
The Dynamics of Innocent Flesh on the Bone:
Code Reuse Ten Years Later

Victor van der Veen
Vrije Universiteit Amsterdam

vvdveen@cs.vu.nl

Dennis Andriesse
Vrije Universiteit Amsterdam

d.a.andriesse@vu.nl

Manolis Stamatogiannakis
Vrije Universiteit Amsterdam

manolis.stamatogiannakis@vu.nl

Xi Chen
Vrije Universiteit Amsterdam;

Microsoft
xcihen@microsoft.com

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

ABSTRACT
In 2007, Shacham published a seminal paper on Return-Oriented
Programming (ROP), the first systematic formulation of code reuse.
The paper has been highly influential, profoundly shaping the way
we still think about code reuse today: an attacker analyzes the “ge-
ometry” of victim binary code to locate gadgets and chains these
to craft an exploit. This model has spurred much research, with a
rapid progression of increasingly sophisticated code reuse attacks
and defenses over time. After ten years, the common perception
is that state-of-the-art code reuse defenses are effective in signifi-
cantly raising the bar and making attacks exceedingly hard.

In this paper, we challenge this perception and show that an at-
tacker going beyond “geometry” (static analysis) and considering
the “dynamics” (dynamic analysis) of a victim program can easily
find function call gadgets even in the presence of state-of-the-art
code-reuse defenses. To support our claims, we presentNewton, a
run-time gadget-discovery framework based on constraint-driven
dynamic taint analysis. Newton can model a broad range of de-
fenses by mapping their properties into simple, stackable, reusable
constraints, and automatically generate gadgets that comply with
these constraints. UsingNewton, we systematically map and com-
pare state-of-the-art defenses, demonstrating that even simple in-
teractions with popular server programs are adequate for finding
gadgets for all state-of-the-art code-reuse defenses. We conclude
with an nginx case study, which shows that a Newton-enabled
attacker can craft attacks which comply with the restrictions of
advanced defenses, such as CPI and context-sensitive CFI.

1 INTRODUCTION
Ever since the advent of Return-Oriented Programming (ROP) [62],
a substantial amount of research has explored code reuse attacks
in depth. Starting from a relatively simple scheme where return

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3133956.3134026

instructions served to link together snippets of existing code (gad-
gets), the code reuse conceptwas quickly generalized to include for-
ward edges such as indirect calls and jumps [9, 59], and even signal
handling [10]. Not surprisingly, defenses kept pace with the attack
techniques, and a myriad of increasingly advanced attacks [13, 27,
32, 58] was met by equally advanced defenses. Some of these de-
fenses work by constraining control transfers to a specific set of
legal flows [1, 66–68], while others complicate attacks by making
it difficult to find reusable code snippets [3, 4, 7, 12, 19, 20, 45, 65].
Yet other defenses protect a program by ensuring the integrity of
code pointers [43, 46, 47].

In principle, exploitation may still be possible even in the pres-
ence of these defenses; for instance, through implementation is-
sues [14, 26]. However, in practice, code-reuse attacks on a system
with state-of-the-art defenses are extremely challenging. Such at-
tacks require an attacker to analyse the protected program to find
available defense-specific gadgets that can be used to implement
the desired malicious payload. Crucially, the literature on code
reuse attacks has thus far focused on the threat model introduced
in Shacham’s original work on ROP [62], which is based on (man-
ual or automatic) static analysis. This is an important observation,
because modern defenses reduce the set of available gadgets to the
point that finding a sufficient set of gadgets for an exploit stretches
the abilities of even the most advanced static analysis techniques.
In this paper, we introduce a novel approach for constructing code
reuse attacks even in the presence of modern defenses. The key in-
sight is that the required analysis effort to construct an attack can
be greatly reduced and scale across a broad range of defenses by
using dynamic analysis techniques instead of only static analysis.

Static flesh on the bone. The original paper introducing
Return-Oriented Programming appeared at CCS exactly 10 years
ago [62], and demonstrated the first general formulation of a code-
reuse attack. With ROP, an attacker would use static analysis to
scan the binary for useful snippets of code that ended with a re-
turn instruction. Out of these code snippets, known as gadgets, the
attacker would construct a malicious payload and link them by
means of the return instructions at the end of the gadgets. By in-
jecting the appropriate return addresses on the stack of a vulnera-
ble program, an attacker could craft arbitrary functionality.

