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ABSTRACT 
Problems faced by engineering students involve multiple pathways to solution. Students rarely 
receive effective formative feedback on handwritten homework. This paper examines the 
potential for computer-based formative assessment of student solutions to multi-path engineering 
problems. In particular, a cognitive tutor approach is adopted and tested out on problems of truss 
analysis, studied in engineering statics. With a cognitive model for solving the class of problems, 
the tutor allows the student wide latitude in solution steps, while maintaining sufficient 
constraints for judging the solution and offering feedback. Proper selection of judging points 
prevents interference with productive student work, while avoiding accumulated errors. 
To monitor student learning, efforts to apply distinct skills were extracted on the fly from student 
work. Using statistical methods developed for intelligent tutoring systems, metrics of the 
effectiveness of the feedback and areas for further improvements were gleaned from error rates 
in successive opportunities to apply distinct skills. 
 
Keywords: cognitive tutor, feedback, statics, engineering, interactive problem solve, student 
learning and assessment 
 



1. Introduction 
 
Many courses in engineering majors involve significant time spent by students solving 
homework problems and corresponding efforts to grade these problems (Fernandez, Saviz, & 
Burmeister, 2006).  Problems often revolve around assessing a given physical situation or system 
using concepts and physical principles, which leads to equations that can be solved and 
conclusions drawn from their solutions. Problems differ in their level of complexity, from those 
that involve a single concept or step, to problems that require students to coordinate and organize 
multiple concepts and steps.  A student may need to decompose the original problem into inter-
related sub-problems, define variables of different types, carry out analyses of sub-problems, and 
finally combine and interpret the results. Often such problems have multiple pathways to the 
correct answers. 
 
Clearly, an improved ability to solve problems is the desired outcome from all this effort. Such 
improvement should depend on practices that are known to promote learning generally, in 
particular, timely formative feedback to the learner (Anderson, Conrad, and Corbett, 1989; 
Bangert-Drowns, Kulik, Kulik, and Morgan, 1991; Corbett and Anderson, 2001; Hattie and 
Timperley, 2007). We take formative feedback, as defined by Shute (2008), as information 
communicated to the learner that modifies thinking or behavior to improve learning. In 
particular, this paper addresses the issue of providing effective and timely formative feedback for 
students confronting problems that have spatially complex arrangements of interacting parts, and 
in which there is significant latitude in decomposition and construction of solutions. 
Traditionally, students solve such problems as part of written homework assignments that are 
hand graded. It is certainly difficult for grading of written homework to provide timely feedback. 
Grading in many circumstances may take a week; students have likely engaged in, and probably 
completed, the following homework before receiving feedback on the prior homework.  
 
Offering effective formative assessment of written homework is also exceptionally challenging. 
A correct final answer may confirm student work, but an incorrect answer likely provides no 
information on where a solution was in error. Thus, a grader would ideally recognize the 
different parts of the solution and seek to judge each part on its own. This is laborious to do: one 
part can utilize completed work that was incorrect and thus may vary from one student to the 
next. Given the very limited effectiveness of human grading to provide timely, effective 
feedback to students on multi-path homework problems, it is natural to inquire whether 
alternative means, for example by computer, can do better. In this paper we present an approach 
to providing automated, formative assessment of students’ efforts to solve multi-path engineering 
problems, along with metrics that allow one to judge the effectiveness of the feedback and seek 
improvements to the formative assessment offered.  
 
To provide automated, formative assessment for multi-path problems, the assessment system 
should grant the student latitude to follow any of the potential solution pathways, and still be 
able to judge student work and offer feedback regardless of the path taken. Furthermore, the 
freedom granted to students should permit them to commit errors commonly found in student 
work. Cognitive tutors, which have been developed for computer programming (Anderson, 
Boyle, and Reiser, 1985), and high school mathematics (Koedinger, Anderson, Hadley, and 
Mark, 1997; Koedinger, 2002), and other fields, offer one approach to enabling the assessment 



system to interpret a range of possible solutions. Cognitive tutors are based on a cognitive model 
for a learner encountering the chosen tasks; they provide feedback based on that model, and they 
can also yield data upon which to judge whether learning is occurring with ongoing practice.  
The approach taken here is inspired in part by aspects of cognitive tutors.  
 
