape set, it can be used to automatically propagate
the deformations applied to a single model to the entire shape set
concurrently (i.e., co-deformation). Likewise, the inter-model re-
lationships enable style transfer, where the shape characteristics
learned from a database can be applied to arbitrary models.

Contributions. Our primary contributions are as follows:

• A method to induce shape constraints in a collection through
shape abstraction.

• Synthesis of co-constrained shape manipulators in the form of
handles for each shape with established links throughout the
shape collection.

Figure 3: (a) Part boundary (green) and crease edges (red). For
complex man-made shapes, these handles can be overwhelming or
fail to reveal salient deformation handles. They may be insufficient
in cases of large smooth areas (airplane). (b) Our handles com-
puted as co-constrained abstractions provide salient handles.

• Abstract volumetric style transfer by deforming a shape auto-
matically using the statistics from a dataset that represents a
target style.

• Co-deformation of multiple shapes that belong to the same
dataset through single shape editing.

2 Related Work

2.1 Shape deformation

Deformation of organic shapes. To date, most deformation tech-
niques fall into this category. These methods primarily operate on
a polygonal model, and focus on preserving surface details and
smoothness through an energy function [Botsch and Sorkine 2008].
Similar to our volumetric deformation involving variable elasticity
to account for man-made shape details, [Popa et al. 2006] use vari-
able elasticity for material aware deformation. Sorkine et al. [2007]
aim to achieve locally smooth and globally rigid deformations. For
an overview of earlier organic shape deformations refer to [Botsch
and Sorkine 2008]. Chao et al. [Chao et al. 2010] used nonlinear
elasticity with improved artifact handling over linear models. In
these methods, the deformation seeks to minimize an energy func-
tion describable in terms of the bulk or differential properties of the
model. In the domain of man-made shapes, however, these func-
tions often fail to capture the tacit shape constraints commonly ex-
pected after a manipulation.

Deformation of man-made shapes. Digital models of man-made
shapes exhibit many disconnected and intersecting sub-assemblies,
discontinuous features and poor triangulation (Figure 2). Early
works by Botsch and Kobbelt [2004] allow the user to author con-
straints on a complex model and deform it using a basis function
resulting from the constraints. Kraevoy et al. [2008] presents a
method for axis-aligned, non-uniform scaling of man-made shapes.
They embed the model into a rectangular prism and when resized,
the vulnerable parts of the model deform less compared to the rest
of the model. In this work, we use a vulnerability formulation
similar to theirs to instantiate an anisotropic stiffness field. Us-
ing this field as input, we describe a new algorithm in Section 5 for
free-form deformations, in addition to the axis-aligned non-uniform
scalings described in [2008]. Bokeloh et al. [2011] introduces a pat-
tern aware deformation method where they extract a set of sliding
dockers which can be added or removed to suit the applied defor-
mation, they also introduce a new algebraic model for parametric
analysis and editing of shapes that exhibit patterns [Bokeloh et al.
2012]. Xu et al. [2009] define deformation degrees-of-freedom at
the model joints, which are computed from an analysis of slippable
motions. This enables a realistic deformation of shapes that exhibit
dynamic joints.

In an inspiring work, Gal et al. [2009] utilize the sharp features on
a model as deformation handles, and use an analyze and edit ap-
proach to propagate the deformations to the entire model. This
method performs well on mechanical shapes with well-defined

Figure 4: Key steps of our approach. (a) Input is a dataset of segmented models (only one model is shown), (b) Initial segment abstractions
are created. (c) Distinct surfaces of the segment abstractions, aggregated from all the models in the dataset, are clustered and constraints are
computed. (d) This results in a co-constrained abstraction for each model. (e) Handles are instantiated on the surfaces of the co-constrained
abstractions. (f) The handles encode the current configuration with respect to the shape collection (normalized Gaussian distribution of
learned soft constraints), also serve as a means to propagate constraint information to compute additional constraints for deformation.

sharp features that can serve as handles. Most relevant to our
method, Zheng et al. [2011] extend the analyze and edit method
to volumetric component controllers. They generate controllers for
the parts of the model using volumetric primitives, and use an opti-
mization step that resolves inter-model constraints. Our method dif-
fers from these methods in that we compute the relevant constraints
from a family of shapes. Our volumetric constructs that lead to
the deformation handles can accommodate more complex manipu-
lations such as free-form surface deformations, whereas component
controllers in [Zheng et al. 2011] are limited to non-uniform resiz-
ing.

2.2 Shape sets

Co-segmentation and shape matching. Shape segmentation is
of primary importance when extracting low-level geometric rela-
tionships. Golovinskiy and Funkhouser [2009] segment the mod-
els in a set through shape alignment primitive clustering. Sidi
et al. [2011] use unsupervised clustering based on initial per-shape
segmentation, whereas Huang et al. [2011] exploit joint segmen-
tation for generating consistent segmentations of single manifold
objects. Wang et al. [2012] introduce a semi-supervised approach
that utilizes limited user input with descriptor space clustering. In
recent work, Van Kaick et al. [2013] introduce a hierarchical ap-
proach to segmentation. This approach provides multiple layers
of correspondences for a set of shapes instead of a single segmen-
tation. In this work, we utilize a modified version of [Huang et al.
2011] to segment the models in a collection. Each segmented model
may exhibit a number of segments common to other models, as well
as segments that may be unique to itself. These segmented models
constitute the input to our system.

