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ABSTRACT
Using deep learning to analyze mechanical stress distribu-

tions has been gaining interest with the demand for fast stress
analysis methods. Deep learning approaches have achieved ex-
cellent outcomes when utilized to speed up stress computation
and learn the physics without prior knowledge of underlying
equations. However, most studies restrict the variation of geome-
try or boundary conditions, making these methods difficult to be
generalized to unseen configurations. We propose a conditional
generative adversarial network (cGAN) model for predicting 2D
von Mises stress distributions in solid structures. The cGAN
learns to generate stress distributions conditioned by geome-
tries, load, and boundary conditions through a two-player min-
imax game between two neural networks with no prior knowl-
edge. By evaluating the generative network on two stress distri-
bution datasets under multiple metrics, we demonstrate that our
model can predict more accurate high-resolution stress distribu-
tions than a baseline convolutional neural network model, given
various and complex cases of geometry, load and boundary con-
ditions.

1 Introduction
Structural stress analysis is a critically important founda-

tional tool in many disciplines including mechanical engineering,
material science, and civil engineering. It is used for predict-
ing the stress distribution and the possibility of structural failure
when the structure is subject to the applied load and boundary
conditions [1–3]. Finite Element Analysis (FEA) is commonly
used to discretize the domain and to solve the governing partial
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differential equations [4–7]. Traditional methods provide high
fidelity solutions but require the solution of large linear systems
which can be computationally prohibitive. With the demand for
fast and accurate structural analysis in generative design, topol-
ogy optimization technologies and online manufacturing moni-
toring, increasing the computational speed for stress analysis has
become a focus of interest.

To achieve fast mechanics analysis, many prior works have
focused on deep learning techniques to help compute computa-
tional engineering problems [8, 9]. Several approaches of ac-
celerating mechanical stress analysis by deep learning methods
have been carried out and achieved excellent outcomes in terms
of computational speed and accuracy [6, 10–14]. These stud-
ies utilize deep learning models to predict residual stress, shear
stress, maximum von Mises stress or distributions of the stress
tensor. Once trained on large datasets, these approaches are able
to generate accurate stress predictions. However, most previous
work restricts the geometry or the boundary conditions that are
applied, making the models difficult to be generalized to new
problems.

In this work, we propose a conditional generative adversar-
ial network we call StressGAN for stress distribution prediction.
StressGAN takes as input arbitrary geometries, load and bound-
ary conditions in the form of different input channels and predicts
the von Mises stress distribution in an end-to-end fashion. A dis-
tinguishing feature of our approach is that we utilize a generative
adversarial network instead of an autoencoder as our learning al-
gorithm.

We evaluate StressGAN on two datasets: a fine-mesh
multiple-structure dataset introduced by this work and a coarse-
mesh cantilever beam dataset used in [6]. The fine-mesh dataset
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contains 38,400 problem samples modeled as 128×128 meshes.
Unlike the coarse-mesh dataset with identical shape, boundary
and load conditions, the fine-mesh dataset includes ten patterns
of load positions and eight patterns of boundary conditions. To
explore the performance of StressGAN under different scenar-
ios, we design two types of experiments : training and evaluat-
ing the network on entire dataset and training and evaluating the
network on datasets with conditions of different categories (gen-
eralization experiments). As a result, StressGAN outperforms a
selected baseline model, StressNet (SRN), proposed in [6], on
the fine-mesh dataset and generates reasonably accurate results
on the coarse-mesh dataset. Furthermore, StressGAN generates
relatively accurate stress distributions for most test cases in the
generalization experiments with sparse training dataset.

2 Background
We focus our review on finite element analysis, then on stud-

ies that focus on deep learning methods with emphasis on their
applications in stress estimation and generative adversarial net-
works with emphasis on their applications in computational en-
gineering.