The present work also shares the goal of the Andes intelligent tutoring system (VanLehn, Lynch, 
Schulze, Shapiro, Shelby, Taylor, Treacy, Weinstein, and Wintersgill, 2005), from the closely 
related domain of physics. In contrast to many cognitive tutors, the Andes tutoring system does 
not seek to provide instruction in a whole subject; rather it focuses exclusively on helping 
student learn to solve problems that are typically assigned by instructors.  Andes resulted in 
demonstrable improvements to students learning to solve problems by comparison with 
traditional paper and pencil. However, by comparison with what is realistically feasible for the 
vast array of engineering subjects, problem solving in physics has received significant attention 
from cognitive science. Further, significant resources were devoted to developing Andes, and 
there is a notable time investment for students to learn to use Andes, an investment that is 
recouped over the course of an entire semester. 
 
The present work seeks to show that simpler forms of intelligent tutoring can be practically 
implemented to aid problem solving in domains typical of engineering, which involve complex 
spatial arrangements of interacting parts and multiple possible solution paths. Unlike Andes and 
many cognitive tutors, our approach does not involve a high level of knowledge engineering, a 
full student model, a set of production rules, the necessity of determining in advance a complete 
set of solution pathways, and so forth. However, the tutor described below shares several 
features of Andes which its developers believed were most critical to its efficacy: insisting users 
be clear and explicit in defining variables, guiding students so correct solutions were arrived at 
upon completion, and the offering of hints that encouraged principle-based repair of errors. 
 
We illustrate our approach with a tutor to help students learning to solve truss problems, which 
are commonly studied in statics, a course taken in multiple engineering majors. Trusses have 
complex arrangements of connected members (bars) that interact with each other, and with the 
external world. There are numerous pathways to solving such problems, with several types of 
steps taken in various orders sequentially and in parallel. The student selects portions of the truss 
including multiple whole and partial members, draws a free body diagram and writes down 
equations representing relevant physical laws for each selected portion, organizes the solving of 
equations, and interprets results physically in terms of the original truss. Mastery of trusses 
requires conceptual and mathematical competence, as well as clarity and systematic 
organization. Recently, computer systems have been developed (Roselli, Howard, and Brophy, 
2006; Dannenhoffer and Dannenhoffer, 2009) that allow students to work on some simple statics 
problem more or less from start to finish, and provide feedback on individual steps. But, such 
systems do not involve problems with many solution paths, nor do they offer data upon which to 
judge how much students are learning.  Trusses are potentially also a rich domain for studying 
other learning phenomena, for example evaluating the impact of different types of dialogs on 
learning and problem solving (Hausmann, 2005), typically by learners new to a domain.  By 
contrast, we focus, like Andes, on helping students learn to derive mathematical relations 
between key quantities based on direct applications of physical laws. However, unlike physics 
problems treated in Andes, it is impractical, and we show unnecessary, to identify all solution 



paths in advance in devising a tutor. 
 
2. Design Of Tutors for Multi-Path Problems 
 
There is no unique embodiment of a computer tutor for monitoring student solving of truss 
problems, let alone for solving multi-path engineering problems in general. However, results of 
prior research can provide guidance for design choices, particularly choices pertaining to how 
much to constrain user action and when to judge it.  To provide some context for the discussion, 
we show a typical truss problem (Figure 1a) and a small part of the solution involving analysis of 
one selected portion of the truss (Figure 1b). Trusses have bars, pins connecting them, different 
means of anchoring the truss to ground (the “supports”, symbolized with triangles), and applied 
forces. The goal is to find the resulting internal forces in the bars. Typically, the solver must 
consider multiple portions (subsystems) of the truss, draw a free body diagram for each (the set 
of forces acting on the chosen portion), and then write down equations of equilibrium. The 
solutions of those equations will affect the free body diagrams of other subsystems and 
ultimately lead to the results requested in the problem statement. The natural latitude in solving 
such problems is that the student can choose any portion of the truss, write equations in any 
order, then choose any other portion, and so forth, thus creating a large space of possible solution 
paths. Students in statics are typically taught two distinct methods for solving truss problems. In 
the method of joints (MoJ), depicted in the solution in Figure 1b, students choose subsystems of 
the truss that include a single pin and the connected partial bars. In the method of sections 
(MoS), students choose subsystems of the truss that include multiple adjacent pins, the connected 
bars, and the adjacent partial bars. The tutor presented below enables students to practice both 
methods of solving. 
 

 
Figure 1a. Typical truss problem. 

  



 

 

 
Figure 1b. Portion of handwritten solution to problem from Figure 1a in which joint C is 

analyzed. 
 