High level co-analysis. There exists a large body of works that
utilize a co-analysis of shapes for high level shape operations.
Xu et al. [2010] describe a style-based shape clustering method,
from which a style transfer approach is demonstrated. Kaloger-
akis et al. [2012] present a generative model learned from a shape
set. The set can be expanded with newly synthesized instances
emanating from the same family. Using a genetic algorithm, Xu
et al. [2012] synthesize novel shapes from an analysis of existing
shapes. Yumer and Kara [2012] introduce a co-abstraction method
where the models in a collection are geometrically simplified to
the maximum extent possible, while preserving the distinguish-
ing characteristics of each model. Kim et al. [2013] introduce a
method to construct cuboid model templates in large collections.
Ovsjanikov et al. [2011] compute a descriptor space to define a set
of prismatic templates for the shape parts, and use the manipula-
ble templates to efficiently browse the shape collection. Recently,
Fish et al. [2014] introduced a a system where configurations of
a shape family are learned as geometric distributions, referred to
as the meta-representation. They assume previously known co-

segmentation, and their guided editing is limited to relatively rigid
transformations and uniform resizing. However, our system enables
a framework where not only part correspondence, but also abstract
surface correspondences are computed. Such correspondence then
enables us to introduce a finer shape editing system where rigid
transformations and uniform resizing, but also non-uniform resiz-
ing, and arbitrary free-form deformation is enabled.

Proposed approach. All previous shape deformation works focus
on editing singular shapes, whereas we take a different approach
and interlace information extracted from a shape set into singular
and collective shape editing. Our analysis of the shape collection
results in a set of handles that encapsulate the constraints among
the segments of the models. We compute a set of abstract han-
dles for the identified segments in the model. The shapes of these
handles (and thus the volume they enclose) are unique to each indi-
vidual model. However, the nature of the deformations enabled by
such a handle is common across all instances of that same handle
computed on the other models. This decoupling of handle shapes
(unique to a model) versus handle operations (common to all in-
stances on every model) allows each model in the collection to be
surrounded by custom deformers, while the results of the deforma-
tions remain congruent to the constraints dictated by the collection.

3 Overview

Figure 4 shows the major units of our approach. The input to our
method is a set of compatibly segmented, and aligned models [Sidi
et al. 2011; Golovinskiy and Funkhouser 2009]1. This is less re-
strictive than a consistent segmentation, where each label has to
appear in all the models. As such, not all bicycles in a collection
are required to have pedals, but the ones that have pedals should
compatibly have the same segment label for their pedals; i.e., they
should be semantically similar. From this input, our method identi-
fies a number of handles for each model, together with a set of con-
straints that govern these handles’ behaviors. Geometrically, each
handle corresponds to a distinct surface, which is obtained from a
shape abstraction algorithm. To manipulate a model, the user either
interacts with a manipulator instantiated on the handle or sketches
the new silhouette curves in 3D to reshape the handle (Figure 5).
Finally, the deformed handles drive a feature-sensitive volumetric
deformation algorithm. This suitably deforms the original geome-
try embedded in the closed volume bounded by the handles.

1Compatible segmentation does not require the models to all share the
same semantic parts. However, it requires all semantically equivalent parts
to be labeled similarly.

Figure 5: (a) Input models. (b) User prescribed deformation (top:
translation, bottom: silhouette sketching). (c) Constraints resolved
by the system, forming the full set of boundary conditions for our
volumetric deformation system. (d) Final models.

4 Handle Synthesis and Constraint Learning

4.1 Preprocessing

Segmentation. To generate the compatible segmentation, we use
a guided version of the unsupervised joint shape segmentation
[Huang et al. 2011]. The method presented by Huang et al. [2011]
is optimized for closed, uniformly meshed manifolds. Since man-
made shapes are composed of many disconnected parts that often do
not form a single connected topology, we implement the following
alterations: We adopt shape signatures from [Yumer et al. 2014],
and skip the initial patch creation, and instead create cuts through
the crease edges of the model. Combined with the already existing
separate parts, this procedure results in a better initial segmenta-
tion for man-made objects. The resulting segmentation is cleaned-
up through a user-interface that collects user assistance in cases of
sub-optimal segmentations2 We also compute the global symme-
tries associated with the model [Mitra et al. 2006].

Segment abstraction. We use the method presented by Yumer and
Kara [2012] to create an abstraction for each segment (five for the
car model in Figure 4; one for the body, and one for each of the
four wheels). We do not create a hierarchy of abstractions as they
originally proposed, but we increase the initial coverage percentage
to 90% so that the computed abstraction faithfully represents its tar-
get segment. We treat each segment of a model separately. Hence,
for a single model the number of abstractions equals the number of
segments on the model.

4.2 Surface Clustering

Each processed model embodies multiple abstracted segments,
each of which is composed of a multitude of distinct surfaces. The
goal in this step is to collect all the surfaces originating from all
the abstractions, and identify a clustering of these surfaces. Each
cluster will allow geometric statistics to be computed for the con-
stituent surfaces which, in turn, will lead to the shape constraints.
Prior to clustering, all models are uniformly scaled such that their
axis-aligned bounding box diagonal has a length of unity.

The cluster analysis is performed in two steps: (1) Seed surface
clusters originating from equivalent3 segments, and (2) Global clus-
tering that links the seed clusters, thereby establishing the con-
straints between semantically dissimilar segments.