2.1 Finite element analysis for stress computation
Typical linear finite element analysis (FEA) for stress calcu-

lations involve:

KQ = F (1)

Where K denotes a global stiffness matrix; F denotes a vector
describing the applied load at each node; Q denotes the displace-
ment. K is composed of elemental stiffness matrices ke for each
element:

ke = AeBT DB (2)

where B is the strain/displacement matrix; D is the stress/strain
matrix; Ae is the area of the element. B and D are determined
by material properties and mesh geometry. Then the local stiff-
ness matrix ke will be added into the global stiffness matrix. The
displacement boundary conditions are encoded into the global
stiffness matrix K by operating on the corresponding rows and
columns. Various direct factorization based or iterative solvers
exist for the solution of Q.

After computing the global displacement using equation (1),
the nodal displacement q of each element, followed by the stress
tensor of each element:

σ = DBq (3)

Where σ denotes the tensor of an element. Then, the von Mises
Stress of each element is computed using the 2-D von Mises
Stress form:

σvm =
√

σ2
x +σ2

y −σxσy +3τ2
xy (4)

where σvm is von Mises Stress; σx, σy, τxy are the normal and
shear stress components.

2.2 Deep learning in mechanical stress analysis
Most of the early attempts to use deep learning in speeding

up mechanical stress analysis focus on integrating the models in
a FEA software. These models are to solve some auxiliary tasks
including updating FEA model [15, 16], checking plausibility of
a FE simulation [17], modeling the constitutive relation of a ma-
terial [18] and optimizing the numerical quadrature in the ele-
ment stiffness matrix on a per element basis [19] . These works
alleviate the complexity of FEA software to some extent. How-
ever, our approach could be used as a surrogate model to a FEA
software. It avoids the computation bottlenecks in a FEA soft-
ware and its computation cost could be controlled by modifying
the architecture.

Deep learning methods are proposed as surrogate models
to approximate residual stress in girth welded pipes [13], shear
stress in circular channels [14] or stress in 3D trusses [11]. These
methods use manually assigned features to represent a fixed ge-
ometry or a part of the geometry. The deep learning models will
estimate a stress value based on the input parameters. In our
work, the deep learning method learns to filter useful features
and generates a representation for each combination of the ge-
ometry, external load and boundary condition. A decoder fol-
lows the data representation and predicts a stress distribution on
the geometry.

Liang et al. [10] have developed an image-to-image deep
learning framework as an alternative to predicting aortic wall
stress distributions by expanding aortic walls into a topologically
equivalent rectangle. Khadilkar et al. [12] propose a two-stream
deep learning framework to predict stress fields in each of the
3D printing process. The network encodes 2D shapes of each
layer and the point clouds of 3D models based on a CNN archi-
tecture and a PointNet [20]. Madani et al. [21] propose a transfer
learning model to predict the value and position of the maxi-
mum von Mises stress on arterial walls in atherosclerosis. Our
model also use an image-to-image translation model to estimate
the stress distribution. However, we utilize image-based data rep-
resentation on both the geometry and the input conditions. Thus,
our model can be used to analyze arbitrary 2D stress distribution
cases after proper training.

Most related to our work, Nie et al. [6] propose an end-
to-end convolutional neural network called StressNet to predict
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2D stress distributions given multi-channel data representations
of geometry, load and boundary conditions of cantilever beams.
The network contains three downsampling convolutional layers,
five Squeeze-and-Excitation ResNet (SE-RES) blocks [22, 23]
and three upsampling convolutional layers. Each SE-RES block
is composed of two convolutional layers and a SE block which
utilizes a global pooling and two fully connected layers to learn
extra weights for each channel. Skip connections are used in
each block. 9x9 kernels are used in the first and last convolu-
tional layer and 3x3 kernels are used in all remaining convolu-
tional layers. A dataset composed of 120,960 cases of cantilever
beams modeled using 32× 32 meshes is generated by a linear
FEA software to train and evaluate the network. In our work,
we aim at analyzing high-resolution cases and use an adversarial
learning scenario additionally to capture features in stress distri-
butions. More importantly, all previous work of deep learning
methods in stress prediction focus on specific application cases
lacking variety in geometry, external load and boundary condi-
tions. Moreover, through testing our model by geometries or
conditions from unseen domain, we show the potential of our
deep learning model as a transfer learning model for stress field
predictions.