All code-reuse techniques since have followed this same basic
approach—using static analysis to first identify which gadgets are
available, and then constructing a malicious payload out of them.

https://doi.org/http://dx.doi.org/10.1145/3133956.3134026

This is true even for advanced exploitation that performs such anal-
ysis “just in time” [63].

Modern code-reuse defenses push such attacks to their limits
and the analysis required to bypass them is now highly sophis-
ticated [58, 59]. In the absence of implementation errors or side
channels, an attacker would be hard-pressed to locate the gadgets,
let alone stitch them together. In other words, state-of-the-art de-
fenses have been successful in raising the bar: they may not stop
all possible attacks, but they make them exceedingly difficult.

Beyond static analysis. The key assumption for the effective-
ness of current defenses is that future attacks follow essentially the
same—static analysis-based—approach as proposed by Shacham in
2007. In this paper, we challenge this assumption, demonstrating
that a switch of attack tactics to include dynamic analysis renders
current defenses far less effective and attacks far less laborious. In
reality, attackers do not care about gadgets or ROP chains—all they
want is to execute a sensitive call such as execve or mprotect
with arguments they control. There is no reason to assume that
they would limit themselves to static analysis.

The goal of modern defenses is to prevent attackers from sub-
verting a program’s control flow to reach a desired target, even if
an attacker is able to read or write arbitrary data. The question that
the attackers must answer is which memory values they should
modify to gain control over the program. Ideally, they would an-
swer this question without resorting to complex static analysis.

The key insight in this paper is that we can model such an at-
tacker’s capabilities by means of dynamic taint analysis. In partic-
ular, we taint all bytes that an attacker can modify with a unique
color and then track the flow of taint until we reach code that,
given the right values for the tainted bytes, allows the attacker to
launch a code-reuse attack. For instance, if a tainted code pointer
and a tainted integer later flow into an indirect call target and its ar-
gument (respectively), we have concrete evidence that the attacker
can fully control a particular call instruction “gadget”. Shacham’s
original static analysis tool is named Galileo, a play on its use of
“geometry”. Since our approach is largely based on dynamic (“dy-
namics”) rather than static (“geometry”) analysis, we refer to our
gadget-discovery framework as Newton.

As we shall see, our approach requires an attacker to simply
run the victim process with Newton’s dynamic analysis enabled.
Moreover, our approach can easily emulate common constraints
imposed by modern defenses against code reuse. Depending on
the defense, we may be able to corrupt some locations (but not
others) and target some functions (but not others). As detailed later,
we can map these per-defense restrictions to simple and stackable
constraints (e.g., tainting policies) for our analysis. Moreover, an
attacker may model such constraints once and reuse them across
a wide variety of defenses and victim applications.

Contributions. Our contributions are the following:

• We show that a hybrid static/dynamic attacker model sig-
nificantly lowers the bar for mounting code-reuse attacks
against state-of-the-art defenses.
• We implement Newton, a novel framework for generat-
ing low-effort code-reuse attacks using constraint-driven
dynamic taint analysis.

• We evaluate and compare existing defenses against code
reuse, highlighting their respective strengths and weak-
nesses using constraints in Newton.
• We present an nginx case study to demonstrate how to use
Newton to craft code reuse attacks against advanced de-
fenses, such as secure implementations of CPI [43] 1 and
context-sensitive CFI [67] 2.

2 THREAT MODEL
We consider a code-reuse attacker armed with arbitrary memory
read and write primitives based on memory corruption vulner-
abilities (e.g., CVE-2013-2028 for nginx and CVE-2014-0226 for
Apache), similarly to recent work [19, 46, 52, 58, 61]. We focus
on a low-effort attacker, relying on such primitives and automatic
gadget-discovery tools to craft attacks with limited application
knowledge. Our attacker seeks to locate gadgets and mount code-
reuse attacks, even in the face of state-of-the-art defenses such as
Control-Flow Integrity (CFI) [66–68], leakage-resistant code ran-
domization [12, 19], and Code-Pointer Integrity (CPI) [43]. We fo-
cus specifically on lightweight code-reuse defenses and leave more
general heavyweight defenses such as memory safety [48, 49] or
Multi-Variant Execution (MVX) [41, 69] out of scope.