Seed surface clusters. In the first step, we compute a seed clus-
tering of the surfaces across the models in the collection through
a coarse alignment of equivalent segments’ abstractions. We
anisotropically align the bounding boxes of the abstractions, i.e., we

2This clean-up was required for 16% of all models presented in this pa-
per. We believe the recent method described in [van Kaick et al. 2013] may
be a suitable alternative for initial part segmentation.

3The initial part segmentation is assumed to carry the desired informa-
tion in terms of functional or semantic similarity.

Figure 6: Constrained Mean-Shift vs. GMM. Left: Average ac-
curacies over different datasets. Clustering is performed with 15
models in the each dataset. Right: Time-complexity vs. number of
models in the clustering averaged over the five different datasets.

translate and non-uniformly scale the abstractions until the posi-
tions and sizes of their bounding boxes match. Next, we compute
the following pairwise distances among the constituent surfaces:

DIJ = DJI =
∑

diJ/ni +
∑

djI/nj (1)

where DIJ is the mean of distances from surface I to surface J ,
diJ is the minimum distance from point i on surface I to surface J ,
ni is the number of points uniformly sampled on surface I . Note
that DIJ is conceptually similar to the mean Hausdorff distance.
If, DIJ ≤ 0.1

√
2Area(I) + 2Area(J), I and J are clustered to-

gether. This provides a seed clustering of the abstraction surfaces
associated with the geometrically similar segments in the collec-
tion. Once the surface clusters are computed, we revert to the origi-
nal, non-scaled versions of the surfaces, and extract a feature vector
describing the attributes of each surface in the cluster. This vec-
tor is composed of: Three principal component vectors e1, e2, e3

encoding the distribution of the vertices sampled from the surface,
average local area-weighted outward normal vector of the surface n
(this normal can be uniquely determined since these surfaces are the
boundaries of closed volumes), and the first three principal compo-
nents κ1, κ2, κ3, of a 16-bin normal curvature histogram computed
over the surface. For the latter, a PCA basis is computed from the
normal curvature histogram from all the surfaces in the seed cluster.
Top three principal vectors are used as projection bases to compute
the reduced dimensional representation of the curvature signature
of a surface. e1, e2, e3,n, κ1, κ2, κ3 collectively give rise to a 15-
dimensional feature vector.
Constrained Mean-Shift Global Clustering. This step takes the
seed clusters as input and creates a set of larger clusters that join
the surfaces originating from semantically dissimilar segments. We
use the mean-shift algorithm [Cheng 1995] to compute the final

Figure 7: Top: Input models. Bottom: Co-constrained abstrac-
tions whose surfaces serve as deformation handles.

Figure 8: Top: Initial segment abstractions of five different wheel
housings. Bottom: Co-constrained abstractions. Note the change
in the number of surfaces for some of the segment abstractions.

clusters:

m(x) =

∑
xi∈N(x)K(xi − x)xi∑
xi∈N(x)K(xi − x)

(2)

x ∈ R15 is the surface feature vector, m(x) is the mean-shift,
K(xi − x) = e−c||xi−x||2 is the Gaussian kernel estimator, and
N(x) is the neighborhood of x. For a given surface, if the mean-
shift determines any one of the surfaces in a seed cluster to be a
neighbor using the L2 norm, then N(x) includes all of the surfaces
belonging to that cluster. This alleviates the well-known isotropic
kernel disadvantage associated with the mean-shift algorithm. Fig-
ure 6 shows the accuracy and processing time associated with this
constrained mean-shift variant we use compared to the compute-
intensive, semi-supervised Gaussian mixture model (GMM). As
shown, the accuracy gain by GMM does not justify the associ-
ated time complexity. Hence, we use the constrained mean-shift
approach for the results presented in this paper. Details of the semi-
supervised GMM and a more detailed analysis of this comparison
can be found in the supplementary document.

Our features are not designed for conventional shape segmentation,
we do not want to group the planar face and the radial surface of the
car wheel. Instead, our clusters favor surfaces belonging to similar
families (e.g., planar, cylindrical, spherical), and that share similar
relative positions (through e1, e2, e3) and orientations (through n)
along any of the three global axes. Note that, it is intended to merge
some of the semantically different clusters in this step. For instance
the side surface handle of the body of the car, and the side surfaces
of the tires on the same side. This allows the system to automati-
cally suggest intelligent editing in real time during user interaction;
while the user modifies the side surface of the body, tire side sur-
faces are also modified in plausible directions (see supplementary
video).

4.3 Co-constrained Abstraction and Handles

We analyze the identified clusters to extract a set of constraints un-
derlying the shape collection (Figure 7). The first set of constraints
aims to establish the statistically dominant surface family for a clus-
ter of surfaces. The second set aims to identify the statistical de-
grees of freedom of each surface cluster to form the constrained and
free deformation handles. Also, planar, cylindrical, and spherical
surfaces are constrained to remain as such after any deformation.