2.3 Generative adversarial networks
GANs are an example of generative models. They model the

training of a generative network as a two-player minimax game
where a generator G is trained to learn a distribution f with a
discriminator D [24]. Both of them represent a differentiable
function contolled by the learned parameters. In a conventional
GAN, the generator G learns to map a vector sampled from a
latent space z ∼ pz(z) to the space of ground truth samples. In
the meantime, the discriminator D learns to map a sample to a
probability that predicts if the presented sample is real or fake.
The Nash equilibrium in training is that the generator forms the
same distribution as the training data and the discriminator output
0.5 for all input data [25].

cGAN is built upon the learning algorithm of GAN and has
been widely used to date [26–29]. cGAN develops a method
to control the mapping from input to output by conditioning the
standard generator G and discriminator D on extra information.
Figure 1 demonstrates the framework of cGAN. Further, Isola et
al. [26] propose a similar network for image-based task such as
image-to-image translation. In the comparisons against networks
plainly using MAE as a loss function, it shows the superiority
of using cGAN framework in image-based tasks. Radford et al.
[30] reinforce GAN’s training stability by using all convolutional
net [31], ReLU [32] and LeakyReLU [33] activations and batch-
normalization layers [34].

Farimani et al. [35, 36] propose a cGAN architecture based
on the network proposed by Isola et al. [26] to learn models
of steady state heat conduction, incompressible fluid flow, and

FIGURE 1. Framework of cGAN. The generator G and discriminator
D are conditioned on information X . A latent vector Z and X compose
the input to G. D learns to tell whether its input regarding X is from real
samples Y or output of G.

phase segregation. S. Lee et al. use GAN in the prediction of un-
steady flow over a circular cylinder with various Reynolds num-
bers [37]. Paganini et al. [38] use a revised DCGAN is developed
to model electromagnetic showers in a longitudinally segmented
calorimeter. The deep learning method speeds up the calcula-
tions by more than 100 times. K. Enomoto et al. also utilize a
DCGAN architecture for cloud removal in climate images [39].
In the field of astronomy, GANs are used to generate images of
galaxies [40,41] and 2D mass distributions [42]. In our work, we
use the architecture and learning algorithm introduced by Rad-
ford et al. [30] and Isola et al. [26] to build our neural network
for stress field predictions cross varying input geometries and
boundary conditions.

3 Technical Approach
3.1 Neural Network Architecture

The architecture of StressGAN is shown in figure 2. We
design the generator as an encoder-decoder network which gen-
erates a feature vector with a size of 512 in the bottleneck. The
input of the generator is a case of conditions and geometry mod-
eled by m×m meshes. Three m×m resolution images are used
to represent geometry, boundary conditions and the applied load.
To increase data intensity, we represent geometry and boundary
conditions on one image. We use numbers 0, 1, 2, 3, 4 in ge-
ometries to represent various boundary conditions, where 0 is
void, 1 means free solid node, 2 means node affixed horizontally,
3 means node affixed vertically, 4 means node affixed on both
directions. The remaining two images record magnitudes of ver-
tical or horizontal loads in the corresponding pixel. The output of
the generator is a m×m mesh describing the von Mises stress dis-
tributions. The encoder is comprised of log2(m) downsampling
blocks with a convolutional layer, a batch normalization layer
and a LeakyReLU layer. Similarly, the decoder is comprised
of log2(m) upsampling blocks with a deconvolutional layer, a
batch normalization layer and a ReLU layer. When the network
is trained and tested using the coarse-mesh dataset, we remove
four blocks close to the bottleneck to keep the bottleneck repre-
sentation of input conditions as a 512 feature vector. We remove
the ReLU layer in the last upsampling block with the considera-
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FIGURE 2. Architecture of StressGAN. The generator (top) and
the discriminator (bottom) are constructed with downsampling blocks
(blue) and upsampling blocks (red). For the last upsampling block of
the generator (yellow), we remove the ReLU activation. The numbers
indicate channel dimensions of the output of each blocks. The purple
triangle means a reshape layer followed by a linear layer and a Sigmoid
activation.

tion that mechanics analysis results other than von Mises Stress
might contain negative values. The convolutional layers and de-
convolutional layers both have kernel sizes as 5× 5 and stride
size as 2.