Because learning to solve problems correctly in a free form style, akin to paper and pencil, is the 
goal, we seek to have user interactions with the tutor similar to those in the targeted task, 
provided the tutor maintains the ability to judge user work.  While completely free form work 
such as writing with a stylus on a tablet might be ideal, challenges remain to implementing such 
technologies, although progress continues to be made along this front (Kara and Stahovich, 
2004; LaViola, 2007; Peschel and Hammond, 2008; Lee, de Silva, Peterson, Calfee, and 
Stahovich, 2008; Fu and Kara, 2011). Within the constraints of conventional keyboard and 
mouse interactions, one can still grant the user opportunities to commit errors similar to those 
observed when students solve with pencil and paper. The tutor then has opportunities to detect 
and give feedback to students when they commit such errors.  
 
There are, however, reasonable exceptions to the goal of making user interactions with the tutor 
as similar to paper-and-pencil solving as possible.  Most problem solving involves some tasks 
that require mental resources, but which are mastered already by students at the level in question. 
It is worthwhile to identify tedious, non-essential tasks, which unnecessarily add to the cognitive 
load (Sweller, 1988, 1994) on the learner, and seek to off-load such tasks to the tutor. A key 
example in the tutor presented below will be removing the need to use an electronic calculator to 
obtain numerical solutions. 
 
A second exception pertains to a key finding that students who explained example problems to 
themselves learn more from those examples (Chi, Bassok, Lewis, Reimann, and Glaser, 1989); 
researchers have termed this the self-explanation effect.  This effect has had many implications; 
in particular it has been applied in some cognitive tutors (Aleven and Koedinger, 2002), where 
students need to explain their answers, and the tutor potentially evaluates those explanations. 
Such features in tutors seek to make student thinking more visible. Tutors of multi-path 
engineering problems can likewise create opportunities to make student thinking visible, to both 
the student and the tutor, thinking which is rarely visible in pencil and paper solving. 
Furthermore, the tutor can judge such explanations, and the additional information may better 
enable the tutor to interpret student work. A key example in the tutor presented below will be 
requesting the user to designate each defined force as falling into one of several categories. 



 
To the extent that the tutor gives feedback prior to completion of a solution, the tutoring 
environment is clearly different from paper-and-pencil problem solving. The points in the 
solution process at which the tutor potentially intervenes and offers feedback clearly constitute 
significant decisions in the tutor design.  Often, it is true that immediate feedback is best (Hattie 
and Timperley, 2007); this has the benefit of ensuring that the student associates the feedback 
with the action just taken. In exceptional circumstances, delayed feedback may be justified if it is 
feasible for students to check their work downstream and if such a skill is deemed worthwhile to 
develop (Mathan and Koedinger, 2005).  
 
The tutor described below gives immediate feedback with the following caveat. Tutors for 
solving multi-path problems with limited constraints are distinct from most existing tutors: there 
is not a pre-determined set of answers which users are expected to supply or set of choices from 
which to select. The user is gradually adding elements of the solution on what is, in effect, an an 
initially blank canvas. In contrast to the answer entered into a box, parts of the solution just 
added to the canvas, such as a force added to a free body diagram, may be tentative. It would be 
annoying and counterproductive to critique user work that is still tentative. On the other hand, if 
errors accumulate too long and new work builds upon errors, judging new work becomes 
ambiguous. Based on observations of written homework, the possibility that students would 
check work downstream and then discover earlier mistakes was viewed as unlikely, and not 
worth the significant additional burden on interpretation.   
 
 
3. Description of Tutor 
 
We assume that students using the tutor have learned about truss analysis through other means, 
such as lecture and textbook.  Thus, the tutor can focus exclusively on helping students solve 
problems, allowing a solution process such as depicted in Figure 1a to be conducted on the 
computer with as little constraint as possible, within the confines of a mouse and keyboard user 
interface, while maintaining the ability to interpret student work. Observations of student work 
and their typical errors, examples of which are shown in Steif, Fu, and Kara (2013), have guided 
tutor design.  As stated above, the goal is for a student using the tutor to be able to commit most, 
if not all, errors that are observed in pencil and paper solutions. If some errors are never or rarely 
observed in student pencil and paper work, then the tutor user interface need not go to 
unnecessary lengths, at the expense of programming complexity or interpretation uncertainty, to 
permit such errors.  For example, it is virtually always clear which member or partial bar is being 
drawn on paper and pencil; thus, the interface need offer only limited options of selection, rather 
than allow ill-formed depictions of bars that are ambiguous to interpret. 
 
To satisfy the above requirements, the tutor limits users to the following actions: 
 

• Any set of pins, members and partial members can be chosen as a subsystem for further 
analysis. 