Given the overwhelming number of code-reuse defenses in the
literature, we limit our analysis to only (1) defenses applicable to
general programs (e.g., no vtable protection for C++ programs [66]),
(2) the strongest designs in each class (i.e., effectiveness against
weaker defenses is implied), and (3) the secure implementation of
such designs (e.g., no side-channel [26, 52] or weak-context [14] by-
passes). We also assume a strong baseline with ASLR [55], DEP [2],
a perfect shadow stack [21] (making it impossible to divert control-
flow by modifying return addresses), and coarse-grained forward-
edge CFI [75] (callsites can only target function entry points) en-
abled.

We assume that the attacker has access to a binary equivalent to
the one deployed by his prospective victim. Finally, for simplicity,
we focus specifically on popular server programs, similar to much
prior work in the area [8, 46, 51, 52, 58, 61, 67, 68].

3 OVERVIEW OF CODE-REUSE DEFENSES
In this section, we provide an overview of state-of-the-art code-
reuse defenses considered in our threat model. We distinguish four
classes of code-reuse defenses: (1) Control-Flow Integrity, (2) Infor-
mation Hiding, (3) Re-randomization, and (4) Pointer Integrity. We
now introduce each of these classes in turn, and later show how to
map them to Newton constraints in §5.

Control-Flow Integrity. The idea of (forward-edge) Control-
Flow Integrity (CFI) is to mitigate code-reuse attacks by instru-
menting indirect callsites to ensure that only legal targets allowed
1In this paper, we focus on the published implementation of CPI, which, as we verified,
features no temporal checks and no read-side bounds checks. After publication, the
CPI authors informed us that the latter, which we had assumed to be an optimization,
is really an implementation bug. Unfortunately, adding such expensive bounds and
temporal checks to approximate full memory safety will non-trivially increase the
CPI overhead. For this reason, we consider the efficient published implementation a
more interesting and concrete design point to analyze as of today.
2In this paper, we consider context-sensitive CFI (CsCFI) and context-insensitive CFI
separately and, with CsCFI, we exclusively refer to stateful CFI policies based on ex-
ecution history.

by the (inter-procedural) Control Flow Graph (CFG) of the pro-
gram are permitted [1]. To determine the targets for each callsite,
modern CFI solutions use either static or dynamic information.

CFI solutions that rely only on static information either allow
callsites to target all function entry points [74, 75] or, more recently,
construct the set of legal targets by mapping callsite types to target
function types. In other words, a callsite of the form foo(struct
bar *p) should only call functions of type func(struct bar
*p). In particular, IFCC [66] and MCFI [50] construct such map-
pings using source type information, while TypeArmor [68] ap-
proximates types based on argument count at the binary level.

CFI solutions that rely on dynamic information track execu-
tion state to improve the accuracy of static analysis. In particular,
PICFI [51] implements a "history-based CFI " (HCFI) policy, restrict-
ing the target set to function targets whose address has been com-
puted at runtime. Context-sensitive CFI (CsCFI) solutions (or simi-
lar, with different definitions of “context”) such as PathArmor [67],
GRIFFIN [28], FlowGuard [44], kBouncer [54], and ROPecker [16]
restrict the target set based on analysis of the last n branches
recorded by hardware, e.g., the Last Branch Record (LBR) regis-
ters or Intel PT. The effectiveness depends on the amount of useful
“context” in the branch history, which is necessarily limited in prac-
tical implementations: 16 or 32 LBR entries [16, 54, 67], 30 Intel PT
packets [44], or a limited policy matrix [28].

Information Hiding. Information hiding (IH) aims to prevent
code reuse by making the locations of gadgets unknown to an at-
tacker. This is done by (1) diversifying the code layout using tradi-
tional Address-Space Layout Randomization (ASLR) [55] or more
fine-grained variants [4–6, 12, 15, 17–20, 29, 31, 35, 36, 40, 42, 53,
64, 71] and (2) "hiding" code pointers to an arbitrary memory read-
enabled attacker. The latter property is enforced in different ways
by different leakage-resistant randomization solutions.