For the discriminator, we adopt a downsampling structure.
The input is a stress distribution case described by four m×m
images including the fake or ground truth sample stress distribu-
tion and its conditions. The architecture of the discriminator is
fixed when experimented on different datasets. It outputs a prob-
ability value which describes whether the input analysis result is
true regarding the conditions and geometry. Four downsampling
blocks are followed by a reshape layer, a fully connected layer,
and a Sigmoid activation.

3.2 Loss function and metrics
Loss function Our loss function consists of an L2 distance

loss and a cGAN objective function:

LL2(G) = Ex,y[||y−G(x)||2] (5)

where y is ground truth stress distributions; x stands for condi-
tions and geometries, G denotes the generator. Previous work
has shown that utilizing L2 distance (MSE) to train networks for
predicting stress distributions works well. Thus, we use L2 dis-
tance as a loss in StressGAN’s loss function.

The loss function of cGAN used in our model can be ex-

pressed as:

minGmaxDV(G,D) = Ex,y[log(D(x,y))]+

Ex[log(1−D(x,G(x)))]
(6)

cGAN loss function shows the adversarial relationship be-
tween the generator G and the discriminator D. Note that in our
cases where the network should output a particular analysis result
given the conditions and a geometry, we eliminate the Gaussian
noise vector z which is usually an input of the generator to add
more variation to the output.

The final loss is:

minGmaxDV(G,D)+λLL2(G) (7)

where a hyperparameter λ is to balance the loss function follow-
ing [26, 43].

Metrics In addition to MSE, four metrics are introduced
to assess the performance of StressGAN: mean absolute error
(MAE), percentage mean absolute error (PMAE), peak stress
absolute error (PAE) and percentage peak stress absolute error
(PPAE). These four metrics, whether related to MSE or not, are
not an explicit goal of minimizing MSE. Using these four met-
rics, we can provide an assessment of stress prediction qualities.

Using MAE and a normalized version of MAE, PMAE,
helps evaluate the overall quality of a predicted stress distribu-
tion. MAE is defined as:

MAE =
1
n

n

∑
j=1
|y j− ŷ j| (8)

where y j is the value at element j in a ground truth sample; ŷ j
is the estimated value at element j; n denotes the number of ele-
ments of samples. PMAE is defined as:

PMAE =
MAE

max{Y}−min{Y}
×100% (9)

where Y denotes a set of all ground truth stress values in a case;
max{Y} is the maximum value in a set of ground truth stress
values Y ; min{Y} is the minimum value in a set of ground truth
stress values Y .

PAE and PPAE measure the accuracy of the most consider-
able stress value in a predicted stress distribution which is the
most critical local value of stress distributions in engineering ap-
plications. PAE is defined as:
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PAE = |max{Y}−max{Ŷ}| (10)

where Ŷ is the set of all predicted stress values in a case; max{Ŷ}
is the maximum value in a set of all predicted stress values Ŷ .

PPAE is defined as:

PPAE =
PAE

max{Y}
×100% (11)

4 Experiments
4.1 Dataset and implementation

Fine-mesh multiple structure dataset To provide a broad
evaluation of our network’s performance, we introduce a stress
distribution dataset composed of multiple structures each mod-
eled as a 128× 128 elements. The dataset is generated using A
2D FEM software SolidsPy [44]. All elements in the domain is a
4-node quadrilateral with a size of 1×1 (mm). Void regions are
modeled using a Young’s modulus of infinitesimal value. The
dataset contains 60 geometries, ten patterns of load conditions
and eight patterns of boundary conditions, in total, 38,400 in-
stances. The shapes, load conditions and boundary conditions
are not limited to cantilever beams which are affixed on one end
and bearing loads on the other end. Samples of geometry, load
and boundary conditions are demonstrated in Figure 3. Also, for
each load pattern, the orientations of the loads can vary from 0
degrees to 315 degrees with a step of 45 degrees. We normal-
ize the load magnitudes in the dataset to reduce the input space
since the linear characteristic of homogeneous and isotropic elas-
tic material results in a linear relationship between the loads and
the stresses.