 



• In the free body diagram of a subsystem, forces can be drawn only at pins or at the free 
ends of partial members. Forces are confined to lie along x-y directions or parallel or 
perpendicular to bars. 

 
• For each subsystem, equations of force equilibrium along x- and y-axes, and equations of 

moment equilibrium about any joint, can be written.   
 
 
Figure 2 contains a screen shot of the tutor, with a problem partially solved. The left half of the 
display contains a menu bar at the top and the problem diagram and statement.  The problem 
diagram can be toggled to display the solution diagram, where results (support reactions and bar 
internal forces) that have been determined are registered by the student, as described below.   
The user chooses a subsystem for analysis by clicking on a set of pins, members and partial 
members, and then clicking on the draw (pencil) icon from the menu bar.   The selected group of 
parts is added as another subsystem and would appear as one of the thumbnails to the right half 
of the display. Clicking on a thumbnail expands that subsystem, allowing the user to draw its free 
body diagram (FBD) and write its associated equilibrium equations. 
 

 
Figure 2. Screen shot of full display of truss tutor. 

 
In Figure 3, we show a subsystem with a pin and the two connected partial members; a new force 
is being added to a partial member.  As seen in the window labeled “Defining a force”, the user 
categorizes each force being drawn. Sometimes more than one category is acceptable, but the 
category chosen affects the subsequent representation of the force. A category is not specified as 
part of pencil and paper solving, but it has been included in the tutor as a form of self-
explanation. Requiring force categorization makes the user’s thinking visible and aids the tutor in 
interpreting student work. 
 
 



 
Figure 3. Screen shot of force being added to free body diagram, showing force categorization. 

 
 
Beneath the free body diagram the user can write equilibrium equations for the subsystem 
(Figure 4). When the user has written down an equation with one variable (always a linear 
equation in truss analysis), upon request the tutor can solve the equation for that variable.  This 
eliminates the need to use a calculator and also eliminates errors due to mistyping into a 
calculator.  Once a variable such as a support reaction or an internal force has been determined, 
the user needs to “register” that force in the solution diagram.  Registration serves to declare that 
a force has been determined, so it can be categorized as a determined force in a subsequent FBD. 
Registration is also an important opportunity for the student to signal the meaning of what has 
been solved. Unknown support forces can be drawn on FBD’s in any direction; the associated 
variables may turn out to be positive or negative.  But in the solution diagram the support force 
must be drawn in its actual sense and given a positive magnitude.  Likewise, when the internal 
force of a bar is registered, the user gives it a magnitude and describes it as in tension or 
compression. More details on the interface have been presented by Steif, Fu, and Kara (2013). 
 



 
 

Figure 4. Screen shot of writing equations, and choosing moment center. 
 
 
 
 
4. Judging student work and giving feedback 
 
A key capability of the tutor is to judge work and give feedback on it. The tutor can do this by 
having algorithms for carrying out the steps for solving truss problems. These algorithms are 
analogous to a cognitive model of the domain.  There are distinct algorithms corresponding to 
the distinct stages in the solution for a given subsystem:  

• SUBSYSTEM: An algorithm to determine if a group of pins, members, and partial 
members constitutes a valid subsystem. 

• FREE BODY DIAGRAM (FBD): Given a valid subsystem, and any forces defined or 
determined up to that point, an algorithm for the allowable forces that can be drawn on 
the pins and partial bars of the subsystem. The FBD of a given subsystem is not unique. 
For example, if an internal force has been determined, the algorithm allows that force in a 



new FBD to be represented either as a determined force using the correct value, or as an 
unknown internal force using symbols consistent with the first definition. 

• EQUILIBRIUM EQUATIONS: Given a valid FBD, an algorithm for the correct set of 
algebraic terms in the summations of forces along x- and y-axes and the summation of 
moments about any pin in the truss. These summations include variables and constants 
and must be consistent with how forces appear in the FBD. The terms can be in any order 
and there are multiple ways of composing terms. 

• SOLUTION REGISTRATION: Given a correctly determined support or internal force 
(from the equilibrium equations), an algorithm for the correct registration of that force in 
the solution diagram. 

 
As described above, the tutor seeks to offer immediate feedback. But, it is recognized that a 
student may be in the midst of formulating the current portion of the solution, such as drawing 
the forces on a FBD or writing a single equation of equilibrium, when interruptions would be 
annoying.  On the other hand, we do not want to wait so long that the student builds upon work 
that is as yet unjudged and may be incorrect.  In the latter, undesirable situation, the tutor might 
need to indicate that the built-on portion is correct in and of itself, but that it is based on incorrect 
prior solution steps.  
 