Surface family constraints. Once the surface clusters are formed,
we compute the probability of the surfaces within a cluster belong-
ing to a planar (Pp), a spherical (Ps), or a cylindrical (Pc) category:

Pp =
n∑
i

C
p
i /n Ps =

n∑
i

C
s
i /n Pc = nc/n

where n is the number of surfaces in the cluster, C p
i = 2(σ2 −

σ3)/(σ1 + σ2 + σ3), and C s
i = 3σ3/(σ1 + σ2 + σ3). In C p

i and

Figure 9: Handle manipulators. Left: Principal component vec-
tors on the surface. Middle: Manipulator with all nine degrees
of freedom; the user selects translation versus scaling using a key
press. Right: Co-constraints disables certain degrees of freedoms.
When user desire, the manipulator will depict a range indicator to
mark the deformation ceiling dictated by the shape collection.

C s
i , σ1 > σ2 > σ3 > 0 are the PCA components of the point set

formed by the vertices sampled from surface i. nc is the number
of surfaces in the cluster, which has originated from a basic cylin-
der primitive in the segment abstraction [Yumer and Kara 2012].
If none of the above probabilities is greater than 0.9 (empirically
determined and used for all presented examples), we deem the vari-
ations among the surfaces of that cluster are too significant to war-
rant a categorization. As such, the surfaces in that cluster are treated
as polynomial surfaces of quadratic or cubic degree, determined by
the initial segment abstraction. Otherwise, all surfaces in the cluster
are converted to the surface category with the highest probability.
This is done for each surface individually by re-fitting a paramet-
ric model of the detected family to the original model points giving
rise to the segment abstraction surfaces. We call this combined set
of new abstractions the co-constrained abstraction. Figure 8 shows
the transition from a segment abstraction to a co-constrained ab-
straction.

Degree of freedom constraints. Once the co-constrained abstrac-
tion is computed, we establish the appropriate degrees of freedom
for each constituent surface (handle). Each surface is initially as-
signed axis-aligned three translational tx, ty, tz , three rotational
θx, θy, θz , and three scaling sx, sy, sz degrees of freedom. For
tx, we extract the x component of the center of mass positions of
the surfaces within a cluster. If the standard deviation is less than
a user-prescribed threshold (currently 0.05 for a unit-normalized
bounding box), we prohibit tx from being manipulable on the ba-
sis that the observed variation is too limited to warrant that degree
of freedom. Constraints on ty and tz are computed similarly. For
θx, we project each surface to the yz plane and compute the angu-
lar variation between the first principal components e1 among the
projected surfaces. If the standard deviation is less than a threshold
(currently 10◦), we constrain θx from being manipulable. Con-
straints for θy and θz are computed similarly. For scaling sx, sy
and sz , we find the span of each surface along the scaling axis. If
the standard deviation is less than a percentage of the maximum
span (currently 5%), we constrain sx from being manipulable.

The default setting is either to fully constrain a degree of freedom,
or to make it fully manipulable with no ceiling on the manipulation
extent. The user has the option to turn all constraints off, thereby
allowing all degrees of freedom of a surface to be manipulable. A
third option is to allow all degrees of freedom to be manipulable,
but for a selected degree of freedom, show the admissible ‘range’
of the manipulation as a visual reference. For translational degrees
of freedom, for instance, the manipulator displays a transparent bar
showing the±3σ range arising from the above statistics (Figure 9).

The above apply to planar or free-form surfaces. For the radial
surfaces of co-constrained cylinders, we additionally compute the
standard deviations in their radii r and the lengths of their axes l.
Similarly, for spherical surfaces, we compute the variation in r.

Figure 10: (a) Contact graph of handles. Surfaces into the page
are omitted for viewing simplicity. (b) User edited handle in green,
system anchored handle in red. (c) System chosen additional con-
strained handles in blue, for which the positions are computed by
Equation 4. (d) Resulting deformations.

4.4 Correlation Among Deformation Handles

We compute a number of pairwise statistics that estimate the con-
ditional probability distributions among the identified surface clus-
ters. The resulting information is used to: (1) Visually query the
‘severity’ of a prescribed handle configuration, with respect to the
statistics originating from the shape collection, and (2) Appropri-
ately update the surrounding handles in response to an edit applied
to a particular handle. During deformation, the former gives feed-
back to the user on how severely the pending surface modification
will affect the relationship between that surface and all other sur-
faces in the model. The latter enables an automatic adjustment of
all handles such that the resulting deformed shape complies maxi-
mally with the constraints learned from the database.

We estimate the conditional feature probability of cluster i, given
cluster j as follows:

P(ki|kj) = P(ki, kj)/P(kj) (3)

where k takes values from: tx, ty, tz, θx, θy, θz, sx, sy, sz, r, l. We
model P(ki, kj) and P(kj) as univariate Gaussian distributions
from the observed data, resulting in an estimated Gaussian for the
conditional probabilities P(ki|kj).

Soft constraints. During the deformation process, the user is con-
tinuously informed about the conditional probabilities that are vi-
olated by more than a predefined deviation from the mean of the
corresponding feature. This passive feedback mechanism, which
we refer to as soft statistical constraints, enables users to situate the
edits they are performing with respect to the collection of shapes.
Such information aids the user in two ways: The user might either
(1) prescribe edits that do not violate the statistical constraints to
ensure realistic models that stay within the variations among the
dataset, or (2) The user might deliberately apply exaggerated defor-
mations by that violate the associated soft constraints.

Figure 11: (a) Segmented model. (b) Co-constrained abstraction.
(c) Tetrahedral mesh domains computed using the surfaces of (b)
as boundaries. (d-f) Element vulnerability in x, y, and z directions.
Elements with vulnerability less than 0.3 are not depicted.