FIGURE 3. Data samples in fine-mesh dataset. a. Geometries. b.
Boundary conditions. c. Load positions.

Coarse-mesh cantilever beam dataset The course-mesh

stress distribution dataset is proposed by Nie et al. [6]. The
dataset consists of six categories of geometries, in total, 80 ge-
ometries. Examples of categories of geometry are shown in Fig-
ure 4. Load is applied on the right end of the beam. The left end
of the beam is fixed. For each geometry, load orientation changes
from 0 degrees to 355 degrees, in 5 degree increments. For each
orientation, the load magnitudes varies from 0N to 100N by a
step of 5N. In total, the dataset includes 120,960 instances with
various shapes, load orientations, and load magnitudes.

FIGURE 4. Categories of geometry in coarse-mesh dataset. From left
to right: rectangular beam; rectangular beam with a cellular opening;
trapezoidal beam; trapezoidal beam with a cellular opening; beam with
parabola contours; beam with parabola contours and a cellular opening

Implementation detail We train StressGAN using a learn-
ing rate of 0.001 by the Adam optimizer [45] with a batch size of
64. We use 1 or 10 as the value of λ in StressGAN’s loss in the
experiments with the fine-mesh dataset and coarse-mesh dataset
respectively. The learning rate and batch size are decided by a
grid search on potential values. The performance of the model
and fitting GPU memory size are main considerations in the grid
search. The selection of λ is up to the balance between L2 loss
and cGAN loss. We aim to keep the losses at the same weight
for stabilizing the training process. In each training epoch, we
train the discriminator once and the generator twice to keep the
training stable. In all experiments, we use an NVIDIA GeForce
GTX 1080Ti GPU. Under our experiment setting, each cases in
fine-mesh dataset take approximately 0.003 seconds to analyze.

4.2 Experiment Design
Entire dataset training and evaluation In this experiment,

we randomly divide both the fine-mesh dataset and the coarse-
mesh dataset into train/test sets of 80%−20% split respectively.
We then train and evaluate StressGAN on the datasets to demon-
strate its effectiveness. Additionally, we train and evaluate our
baseline model SRN under the same scenario to compare their
performances.

Generalization training and evaluation To further study
StressGAN’s performances in general engineering scenarios
such as unseen geometries or unseen applied loads, we set three
sub-experiments where training and test sets belonging to differ-
ent categories of geometry or load orientation. The whole ex-
periment is set based on coarse-mesh dataset since it is easier
to separate geometries into semantic categories. In the first and
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second sub-experiments, we train and evaluate the networks us-
ing samples from different geometry categories respectively. In
the first sub-experiment, we train the networks with samples in
the categories of rectangular beams, trapezoidal beams, rectan-
gular beams with cellular openings and trapezoidal beams with
cellular openings and evaluate the networks with beams with a
parabola contour. In the second experiment, we train the net-
works using beams without holes and evaluate the networks us-
ing beams with cellular openings. The third sub-experiment is
to study how the network performs when trained and evaluated
by cases with different load orientations. The load orientations
are split up by quadrants. We randomly select loads in three
quadrants for training and use loads in the remaining quadrant
for testing. We normalize the load magnitudes in all training and
test datasets, which reduces the size of all training datasets to less
than 5000 samples.

5 Results and Discussions
5.1 Entire dataset evaluation

As stated previously, we train and test our model using the
fine-mesh dataset with a split of 80% - 20%. Meanwhile, we train
and test SRN on the same training and testing dataset. The evalu-
ation results of the three networks are shown in Table 1. The best
performance under each metric are shown in bold. StressGAN
attains a PMAE of 0.21% and a PPAE of 1.47%, which indi-
cates StressGAN can produce accurate fine-mesh stress distribu-
tion given complex cases. The statistical accuracy of StressGAN
on the test dataset is shown in Figure 5. The most inaccurate
predictions are shown in Figure 6. Even with the highest related
error rates, these predictions still provide useful information. Ta-
ble 1 shows that StressGAN outperforms SRN with a significant
margin in all metrics. Figure 7 shows comparisons of the evalu-
ation results of StressGAN and SRN. As shown in the visualiza-
tions, the predicted stress distributions of StressGAN are sharper
than the predictions of SRN, especially around the edges of the
void versus material boundaries. Additionally, StressGAN’s pre-
dictions of the critical areas are comparatively more accurate.