We can offer immediate feedback, while respecting the tentative nature of currently formulated 
portions of solution, by judging and offering feedback at these points:  (i) the subsystem is 
judged after the user has selected parts and clicked on the draw subsystem button; (ii) the FBD of 
a subsystem is judged after the user clicks to initiate the writing of the first equilibrium equation 
for that subsystem; (iii) an equation is judged after the user types return while entering an 
equation or clicks to initiate the writing of a new equation; and (iv) the registered result is judged 
after the user has entered a result into the solution diagram and clicked “Ok”. In each case, if 
there is an error, the student receives feedback that points out the error, including information to 
enable the user to fix the error and to learn why it is an error, thus lessening the likelihood of 
repetition.  This type of feedback, in light of results presented below, is formative feedback by 
the definition of Shute (2008). Moreover, until the errors are corrected, the user cannot go on to 
the next stage of solution for the subsystem that has an error. Thus, it is unnecessary for the tutor 
to have algorithms to judge solution paths that build upon earlier committed errors. The student 
can pursue many different solution paths, but is halted on a particular path until detected errors 
are corrected.   
 
With the approach just described, it is possible to provide automated, formative assessment of 
students’ efforts to solve one class of engineering problems with complex arrangements of 
interacting parts that have multiple solution pathways. To generalize our approach to such 
problems more generally, a tutor should have three integrated elements. First, it must have a 
graphical user interface that allows interactions that enable users to pursue solutions and commit 
errors elsewhere observed in student work. Second, it must have algorithms that can judge the 
correctness of actions that the interface permits. Third, it must have suitable junctures at which to 
judge student work and, if need be, halt further progress until algorithms can once again 
accurately judge student work. The complexity of problems to be handled, and the latitude 
granted to students while solving them, is a matter of tutor design. The approach is streamlined 
compared to other intelligent tutors, because it demands only algorithms that judge the 



correctness of forward steps, presuming the current state is a correct state.   In the remaining 
sections, we propose an approach to determine if the feedback promotes learning and on how 
potential changes in the tutor can be targeted to improve learning.  
 
 
5. Analysis of student work to track learning 
 
As one approach to judging whether the tutor promotes learning, we seek to determine whether 
types of errors that are initially prevalent are observed less frequently as students progressively 
solve more problems. Because different sub-tasks may have distinct difficulties, we need to keep 
track of how students fare with respect to different subtasks. How we choose to view the 
problem as composed of subtasks is central to developing evidence as to whether learning is 
occurring. These choices constitute our model of learning to solve problems in the chosen 
subject or topic: they are the distinct skills or Knowledge Components that the student needs to 
learn. The task analysis underlying the tutor for truss problems has been informed by previously 
identified concepts and skills in statics (Steif, 2004) and the development of the statics concept 
inventory (Steif and Dantzler, 2005). The Knowledge Component (KC) model used thus far 
involves 23 skills each falling into one of the phases of the solution process: selecting a 
subsystem, drawing a free body diagram, writing equations of equilibrium, and registering a 
result derived from an equation of equilibrium in the solution diagram.  The full set of 
knowledge components (KC model) for the analysis reported here is given in Table 1.  
 
  



Table 1. Full set of Knowledge Components (KC Model) used to analyze presented data. 
KC Category: Select Subsystem 
KC1 Select full truss (all bars and pins) as subsystem 
KC2 Select joint (pin and attached partial bars) as subsystem 
KC3 Select section (pins, bars, and partial bars)  as subsystem 
  
KC Category: Draw FBD 
KC4 Draw known applied force 
KC5 Include no forces on pin that is supposed to be free 
KC6 Represent unknown reaction forces at pin support for first time 
KC7 Represent unknown reaction forces at roller support for first time 
KC8 Represent unknown support reaction forces consistent with prior representation 
KC9 Draw now known support reactions forces that were previously determined 
KC10 Represent unknown internal force in bar for first time 
KC11 Represent unknown internal force in bar consistent with prior representation 
KC12 Draw now known internal forces in bar previously determined 
  
KC Category: Write Equilibrium Equation 
KC13 Include in summation terms that contribute to known force (no resolution) 
KC14 Include in summation terms that contribute to known moment (no resolution) 
KC15 Include in summation terms that include vector resolution of a known force 
KC16 Include in summation terms that include vector resolution of a known moment 
KC17 Include in summation term that requires resolving variable force 
KC18 Include in summation term that requires resolving variable moment 
KC19 Replace variable in equation with value found from previously solved equation 
KC20 Include in summation term with variable force (no resolution) 
KC21 Include in summation term with variable moment (no resolution) 
  