Handle anchoring. An anchor is a handle that is automatically kept
fixed to prevent rigid body transformations, while another handle is
being manipulated. This alleviates the need for the user to mark
the fixed handles every time another handle is manipulated. For
each handle, its anchor is identified as follows: If the handle has
a globally symmetric pair, it is selected as the anchor. Otherwise,
a handle that maximizes the Euclidean distance from the handle
under consideration in the 4D space defined by [g, nx, ny, nz], is
selected, where g is the normalized geodesic distance (0 ≤ g ≤ 1),
and [nx, ny, nz] is the outward normal (Figure 10(b)).

Constraint propagation. We use the statistics to update the
handles for which the user has not prescribed any edits. Note
that, independently constraining adjacent handles may result in ill-
conditioned configurations for shared handle edges. To prevent this,
we utilize the contact graph of the handles (Figure 10). To select the
handles to be updated by the system, we propagate the information
from the user edited and anchored handle nodes in a breath first
search manner (BFS). To avoid adjacent handle constraining, for
any pair of connected nodes, if one node is constrained, we ensure
its neighbor is not. Note that the contact graphs of the individual
segments are disjoint (Figure 10(a)). If none of the handles in a
segment is edited by the user, the system randomly selects a node
in such segments, and propagates to additional nodes in the corre-
sponding contact graph using BFS. Moreover, if the user edits two
adjacent surfaces and this results in an ill-conditioned configura-
tion, then the latest edited surface overrides the first, and the user is
notified. Once the handles to be constrained are selected, we solve
the following optimization problem:

minimize
si

N∑
i

1

σi

|µi − si|

subject to kj = uj ∀ kj ∈ U.

(4)

where N is the number of relevant statistics (see Equation 3) per-
taining to the user edited and anchored handles. σi and µi are the
standard deviation and mean of the random variable i, and si is its
current value computed on the model in question. In Equation 4, the
summation represents the total deviation of the constrained handles
from the dataset mean. U is the set of degrees of freedom corre-
sponding to the user edited handles, kj are the degrees of freedom
as defined in Equation 3, and uj are the values resulting from the
user prescribed edits. The updates resulting from this optimization
generate additional constraints for the volumetric deformation (Fig-
ure 10(c), Figure 5). The equality constraints of the optimization in
Equation 4 ensure that user intentions are accurately reflected in the
deformation constraints. We use sequential quadratic programming
to solve the resulting system. Once the propagation is complete,
the constraints on the surfaces are updated according to the new po-

Figure 12: (a) Input model. (b) Deformation created by tilting
the top surface using a homogeneous-isotropic material, note the
undesirable artifacts on the door and hood. (c) Using our material.

Figure 13: Handles as a function of segmentation (left-to-right)
and abstraction (top-to-bottom) granularity.

sitions of the handles for subsequent editing sessions if the entire
shape has undergone rigid body translations or rotations.

5 Volumetric Deformation

Meshing. Our volumetric deformation is based on a finite element
model, using a structure-aware, non-homogeneous and anisotropic
material. We generate a tetrahedral mesh inside the volume
bounded by a co-constrained abstraction using the method de-
scribed in [Si and Gärtner 2011]. Figure 11(c) shows the mesh
generated for the abstraction in Figure 11(b). Each co-constrained
abstraction volume in a model is independently meshed in this way.

Vulnerability. We first triangulate all non-triangular surface poly-
gons. Next, for each triangle, we compute its vulnerability
vx, vy, vz along the three principal directions using the slippage
and normal curvatures introduced in [Kraevoy et al. 2008]. In our
method, we transfer the computed vulnerabilities to the tetrahedral
mesh elements such that each tetrahedron gets assigned the maxi-
mum directional vulnerability among the original surface triangles
intersecting the tetrahedron.
Non-homogeneous, anisotropic material. Using the vulnerabili-
ties assigned to the tetrahedrons, we design a material matrix with
the following properties:

Exx = vx Eyy = vy Ezz = vz

Gxy = Gyz = Gxz = max(Exx, Eyy, Ezz)/2

Exy = Eyz = Exz = 0

Figure 14: Four most significant (i.e., minimum variance) statistics
learned from car and airplane datasets given by Equation 3. Plots
are mean-shifted for visual comparison. Cars: (a) co-planarity of
wheel cap center and body side, (b) wheel housing radius relative to
wheel radius, (c) car length given its width, and (d) car width given
its height. Airplanes: (e) fuselage length relative to wing span, (f)
co-planarity of radome and engine tips, (g) wing span relative to
horizontal stabilizer span, (h) fuselage length relative to fuselage
cross-section radius.

where vx, vy, vz are the vulnerabilities in the three major directions,
and E and G are the elastic and shear modulus, respectively. By
design, our material is anisotropic and is not volume preserving
(Eij = 0 for i 6= j). We assemble a global stiffness matrix from the
local stiffness matrices computed with this material using 4-node
tetrahedral element shape functions [Norrie and De Vries 1978].

Boundary conditions. For each segment in the original model,
tetrahedral mesh creation and stiffness matrix computation for its
co-constrained abstraction results in the linear system:

Kδ = 0 (5)

where K is the global stiffness matrix computed above, and δ ∈
R3nt is the concatenated vector of tetrahedral mesh vertex dis-
placements. nt is the number of vertices in the tetrahedral mesh.
A handle deformation prescribes the displacements for the vertices
on this surface. This constrains the corresponding entries in δ. Sim-
ilarly, vertices of the anchor surface (Section 4.4) are identified in
δ and set to have zero displacements. The residual boundary forces
are then used to solve the rest of system of equations. Note that
K is sparse and is computed only once for each segment. This en-
ables a fast solution in which a linear set of sparse equations with a
precomputed K is solved for a specified deformation only once.