Oxymoron [4] removes all the code references from the code,
preventing an attacker reading any given code page from gather-
ing new code pointers that reveal the location of other code pages.
Other solutions such as Readactor [19], software-based XnR [3],
HideM [30], LR2 [12], KHide [29], kRˆX [56], Heisenbyte [65], and
NEAR [72] implement eXecute-Only Memory (XoM) or similar se-
mantics for code pages, preventing an attacker from reading useful
gadgets from the code and thus fully "hiding" the code layout (in
the ideal case). Finally, recent solutions such as Readactor++ [20]
and CodeArmor [15] extend XoM semantics (XoM++) to also hide
code pointer tables such as the Global Offset Table (GOT).

Re-randomization. Re-randomization (RR) is another popular
defense strategy against code reuse attacks. Unlike information
hiding, re-randomization solutions seek to re-randomize and inval-
idate leaked information (ideally) before the attacker has a chance
to use it and craft just-in-time code reuse attacks [63]. Existing so-
lutions can be classified based on the particular information they
periodically re-randomize during the execution.

A number of RR solutions such as Shuffler [73], CodeArmor [15],
and ReRanz [70] periodically re-randomize the code layout (CodeRR)
but leave the function pointer values stored in data pages (heap,
stack, etc.) immutable using indirection tables. In contrast, TASR [7]
re-randomizes each code pointer value in memory every time the

Newton

Gadgets

Static Analysis

Constraint Managers

Target Constraints Write Constraints

Binary
+

Libraries
Dynamic Analysis

Commands Command Manager

Input

MK

callsite0(svc.c:1901):
 targets:[sys.c:19, lib.c:78 ...], deps:[fptr:0xdeca..., arg0:0xfbad..., ...]

callsiteN(worker.c:111):
 targets:[lib.c:20, conn.c:13 ...], deps:[fptr:0xdead..., arg0:0xbeef..., ...]

...

Figure 1: Design of Newton.
corresponding code target is re-randomized. Finally, other solu-
tions such as ASR3 [31] and RuntimeASLR [45] re-randomize the
full memory address space layout, including the values of code and
data pointers at each re-randomization period.

Pointer Integrity. Pointer integrity (PI) solutions seek to counter
code reuse by preventing attackers from tampering with code or
data pointers. Existing solutions can be classified as encryption-
based or isolation-based.

ASLRguard [46] is an encryption-based solution that encrypts
each computed code pointer with a per-pointer key in a safe vault,
(ideally) preventing attackers from crafting new code pointers in
memory. In contrast, CCFI [47] encrypts each code pointer stored
into a given memory address with an address-dependent key, also
preventing attackers from reusing leaked code pointers in memory.

CPS [43] is an isolation-based solution that isolates all the code
pointers in a protected safe region, (ideally) preventing an attacker
from reaching and corrupting any of these pointers. CPI [43] ex-
tends CPS to also isolate data pointers that may indirectly be used
by the program to access code pointers, (ideally) preventing an at-
tacker from corrupting code and related data pointers in memory.

4 OVERVIEW OF Newton
We now present Newton, our gadget-discovery framework to as-
sist in crafting code-reuse attacks against arbitrary (modeled) de-
fenses. For this purpose, Newton applies a uniform and black-
box strategy to dynamically retrieve gadgets as a set of attacker-
controllable forward CFG edges. Each edge is expressed as a call-
site with a number of possible target functions, and tagged with
a number of dependencies (e.g., the target function is controlled
by the code pointer stored at address X and the first argument is
controlled by address Y). These edges can then be inspected by an
attacker and used to call arbitrary functions via arbitrary memory
read/write primitives. To call a sequence of arbitrary functions, an
attacker can chain a number of such edges together over multiple
interactions with the victim application.

To easily support a broad range of code-reuse defenses, New-
ton accepts a number of user-defined constraints that limit the
analysis to only gadgets allowed by the given modeled defense.
The key idea is to run the victim program mimicking the stages
of the real attack and constrain Newton’s dynamic gadget anal-
ysis using simple, reusable, and extensible policies that map the
security invariants of a broad range of defenses. We discuss the
mapping of defenses to constraints later, in §5.