KC Category: Register Result 
KC22 Register value and draw determined support force in solution diagram  
KC23 Register value and direction of determined internal force in solution diagram 
 
 
The tutor described here is distinct from tutors in which there are known-in-advance sets of items 
that the student responds to, which can be tagged with the KCs in advance. In this tutor, the 
student is building up the solution on essentially a blank canvas. At the discrete junctures for 
judging work described above, the tutor records each new instance in which the user undertakes 
an action corresponding to one of the KCs, whether it is done correctly or not. Any correction by 
the user of an incorrect action in response to feedback is not counted as a new opportunity to 
exercise the KC. The student charts his or her own solution pathway, and the tutor extracts on the 
fly the sequence of KCs attempted, which can be different for each student. 
 
To analyze the progression of learning, we have adopted the terminology, methodologies, and 
tools from the Pittsburgh Science of Learning Center Datashop (Koedinger, Baker, Cunningham, 
Skogsholm, Leber, and Stamper, 2011).  Data corresponding to the sequence of KC opportunities 



for each student in a sample are extracted from the files the student saves while using the tutor; 
these data are imported into Datashop. Among the various outputs from Datashop pertinent to 
our study is the so-called learning curve: a plot of the percentage of students in the sample that 
err in applying a particular KC as a function of the opportunity (first, second, third, etc.) to use 
that KC.  
 
Learning curves are typically noisy; to determine if such data provide evidence of learning, 
Datashop tools also fit a statistical model to the sequence of opportunities to apply a KC. In 
particular, Datashop fits a widely used logistic regression model (Draney, Pirolli, and Wilson, 
1995) for capturing the progressive mastery of a skill with practice. For our learning model in 
which each action is dependent on a single KC, the statistical model predicts error fraction as 
follows: 

 
ln[(1- eij)/eij] = θi + aj + bj Tj 

 
In this equation, eij is the probability of an incorrect answer by the ith student on opportunity Tj 
for using the jth KC. Note that eij can range from 0 to 1, and Tj takes on values of 1, 2, 3, and so 
forth, for the first, second, and third opportunity. The parameter θi captures the overall initial 
skill level of the ith student. The parameter aj, referred to as the intercept, reflects the initial 
probability of correctly applying the jth KC. The coefficient bj, referred to as the slope, 
corresponds to the rate at which errors in using the jth KC decrease with successive opportunities 
to practice it. In this commonly used model, one takes the student parameter, θi, to be KC-
independent, and KC-parameters, aj and bj, to be student-independent. Fitting this model to data 
for a student sample yields the parameters in the statistical model. Note, in particular, that values 
for bj are one measure of the tutor’s effectiveness: more effective error messages or hints should 
lead to higher slopes, that is more rapid decreases in errors with practice.  
 
 
6. Samples 
 
The tutor described here is appropriate for students in virtually all statics courses. Because the 
tutor is intended to substitute for completing paper and pencil homework, use of the tutor fits 
into the rhythm of statics courses generally. Thus, the target population for a tutor such as this 
corresponds to most students who might take a statics course. 
 
Because we wanted to capture how a tutor can give feedback on multi-path problem solving in 
the context of real engineering courses, the study was conducted within the scope of regularly 
scheduled statics courses. The tutor was used in lieu of solving paper and pencil homework 
problems in two distinct educational environments. Data was collected for all students and 
information on their completion of problems was returned to the instructor for the purposes of 
assigning a grade on the homework assignment. When students first registered to receive the 
tutor software, they were asked if they consented to have their data used anonymously for 
research; only data from those who consented were included in the analysis presented below. 
 
Sample 1 was from a statics course at a community college, in a class comprising a total of 21 
students. Of those students, 18 consented to have their data studied.  Sample 2 was from a statics 



course at a military academy, in a class comprising a total of 109 students. Of those students, 99 
consented to have their data studied. In both classes, students had received lecture on trusses, 
covering the method of joints and method of sections, and were shown the solution of example 
problems. Thereafter, students practiced solving trusses exclusively using the tutor (no paper and 
pencil problems). Students in sample 1 were assigned five problems using the method of joints 
and five problems using the method of sections; sample 2 students were assigned three problems 
using the method of joints and five problems using the method of sections. There is no claim that 
these two samples are broadly representative of students, nor is there any reason to expect them 
to be atypical. 
 