Deformation propagation. Following mesh deformation, we com-
pute the new positions for the original model vertices embedded in
the mesh using tetrahedral barycentric coordinates. For parts of the
original model that fall outside the meshed volume, we use the as-
rigid-as-possible deformation technique [Sorkine and Alexa 2007]
such that parts of the model that reside inside the tetrahedral domain
are treated as known displacements.

6 Results and Discussions

Co-constrained abstraction surfaces as handles. The notion of
co-constraints exploits shape set information in deformation and
editing processes. Resulting handles embody not only geometric
features of the shape itself, but also information about the family
of shapes it emerges from. For instance, in Figure 8, our method

Figure 15: Model in (c) yields deformation handles in (d) when
conjointly analyzed with models in (a). Similarly, it yields defor-
mation handles in (e) when analyzed with (b).

identifies the dominant circularity of the surface through an analy-
sis of the shape set. For each model, this constraint is enforced in
the synthesis of co-constrained abstractions and their surface han-
dles. This helps the system and the user to clearly understand the
intended relationship between the wheel-housing and the wheel, for
all the models in the collection.

Volume deformation. Our volumetric deformation is made
structure-aware through the use of vulnerability introduced in
[Kraevoy et al. 2008]. However, our deformation method is more
flexible and enables arbitrary free-form handle deformations, in ad-
dition to non-uniform resizing. In our implementation, our handles
are amenable to free-form deformation through the use of curve
sketching. The user can activate a handle, and sketch a new silhou-
ette for the handle from an orthographic view.

Handle hierarchy. Two main factors contribute to the complexity
of the created handles: the initial volumetric segmentation, and the
subsequent initial abstraction. First, the volumetric segmentation
dictates the number of disjoint parts and enables independent defor-
mation, scaling, and rigid-body transformation of these parts. Sec-
ond, both the segmentation granularity, and initial segment abstrac-
tion level dictates the number of co-constrained abstraction handles
that are created. Figure 13 shows the hierarchy of handles enabled
through this flexibility. Each coarse-level handle can be indepen-
dently decomposed into several more detailed handles in the sub-

Figure 16: Model in (c) yields deformation handles in (d) when
analyzed with all models in (a) and (b). (e) User input. (f) System
updates remaining handles based on statistics in (a). (g) System
updates remaining handles based on statistics in (b).

Figure 17: Co-Deformation: user input on a single model’s han-
dles are propagated to the entire dataset to deform all the models.
(a-b) Source model and its deformation handles, (c-h) a series of
user input and system auto-completes, (i-j) Deformed model and its
handles’ final configuration, (l) Target models in the dataset, (m)
Source deformation imposed on the target models.

sequent level. This enables greater flexibility in selecting different
levels of detail as the handles of different components.

Dataset statistics. The shape collection allows the identification of
statistical variability in the position, rotation, and scale of a given
surface associated with the co-constrained abstractions. We com-
pute these from the surface clusters (Section 4), and impose the
learned constraints onto the manipulators of the handles. These
constraints prevent users from making implausible edits. For in-
stance, a car’s left and right side panels are symmetrically config-
ured (as learned from the dataset). Hence, shearing one side relative
to the other will create an infeasible design, which is naturally pro-
hibited by the constraints. When desired, these constraints can be
turned off, allowing arbitrary deformations to be prescribed through
an unconstrained manipulator. At any time, the user can view a
handle’s current configuration in relation to the learned statistics
through a gauge (please see the accompanying video). Figure 14
shows a set of minimum-variance conditional probabilities learned
from the car and airplane datasets. Such probabilities signal a
strong coupling between the associated handle variables. Note that
the algorithm uses solely the geometric properties of the handles
and does not have access to the semantic descriptors used herein.

Effect of different datasets. The input dataset has a significant
impact on the resulting handles and shape deformation. Figure 15
illustrates how different datasets can produce different handles for
the same model. Figure 15(a) shows that if the dataset consists of
objects having mostly rectangular limbs, the resulting handles tend
to be rectangular in nature (Figure 15(d)). Similar discussions for
the case of cylindrical limbs (Figure 15(b and e)).

Note that the conditional probabilities computed from the dataset
can be used to automatically compute an optimal configuration for
all the handles in a model. This is particularly useful for explicitly
altering a single handle or for automatically reconfiguring all the
handles to make a model consistent with a dataset.

Figure 16 illustrates the idea for explicit handle alteration. We com-

Figure 18: Abstract style transfer shown on two models per two categories. Left: airplanes. Right: cars. The deformation results are
automatically generated by the system, where the deformation handles are modified based on the statistics of corresponding dataset. Note
how passenger airplanes can imitate the shape of fighter jets, and how regular cars can be modified into sports cars, or classical sedan cars.

pute the optimal configuration of all the other handles by minimiz-
ing the following functional:

minimize
si

N∑
i

1

σi

|µi − si|+ λ ·
M∑
j

Dj

subject to kl = ul ∀ kl ∈ U.