Figure 1 presents an overview of Newton and its high-level
components. The Newton framework pushes the victim binary
and its shared libraries through a pipeline of (1) static analysis, and
(2) dynamic analysis—on top of a dynamic taint analysis (DTA) en-
gine. During both phases, the target andwrite constraint managers
apply user-defined constraints to the analysis, eventually yielding
a list of callsites an attacker can control and, for each callsite, a list
of callees an attacker can target under a given defense (or combi-
nation of defenses) regime.

In more detail, the workflow of Newton when analyzing a bi-
nary to craft a code reuse attack is as follows.

(1) At the start of the analysis process, the user starts the target
application binary normally. At this point, Newton is in a
waiting state, and does not yet perform any analysis.

(2) The user now brings the application into a stable state
where they can effect arbitrary memory read/write primi-
tives. In our evaluation, we assume that the user brings the
victim program into a simple quiescent state. For instance,
in the case of a server application, the user would perform
a minimal set of interactions to bring the server into an idle
state with an open connection, where only long-lived data
persists in memory, as in [52]. In general, the chosen quies-
cent state is program-dependent.

(3) Next, the user signals Newton that the victim application
is now in a quiescent state. At this point, Newton begins
tracking user-controlled memory dependencies using its
DTA engine.

(4) At the same time, the user supplies Newtonwith a number
of commands (in a script) to specify the target and write
constraints that Newton should assume are used to defend
the victim application. As a result, Newton will take these
constraints into account during its analysis of controllable
edges.

(5) The user now interacts with the victim application, using
the inputs they want to use during the final exploit. This al-
lows Newton to track the dependencies during these inter-
actions. Focusing on a low-effort attacker targeting a server
application, we assume that the interactions amount to sim-
ple standard requests to the victim server.

(6) Finally, Newton reports the results of its analysis. This
yields a set of gadgets (callsites+targets) that are under the
user’s control given the user’s chosen defense model, initial
quiescent state and set of server interactions.

4.1 Constraints
As defined by our threat model, our goal as an attacker is to use
an arbitrary memory read/write primitive to divert control flow.
The baseline defenses described in §2 force us to achieve this by

corrupting memory in such a way that later in the execution, the
target of an indirect callsite no longer points to its intended callee.
With this in mind we observe that, conceptually, all existing de-
fenses attempt to avert successful attacks by enforcing constraints
along one (or both) of the following two dimensions:

(1) Write constraints.Write constraints limit an attacker’s ca-
pability to corrupt writable memory. Without any defense
deployed, an attacker can corrupt anything: (1) pointers to
code (function pointers), (2) pointers to data, and (3) non-
pointer values such as integers or strings.

(2) Target constraints. Constraints on targets limit the at-
tacker in his selection for possible callees of a controlled
callsite. Without any target constraints beyond the baseline,
the target set always consists of all functions in the program
and library code. We show later how different defenses and
their constraints reduce the wiggle room for an attacker.

4.2 Write Constraint Manager
The write constraint manager accepts user-defined constraints, de-
scribing the memory regions the attacker is allowed to overwrite
under the modeled defense. Then, using constraint-driven dynamic
taint analysis, it pinpoints callsites and arguments which can still
be controlled by the attacker, despite the assumed defenses. New-
ton’s DTA engine is a heavily modified version of libdft [39]
which supports arbitrary tags per memory location, as well as ad-
ditional functionality to support the command manager API (see
§4.4). The steps of the analysis are as following:

(1) Initial tainting.We model attacker-controlled memory by
initially marking regions under the attacker’s control as
tainted. To easily model different defenses, Newton ex-
poses taint limiting commands that allow control over how
the initial taint is applied (see §4.4). Newton’s DTA engine
propagates the taint information to callsites and arguments.

(2) Tracking dependencies. We configure our taint engine
with a unique tag for each byte in memory, allowing us
to track attacker-controlled memory dependencies at byte
granularity. Our dynamic taint analysis engine is capable
of tracking the taint source address for each tainted value
or pointer in memory. For each tainted byte, this tells us ex-
actly bywhichmemory addresses it was tainted. This allows
us to track, when a tainted callsite is discovered, where the
taint originated for the associated function pointer and each
of the arguments. The source of the taint is then a candidate
value for the attacker to corrupt, to control the callsite and
mount a code-reuse attack.
libdft’s original implementation implements a basic taint-
ing strategy [39], able to track only direct attacker-controlled
memory dependencies (i.e., callsite X uses code pointer at
tainted addressY) and not indirect ones (i.e., callsiteX ′ uses
code pointer read via data pointer at tainted address Y ′).
To support the latter, we implemented pointer tainting for
memory reads in libdft [39] (i.e., taint every value read
via a tainted pointer), allowing us to model an attacker cor-
rupting data pointers and non-pointers to indirectly control
code pointers (and arguments) used by tainted callsites.