7. Results and Analysis 
 
 
Typical learning curves for specific knowledge components are shown in Figures 5 – 7, all 
pertaining to Sample 2. The data points and solid lines connecting them (red) are the actual error 
percentages.  The dotted (blue) curve is the prediction based on the fit of the statistical model. 
Successive opportunities in a learning curve can correspond to diminishing numbers of students, 
because different students have different solution paths and may even solve fewer problems.      
These three learning curves represent three typical outcomes. For KC9 depicted in Figure 5, 
utilizing a determined support reaction in a subsequent FBD, the error is reasonably high initially 
and becomes progressively lower with practice. This suggests that practice is having the desired 
effect – getting feedback on the errors enables students to gradually make fewer errors. For 
KC23 depicted in Figure 6, registering an internal force, the error starts low and remains low.  
There is little need for tutoring on this skill. Finally, for KC15 depicted in Figure 7, which 
pertains to one facet of writing equations of equilibrium, the error rate is initially high and never 
improves.  (The wild error rate at the end corresponds to a very small number of students making 
many errors.) Practice is having no observable benefit. Learning curves for knowledge 
components associated with writing equations of equilibrium were found to be rather erratic 
generally. By the point in the course when they study trusses, students already have experience 
writing equations of equilibrium. Tutor feedback on equation writing is not conceptually 
informative, but simply points to terms that are in error, which are then readily corrected. We, 
therefore, speculate that the incentive for being careful in writing equations in the tutor is very 
low, at least in comparison with other stages of solution. Hence, additional results for these 
knowledge components are not presented. 
 



 
Figure 5. Percentage of students in error plotted as a function of opportunity (Learning curve) for  

KC9 (representing a determined support reaction) for which the error rate is initially high, but 
decreases with practice. 

 
 

 
Figure 6. Percentage of students in error plotted as a function of opportunity (Learning curve) for  

KC23 (registering an internal force) for which the error rate starts low and remains low. 
 
 



 
Figure 7. Percentage of students in error plotted as a function of opportunity (Learning curve) for 

KC15 pertaining to writing equilibrium equations for which the error rate is initially high and 
remains high. 

 
The possible decrease in errors with practice, the learning rate, corresponds to the KC-specific 
slope bj. Typical learning rates with existing tutors (Koedinger, McLaughlin, and Stamper, 2012) 
correspond to slopes bj in the range of 0.05 to 0.15.  To illustrate the rate of improvement that 
such slopes imply, let the probability of a student first making an error be 0.5. Then, with a slope 
of 0.1, the error probability drops to 0.40 at the fifth opportunity and to 0.29 at the tenth 
opportunity. 
 

The values of the parameters aj and bj in the statistical model, when fit to data from each of the 
two samples, are shown in Table 2. The intercept corresponds to 1 – initial error fraction, as 
predicted by the model fit. So a skill for which students incur few errors initially would have a 
high intercept; many initial errors would correspond to low intercept. The KCs have been 
grouped according to the phases of solution: selecting subsystems, drawing FBDs, and 
registering results.  Within each phase, the KCs have been ordered by increasing intercept (in 
sample 1).  (There were too few opportunities to exercise KC8 to produce a meaningful learning 
curve.) The following observations hold for both samples. Some, but not all, of the KCs with 
lower intercepts have quite high slopes, for example, section_as_subsystem, 
unknown_internal_consistent, and determined_support. The tutor is playing a valuable role if it 
helps students master skills, such as these, that they did not initially possess. Thus, high slopes 
are most critical in the case of low intercept KCs. By contrast, other skills tend have a low initial 
error rate, which corresponds to high value of intercept. For a few of those skills, such as 
unknown_support_new_pin and unknown_support_new_roller, the slope is again high, but for 
other skills, the slope is low.  In any event, rapid reduction in the error rate with practice (high 
slope) is less critical if the initial skill level is relatively high. Altogether learning curves and the 
model parameters of intercept and slope constitute metrics that can be used to gauge whether 



learning is occurring while using the tutor. Furthermore, for the tutor described here, these 
metrics suggest that learning is occurring across a number of key component skills of solving 
truss problems. Further in-depth studies of metrics are beyond the scope of this paper. 
 