We also visualize the activation layers of a random sample
and test the discrimination of the discriminator. Figure 8 shows
the output activation layers of the convolutional layers in the
generator. From the figures in the upper row, it can be clearly
observed that the positions of boundary conditions and external
forces are highlighted by the filters, which demonstrates the abil-
ity of the network to capture and transfer input conditions. The
figures in the bottom row provides insights into how the network
computes the stress distribution based on the encoded informa-
tion. Ground truths and predictions of test dataset are fed into the
discriminator. The average output of the discriminator given the
ground truths and predictions is 0.899 and 0.002, respectively.
This shows that the discriminator has learned the implicit fea-
tures of stress distributions. Even with test data, it is able to

FIGURE 5. Statistical accuracy of StressGAN on fine mesh dataset.
a. PMAE of each sample and average PMAE on the test dataset. b.
PPAE of each sample and average PPAE on the test dataset.

FIGURE 6. The worst predictions of StressGAN on fine-mesh
dataset.

distinguish the ground truth distribution from the predicted ones.

TABLE 1. Quantitative evaluation of StressGAN and SRN with find-
mesh dataset. The best result under each metric is shown in bold. (Units:
mm-MPa-N)

Metric MSE MAE PMAE PAE PPAE

StressGAN 77.31 1.83 0.21% 20.29 1.47%

SRN 1119.75 10.88 1.20% 132.64 19.80%

We also train and test our model using the coarse-mesh
dataset with a split of 80% - 20% of training and test dataset.
The evaluation results of StressGAN and SRN are shown in Ta-
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FIGURE 7. Evaluation of StressGAN and SRN on fine-mesh dataset.
Four evaluation cases are shown by each row. From left to right: 1)
Geometry (light blue) and boundary conditions (cyan: horizontal, or-
ange: vertical, red: vertical and horizontal); 2) horizontal load posi-
tions; 3) vertical load positions; 4) predictions of StressGAN; 5) pre-
dictions of SRN; 6) ground truths. The load magnitudes of each case:
1) q(x) = 0.0N/mm2, q(y) = −88.4N/mm2; 2) q(x) = 125.0N/mm2,
q(y) = 125.0N/mm2; 3) q(x) = 100.0N/mm2, q(y) = 0.0N/mm2; 4)
q(x) =−68.8N/mm2, q(y) = 0.0N/mm2. (Units: mm-MPa-N)

FIGURE 8. Output activation layers of the generator. The output ac-
tivation layers of convolutional layers are shown to display the encoding
and decoding processes.

TABLE 2. Quantitative evaluation of StressGAN and SRN with
coarse-mesh dataset. The best performance under each metric is shown
in bold. (Units: mm-MPa-N)

Metric MSE MAE PMAE PAE PPAE

StressGAN 1.08 0.60 0.59% 2.17 2.11%

SRN 0.15 0.20 0.15% 0.50 0.37%

ble 2. Developed initially for this dataset, SRN performs well in
this experiment and attains a better evaluation performance than
StressGAN. With four layers removed, StressGAN still achieves

FIGURE 9. Evaluation of StressGAN and SRN on coarse-mesh
dataset. Four evaluation cases are shown by each row. The visualiza-
tions of results of StressGAN and SRN are identical to the ground truth
stress distributions. From left to right: 1) geometry (red); 2) predic-
tions of StressGAN; 3) predictions of SRN; 4) ground truth stress dis-
tributions. The load magnitudes of each case: 1) q(x) = 27.5N/mm2,
q(y) = −47.6N/mm2; 2) q(x) = −43.0N/mm2, q(y) = 61.4N/mm2;
3) q(x) = −3.5N/mm2, q(y) = 19.7N/mm2; 4) q(x) = −54.8N/mm2,
q(y) =−4.8N/mm2. (Units: mm-MPa-N)

a reasonably low error rate with a PMAE of 0.5%. This error rate
is low enough that it is difficult to tell the differences between
the predicted results of the two networks through visualizations
in Figure 9.