(6)

Equation 6 is similar in spirit to Equation 4. Here, N is the num-
ber of statistics computed for the model under consideration (Equa-
tion 3) and involves the largest subset of handles present on the
model that will not cause ill-conditioning (i.e., no adjacent handles
in the subset). M is the number of free-form handles in this sub-
set, and Dj is the distance between handle j and the correspond-
ing free-form handles on all other models (Equation 1). U is the
set of degrees of freedom corresponding to the handles where edits
are prescribed by the user, kl are the degrees of freedom as de-
fined for Equation 3, and ul are the values resulting from the user
prescribed edits. In Equation 6, the first term in the minimization
promotes affine similarity between the model’s co-constrained ab-
straction surfaces and that of the dataset’s mean, and favors handles
exhibiting small variance. The second term accounts for the ge-
ometric proximity between the free-form handles. λ controls the
relative weight between these terms.

Co-Deformation. Clusters learned from the abstraction surfaces
serve as a means to transmit a model’s deformation to all other
models in the shape collection, which we call co-deformation. Fig-
ure 17 illustrates the idea. This is achieved by exploiting surface
correspondences in the co-constrained abstractions of the models in
the dataset. Hence, a deformation applied to a handle can be fluidly
transferred to all other models, thereby allowing a batch-editing of
the shape collection using a single model.

Abstract style transfer. Equation 6 can also be utilized for abstract
style transfer, by omitting the constraints in the optimization prob-
lem since there will be no user edits in this scenario. Particularly,
an input model can be automatically deformed via its handles by
making the statistics of the model similar to those computed from
the dataset. Figure 18 demonstrates the idea. In effect, this can
be viewed as a process similar to that shown in Figure 16, except
without any user prescribed alteration to the handles.

Editing results. Figure 19, and Figure 1 shows various additional
editing examples achieved using our system. In all cases, the orig-
inal models are shown in blue and the deformed versions in gold.
The shape collection from which the co-constraints are learned con-
tain more input models than what is depicted. The robots set con-

tains 14 models, the airplane set 18, the bicycle and lamp sets each
contain 13 models4. Note that in all contexts, the deformed models
exhibit both plausible as well as unrealistic/unnatural edits. Indeed,
these correspond to cases where the identified co-constraints are ei-
ther active, or are turned off making the model freely editable.

Preliminary user study. We administered a small user study to
benchmark our method against existing software suites. The time
to create the result with the commercial packages was five times
of the time to create with our software, in average for all users.
Please refer to the supplementary material for the details of this
preliminary user study.
Performance. Our approach consists of a pre-processing and de-
ployment phase. Pre-processing involves: (1) Computing an initial
abstraction for each segment in each of the models, (2) Construct-
ing the surface clusters and identifying the co-constraints from the
collection, (3) Meshing each co-constrained abstraction volume on
each of the models, and (4) Computing the material and stiffness
matrix K associated with each mesh, which is computed only once
for a co-abstraction volume. These steps are currently not at inter-
active speeds (e.g., less than a minute to compute the initial abstrac-
tions for one model on average). When deployed with the above
information, the deformation takes place at interactive speeds. The
usage is interactive even in cases when one model’s deformation is
transferred to the other models in the database simultaneously.

Limitations. In our implementation, we do not alter the input
model’s topology. As a result, if the original model’s surface poly-
gonization is coarse, or the polygons are configured such that the
model becomes non-conducive to deformations in certain direc-
tions, our software may produce unexpected results. For instance, if
a coarsely polygonized part of a model undergoes bending, the final
result will exhibit kinks along the deformed surface. Our method
can only decode shape constraints that are computable from the
abstraction geometries. In product design, there are a additional
layout, aesthetic, ergonomic and manufacturing constraints that are
critically important. If such relevant attributes are not represented
in the geometry, our method might fail to capture these constraints.

Future Work. The techniques introduced in this work are initial
steps towards leveraging implicit information of shape collections
for shape deformation purposes. Our method depends on the volu-
metric abstractions, through which the statistics are computed. Fu-
ture directions might include computing statistics on details that
can only be represented by surface height maps, curves, or textures,
which are not easy to represent with volumetric abstractions.

4Please refer to the supplemental material.

Figure 19: Example handles and co-constrained deformations. Original models in blue. Deformed models in gold. See supplemental
material for results on an additional dataset.

7 Conclusion

We address the problem of shape editing where the underlying
shapes are expected to deform in ways that make certain edits more
preferable over others. We describe a new deformation method that
learns the implicit shape constraints in a product family from exam-
ple models. The decoupling of handle shapes (unique to a model)
versus the handle operations allows each model in the collection to
be surrounded by custom deformers, while the results of the defor-
mations remain congruent to the constraints dictated by the collec-
tion. The results show that the proposed approach works well for
models comprised of many topologically disconnected parts, and
can accommodate a wide variation of topological and geometrical
differences in the input models.

Acknowledgments

We thank the anonymous reviewers for their valuable input and sug-
gestions. We thank Eric Anderson and Niloy Mitra for useful dis-
cussions. The 3D models are collected from Artist-3D, Archive-3D,
Trimble (Google) 3D warehouse, and Turbosquid. We thank the
creators of these models for making their work publicly available.
This material is based upon work supported by the National Science
Foundation under Grant Nos. CMMI-0846730, CMMI-1235427.