(3) Logging. When an indirect call is executed, Newton logs
the relevant taint information for this callsite. Specifically,
for each tainted callsite, we emit information detailing the
taint dependencies for the callsite’s target, and the first six
arguments.

4.3 Target Constraint Manager
Like the write constraint manager, the target constraint manager
models constraints imposed by code reuse defenses. It uses static
and dynamic analysis to extract callsite and callee information,
which it then uses to impose the user-defined constraint policy.

Static analysis. We use a static analysis based on DWARF
debugging symbols to extract all callsites and potential callees
from the target binary and shared libraries, along with associated
type information. Newton uses the extracted information (if in-
structed) to simulate a number of policies for existing defenses,
such as type-based CFI [50, 66, 68].

Dynamic analysis. In addition to the aforementioned static
analysis, we also use dynamic analysis to scan user-defined ranges
of writable memory (such as .data, or the heap) for code point-
ers. We define a live code page as a memory page pointed to by
a live code pointer, i.e., a code pointer stored in live data memory
that can be leaked and overwritten. Our dynamic analysis allows
us to track live code pointers and code pages. We use this infor-
mation to model target constraints imposed by defenses such as
Readactor [19], which limit an attacker to using “live” gadgets in
memory.

The target constraint manager logs the valid targets for each
callsite based on the constraints derived by the static and dynamic
analysis, as guided by the user-defined script modeling the defense.

4.4 Command Manager
As mentioned, Newton includes write constraint and target con-
straint managers which model the constraints imposed by a partic-
ular defense, based on a user-defined script. To handle the scripting
commands, Newton includes a command manager. The command
manager is a preloaded library that loads along with the analyzed
binary, and listens for commands on a Unix domain socket. When
a command is received, the command manager dispatches it to the
right constraint manager, which handles it as needed.

Newton exposes the following command functions, sufficient
to map all of the defenses we evaluate in §6. In §5, we show exam-
ples of these commands used in practice to model defenses.

• taint-mem: This command instructs the taint analysis en-
gine to mark all writable memory as tainted, simulating
the arbitrary read/write primitive we assume in our threat
model (see §2). It initializes the source taint for each value
to its own address. In §5, we show how among other things,
we use taint-mem to taint all memory after bringing a vic-
tim server program into a quiescent state.
• taint-flip: This command untaints all tainted data, and
taints all untainted data.We use the ability to flip taint when
crafting history-flushing attacks against context-sensitive
CFI defenses, as explained further in §5.

• taint-prop-toggle: This command pauses or resumes
the propagation of taint (also implies taint-log-toggle)
by Newton’s DTA engine. Default: on.
• taint-log-toggle: Similarly to taint-prop-toggle, this
command pauses or resumes the logging of tainted callsites.
This is used to avoid logging uninteresting callsites. Taint
propagation continues normally. Default: on.
• taint-ptr-toggle: This command enables or disables
pointer tainting on memory reads. Default: on.
• taint-wash (CPtr|Ptr|AddressRange): This command
clears the taint for particular memory locations: locations
with code pointers, data pointers, or in a given address
range.
• constrain-targets: This command specifies target con-
straints to enforce on tainted callsites.
• get-gadgets: This command retrieves all gadgets collected
during the execution.

5 MAPPING DEFENSES IN Newton
As mentioned in §4, for the purpose of finding gadgets for code
reusewithNewton, wemodel the security provided by code-reuse
defenses along two axes: (1) write constraints imposed by the de-
fense, and (2) the imposed target constraints. In this section, we
map the defenses from §3 according to these constraints. This map-
ping allows us to easily create scripts that teach Newton about
the constraints (security restrictions) imposed when searching for
attacker-controllable gadgets (callsites and possible targets).