5.2 Generalization evalution
We conduct generalization experiments to explore our

method’s performance in situations where the training dataset
is sparse and testing data contains unseen cases. We include
SRN and StressGAN into this experiment to compare their per-
formances and demonstrate the characteristics of each network.
The parametric results of the three experiments are shown in Ta-
ble 3, 4 and 5. The best performance under each metric is shown
in bold. The selected samples of prediction results are shown in
figure 10, 11 and 12 respectively. In general, StressGAN gives a
better performance concerning the average prediction accuracy.
The best PMAEs in three experiments are 8.23%, 6.80%, and
1.49% respectively, which are all obtained by StressGAN.

In the two cross-geometry experiments, we can study the
characteristics of StressGAN and SRN including their advan-
tages and disadvantages. Figure 10 shows the visualizations of
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TABLE 3. Quantitative evaluation of StressGAN and SRN with train-
ing data of rectangular beams and trapezoidal beams and testing data
of beams with a parabolar contour. The best performance under each
metric is shown in bold. (Units: mm-MPa-N)

Metric MSE MAE PMAE PAE PPAE

StressGAN 28.91 2.80 7.50% 6.85 18.10%

SRN 43.14 3.28 9.30% 12.55 38.39%

TABLE 4. Quantitative evaluation of StressGAN and SRN in the sec-
ond sub-experiment with training data of beams without openings and
testing data of beams with cellular openings. The best performance un-
der each metric is shown in bold. (Units: mm-MPa-N)

Metric MSE MAE PMAE PAE PPAE

StressGAN 77.20 4.40 6.80% 16.96 24.10%

SRN 95.36 4.59 7.54% 14.09 23.62%

TABLE 5. Quantitative evaluation of StressGAN and SRN in the ex-
periment of cross-load direction training and evaluation. The best per-
formance under each metric is shown in bold. (Units: mm-MPa-N)

Metric MSE MAE PMAE PAE PPAE

StressGAN 3.71 0.84 1.49% 3.15 4.86%

SRN 6.86 1.29 2.58% 6.72 11.66%

the ground truth stress distributions and prediction stress distri-
butions in the first cross-geometry experiment. Although the
contour information of the input geometries is hard for Stress-
GAN to capture, StressGAN outputs stress distributions closer
to the samples in the dataset, especially in the regions of high
stresses. Additionally, it generates a sharper (less blurred) pre-
diction. Figure 11 shows similar trends for the second cross-
geometry experiment. On the one hand, StressGAN failed to
predict stresses around the openings correctly. On the other hand,
StressGAN generates more reasonable stress distributions which
are more similar to the ground truth samples. Additionally, SRN
could recognize the openings and predict zero stresses in void
areas in some test cases. Since cellular openings have a consid-
erable influence on stress concentrations and the networks have
no explicit training on this phenomenon, large errors occur when
we evaluate the predicted largest stress values as shown in Table
4.

The results of the cross-orientation experiment are shown
in Figure 12. The output stress distributions from StressGAN
are quite similar to the ground truths. From Table 5, it can be
seen that among the three generalization experiments, the cross-
orientation experiment attains the best evaluation results. Since
we use two images to express the load positions and magnitudes

FIGURE 10. Evaluation of StressGAN and SRN on cases of differ-
ent contours. Four evaluation cases are shown by each row. From
left to right: 1) geometry (red); 2) predictions of StressGAN; 3) pre-
dictions of SRN; 4) ground truth stress distributions. The load mag-
nitudes of each case: 1) q(x) = −5.7N/mm2, q(y) = −8.2N/mm2;
2) q(x) = 10.0N/mm2, q(y) = −0.9N/mm2; 3) q(x) = −7.7N/mm2,
q(y) = 6.4N/mm2; 4) q(x) = 5.0N/mm2, q(y) = 8.7N/mm2. (Units:
mm-MPa-N)

along the horizontal and vertical directions respectively, the deep
learning method has a potential to learn the influence of the hori-
zontal and vertical loads from the training dataset separately (es-
sentially, the principle of superposition by exploting the linear
nature of FEA) and synthesize reasonable results when tested on
unseen load orientations. This is especially useful in compress-
ing the size of the training dataset for data efficiency without
significantly increasing the error rate.