Table 2. Statistical fit of Knowledge Component learning model for two samples: initial fraction 
correct (Intercept) and decrease of error fraction with practice (Slope) for different Knowledge 
Components. 
 Sample 1 Sample 2 

KC (Select Subsystem) Intercept (aj) Slope (bj) Intercept (aj) Slope (bj) 
KC3: section_as_subsystem 0.74 0.20 0.68 0.26 
KC2: joint_as_subsystem 0.94 0.00 0.93 0.01 
KC1: full_truss_as_subsystem 1.00 4.54 0.98 0.31 
     

KC (Draw FBD) Intercept Slope Intercept Slope 
KC11: unknown_internal_consistent 0.26 0.46 0.45 0.16 
KC9: determined_support 0.51 0.32 0.64 0.30 
KC12: determined_internal 0.79 0.06 0.67 0.10 
KC6: unknown_support_new_pin 0.82 0.28 0.91 0.31 
KC7: unknown_support_new_roller 0.89 0.12 0.87 0.38 
KC10: unknown_new_internal 0.89 0.02 0.91 0.03 
KC4: applied_force 0.90 0.04 0.81 0.10 
KC5: free_pin 0.98 0.07 0.98 0.14 
     

KC (Register Result) Intercept Slope Intercept Slope 
KC13: register_support_force 0.87 0.06 0.91 0.03 
KC14: register_internal_force 0.88 0.05 0.92 0.05 
 
 
 
Note that results can also be used to decide where improvements to the tutor’s feedback are 
warranted. One can seek out in Table 2 those skills with insufficiently high intercept and 
insufficiently high slope; that is, skills for which the error rate was initially high and did not 
decrease rapidly with practice.  Most notable is the KC12 determined_internal: this corresponds 
to the skill of using a bar internal force, which has been already determined, in a new FBD where 
that internal force also acts. One must use the correct magnitude and interpret the earlier found 
tension or compression to draw the force in the correct direction in the new FBD.  For both data 
sets, this KC does not have a high intercept (0.79 and 0.67) and does not have a particularly high 
slope (0.06 and 0.10), at least not high compared to the slopes for some of the other KCs. With 
the goal of accelerating the learning of this skill, the feedback on the associated error could be 
altered; whether such alterations lead to improvement can be judged based on the results for 
intercept and slope of this KC for new samples in which students receive the altered feedback. 
This will be considered in future research. We note that ultimate effectiveness of such a tutor 
could only be determined by a controlled study that compared the truss problem solving ability 
of students who used the tutor with those who had solved only with pencil and paper. Such a 
study is currently ongoing, with results to be reported in the future.  
 
 



8. Summary and Conclusions  
 
Problems that engineering students learn to solve often involve spatially complex arrangements 
of interacting parts and have multiple pathways to solution. It is difficult for human graders to 
provide effective formative feedback to handwritten solutions that are typically turned in as part 
of homework assignments. With the goal of devising better means of providing feedback for 
such problems, we have undertaken the development of a computer tutor that allows students to 
pursue multiple pathways to solution, and still provides feedback on those efforts.  
 
We have taken an approach inspired by intelligent and cognitive tutors: basing the computer 
tutor not on preset correct answers, but on algorithms for judging the correctness of steps that 
students might take to solve the problems of interest. In particular, a computer tutor was devised 
for the test case of truss problems in statics; the interface permits the user to solve problems 
correctly following any pathway and to commit commonly observed errors. Immediate feedback 
is provided, short of annoying interruptions. Furthermore the tutor prevents new work from 
being built upon previously committed errors, which enables the judging algorithms to be limited 
to steps from a current correct state. Furthermore, the steps for solving truss problems are cast as 
a distinct set of skills or knowledge components (KCs). Each action by the student is viewed as 
an opportunity to exercise a KC, and the effectiveness of feedback can be judged based on 
whether fewer students incur errors with successive opportunities. The fit of a statistical model to 
the curves of percent error vs. opportunity for each KC yields values for the parameters in the 
model, which can serve as metrics for the effectiveness of feedback.  
 
Data was obtained from students in statics classes at two institutions who used the tutor for one 
week’s assignment in lieu of pencil and paper homework. We found that the error rates for 
various KCs differ significantly.  From the fit of the statistical model, most of the KCs either had 
low error rates from the start, or if the error rate was initially high, it decreased markedly with 
successive opportunities to practice. Thus, for most skills, students already had the skill at the 
start or developed the skill through using the tutor. Furthermore, based on those few KCs for 
which the error rate decreases insufficiently, we have identified aspects of the tutor that could 
benefit from improvements. In general, this paper has shown that solving of problems with 
complex spatial arrangements of interacting parts and multiple pathways to solution is amenable 
to automated feedback with computer tutors. Further, the algorithms for judging distinct steps 
both can enable the tutor to follow many possible solution pathways, and provide metrics upon 
which to judge the effectiveness of feedback and pinpoint areas for tutor improvement.    
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