References

BOKELOH, M., WAND, M., KOLTUN, V., AND SEIDEL, H.-P.
2011. Pattern-aware shape deformation using sliding dockers.
In ACM Transactions on Graphics, vol. 30, 123.

BOKELOH, M., WAND, M., SEIDEL, H.-P., AND KOLTUN, V.
2012. An algebraic model for parameterized shape editing. ACM
Transactions on Graphics 31, 4, 78.

BOTSCH, M., AND KOBBELT, L. 2004. An intuitive framework
for realtime freeform modeling. ACM TOG 23, 3, 630–634.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational
surface deformation methods. IEEE Trans. on Vis. and Comp.
Graph. 14, 1, 213–230.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010.
A simple geometric model for elastic deformations. ACM Trans-
actions on Graphics 29, 4, 38.

CHENG, Y. 1995. Mean shift, mode seeking, and clustering. IEEE
T. Pattern Analysis and Machine Intelligence 17, 8, 790–799.

FISH, N., AVERKIOU, M., VAN KAICK, O., SORKINE-
HORNUNG, O., COHEN-OR, D., AND MITRA, N. J. 2014.
Meta-representation of shape families. In ACM Transactions on
Graphics, vol. 33(4), 34.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D.
2009. iwires: an analyze-and-edit approach to shape manipu-
lation. In ACM Transactions on Graphics, vol. 28, 33.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. Consistent seg-
mentation of 3d models. Computers & Graphics 33, 3, 262–269.

HUANG, Q., KOLTUN, V., AND GUIBAS, L. 2011. Joint shape
segmentation with linear programming. In ACM Transactions
on Graphics, vol. 30, 125.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Transactions on Graphics 31, 4, 55.

KIM, V. G., LI, W., MITRA, N. J., CHAUDHURI, S., DIVERDI,
S., AND FUNKHOUSER, T. 2013. Learning part-based templates
from large collections of 3d shapes. ACM Trans. on Graphics 32.

KRAEVOY, V., SHEFFER, A., SHAMIR, A., AND COHEN-OR, D.
2008. Non-homogeneous resizing of complex models. In ACM
Transactions on Graphics, vol. 27, 111.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. Eigenskin: real
time large deformation character skinning in hardware. In Proc.
of the Symposium on Computer Animation, 153–159.

MITRA, N., GUIBAS, L., AND PAULY, M. 2006. Partial and ap-
proximate symmetry detection for 3d geometry. ACM Transac-
tions on Graphics 25, 3, 560–568.

NORRIE, D. H., AND DE VRIES, G. 1978. An introduction to the
finite element analysis. Academic Press New York.

OVSJANIKOV, M., LI, W., GUIBAS, L., AND MITRA, N. J. 2011.
Exploration of continuous variability in collections of 3d shapes.
ACM Transactions on Graphics 30, 4, 33.

POPA, T., JULIUS, D., AND SHEFFER, A. 2006. Material-aware
mesh deformations. In Shape Modeling and Applications, 2006.
SMI 2006. IEEE International Conference on, 22–22.

SI, H., AND GÄRTNER, K. 2011. 3d boundary recovery by con-
strained delaunay tetrahedralization. International Journal for
Numerical Methods in Engineering 85, 11, 1341–1364.

SIDI, O., VAN KAICK, O., KLEIMAN, Y., ZHANG, H., AND
COHEN-OR, D. 2011. Unsupervised co-segmentation of a set
of shapes via descriptor-space spectral clustering. ACM Trans-
actions on Graphics 30, 6, 126.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Sym. on Geometry Processing, 109–116.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ,
J. 2005. Mesh-based inverse kinematics. In ACM Transactions
on Graphics, vol. 24, 488–495.

VAN KAICK, O., XU, K., ZHANG, H., WANG, Y., SUN, S.,
SHAMIR, A., AND COHEN-OR, D. 2013. Co-hierarchical anal-
ysis of shape structures. ACM Trans. on Graphics 32, 4.

WANG, Y., ASAFI, S., VAN KAICK, O., ZHANG, H., COHEN-OR,
D., AND CHEN, B. 2012. Active co-analysis of a set of shapes.
ACM Transactions on Graphics 31, 6, 165.

XU, W., WANG, J., YIN, K., ZHOU, K., VAN DE PANNE, M.,
CHEN, F., AND GUO, B. 2009. Joint-aware manipulation of
deformable models. In ACM Trans.on Graphics, vol. 28, 35.

XU, K., LI, H., ZHANG, H., COHEN-OR, D., XIONG, Y., AND
CHENG, Z.-Q. 2010. Style-content separation by anisotropic
part scales. ACM Transactions on Graphics 29, 6, 184.

XU, K., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2012. Fit
and diverse: Set evolution for inspiring 3d shape galleries. ACM
Transactions on Graphics 31, 4, 57.

YUMER, M. E., AND KARA, L. B. 2012. Co-abstraction of
shape collections. ACM Transactions on Graphics 31(6), 166:1–
166:11.

YUMER, M. E., CHUN, W., AND MAKADIA, A. 2014. Co-
segmentation of textured 3d shapes with sparse annotations. In
Computer Vision and Pattern Recognition. CVPR 2014., IEEE.

ZHENG, Y., FU, H., COHEN-OR, D., AU, O. K.-C., AND
TAI, C.-L. 2011. Component-wise controllers for structure-
preserving shape manipulation. In CGF, vol. 30, 563–572.