6 Conclusions
In this work, we develop a conditional generative adversar-

ial network we call StressGAN for von Mises stress distribution
prediction. StressGAN learns to predict the stress distribution
given the geometries, load, and boundary conditions through a
2-player minimax game between its generator and discriminator.
A fine-mesh stress distribution dataset composed of 38,400 cases
of various geometries, load, and boundary conditions is proposed
for evaluating the network’s performance of complex stress pre-
diction cases.

StressGAN achieves high accuracy in both experiments un-
der multiple metrics, in evaluations of two stress distribution
datasets. StressGAN outperforms the baseline model in both

8 Copyright c© 2020 by ASME



FIGURE 11. Evaluation of StressGAN and SRN on cases of can-
tilever beams with cellular openings. Models are trained with can-
tilever beams with openings and tested with cantilever beams without
openings. Four evaluation cases are shown by each row. From left to
right: 1) geometry (red); 2) predictions of StressGAN; 3) predictions of
SRN; 4) ground truth stress distributions. The load magnitudes of each
case: 1) q(x) = 1.7N/mm2, q(y) = 9.8N/mm2; 2) q(x) =−7.7N/mm2,
q(y) = 6.4N/mm2; 3) q(x) = 10.0N/mm2, q(y) = 0.9N/mm2; 4) q(x) =
−9.1N/mm2, q(y) = 4.2N/mm2. (Units: mm-MPa-N)

qualitative and quantitative evaluations in predicting the stress
distributions given complicated geometry, displacement, and
load boundary conditions. It achieves an average error rate less
than 0.21% on all stress values and 1.47% on the maximum stress
value.

Moreover, StressGAN’s performance under general scenar-
ios is studied. StressGAN generates stress distributions more
similar to samples in the dataset which shows it is a more ef-
fective learner in capturing the underlying knowledge of ground
truth stress distributions. Furthermore, StressGAN is more effi-
cient when facing unseen conditions. Although some cases that
lead to stress concentration such as holes in geometries result in
inaccurate predictions from StressGAN, the computed stress dis-
tributions still embody useful information such as the location
of the highly stressed regions. The stress distributions are more
similar to ground truths compared to the baseline method regard-
less of the conditions. In contrast, our baseline model SRN is
better at correctly estimating zero stresses in void areas but pro-
duces overall less accurate stress distributions under the same
problem inputs. Furthermore, both StressGAN and SRN per-
form well given unseen load orientations compared to the cases

FIGURE 12. Evaluation of StressGAN and SRN on cases of different
load orientations. This figure shows six evaluation cases of StressGAN
and SRN when trained and tested with load conditions in different quad-
rants. From left to right: 1) geometry; 2) predictions of StressGAN;
3) predictions of SRN; 4) ground truth stress distributions. The load
magnitudes of each case: 1) q(x) =−4.2N/mm2, q(y) =−9.1N/mm2;
2) q(x) = −4.2N/mm2, q(y) = −9.1N/mm2; 3) q(x) = −3.4N/mm2,
q(y) = −9.4N/mm2; 4) q(x) = −7.7N/mm2, q(y) = −6.4N/mm2. 5)
q(x) = −3.4N/mm2, q(y) = −9.4N/mm2. 6) q(x) = −4.2N/mm2,
q(y) =−9.1N/mm2. (Units: mm-MPa-N)

where unseen geometries are involved.
In this work, the potential of generalizing the stress predic-

tion ability to different categories is shown in generalization ex-
periments. These findings constitute a one step toward generat-
ing data-driven analysis approaches that can generalize well to
previously unseen problem configurations.
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