5.1 Deriving Constraints
Table 1 summarizes the constraints imposed by each defense class.
We now discuss each class in detail.

Control-Flow Integrity. Wedistinguish five subclasseswithin
the CFI class of defenses: (1) TypeArmor, (2) IFCC/MCFI, (3) Safe
IFCC/MCFI, (4) HCFI, and (5) CsCFI.

TypeArmor imposes target constraints which enforce that call
sites can only target functions with a type matching the call site’s
type; such types are approximated by statically analyzing the pro-
gram binary (Bin types). Since TypeArmor is the only defense
which offers function type-based CFI at the binary level, it has its
own dedicated subclass in Table 1.

The IFCC/MCFI subclass provides similar constraints as the Ty-
peArmor subclass, except that function type information is com-
puted at the source rather than at the binary level. This leads to
a stronger target constraint (Src types) and hence security. This is
because source information allows IFCC/MCFI to compute more
accurate type information and derive a smaller legal target set.

Safe IFCC/MCFI comprises the same defenses as the IFCC/M-
CFI subclass, except that in this case the defenses run in a “safe”
mode, where type information is less strict for compatibility rea-
sons with real-world programs—discussed in the original IFCC pa-
per [66]. For instance, in this mode, pointer parameters such as
int* or void* are each considered to be interchangeable with
other pointer types. This leads to a weaker target constraint (Safe
src types) compared to the non-safe variant of this subclass.

In the HCFI (history-based CFI) subclass, the set of valid targets
for each call site is determined by the set of code pointers that

Table 1: Mapping of code-reuse defenses to Newton constraints. Empty entries for write/target constraints indicate that the
defense imposes no write/target constraints, respectively.

Defense Write constraints Target constraints
Class Subclass Solutions Details Dynamic Details

CFI

TypeArmor [68] Bin types
Safe IFCC/MCFI [50, 66] Safe src types
IFCC/MCFI [50, 66] Src types
HCFI [51] 3 Computed
CsCFI [16, 28, 34, 44, 54, 67] Segr

IH
Oxymoron [4] 3 Live +page
XoM [3, 12, 19, 29, 30, 56, 65, 72] 3 Live
XoM++ [15, 20] 3 Live ¬GOT

RR
CodeRR [15, 70, 73] 3 Live
TASR [7] ¬CPtr 3 Live
PtrRR [31, 45] ¬Ptr 3 Live

PI
ASLR-Guard [46] 3 Live
CCFI/CPS [43, 47] ¬CPtr 3 Live
CPI [43] ¬Ptr 3 Live

have been computed during the execution. This is a dynamic target
constraint (Computed), which can be used in isolation or combined
with other static target constraints.

All the CFI subclasses thus far have been modeled using target
constraints. Somewhat counterintuitively, wemodel the CsCFI sub-
class using only write constraints. The reason is that this makes it
much easier to write aNewtonCsCFI-aware script for a low-effort
attacker. Formulating CsCFI in terms of target constraints would
require us to provide Newton with knowledge about the context-
sensitive analysis, the branch history size, and the time of valida-
tion (e.g., syscall time). Furthermore, when assuming a "perfect"
(but practical) implementation of CsCFI, the branch history can be
arbitrarily large (but not unlimited), allowing a "perfect" context-
sensitive analysis to always detect invalid targets in the large con-
text provided. In other words, the only way for an attacker to by-
pass the defense is to force the application to flush the (arbitrarily
large) branch history [14] before triggering the exploit. This leaves
CsCFI with no context to constrain the controlled target set.

For this purpose, the attacker needs to (1) corrupt some segre-
gated (independent and stable) application state, (2) send an arbi-
trarly large number of idempotent history-flushing inputs to the
application that do not interfere with the segregated state, (3) send
the final input to trigger the exploit based on the segregated state.
This translates to a write constraint (Segr) that limits writes to the
segregated state specified by the attacker. At first glance, identify-
ing such state and the history-flushing input seems complicated. In
practice, this is possible even for a low-effort attacker. For example,
for common server applications that handle multiple connections
in a single worker process (e.g., nginx), we can simply instruct
Newton to use the connection-specific data of a first connection
as segregated state and a simple request over a second connection
as the history-flushing input (as done in §5.2).

Information Hiding. We distinguish three subclasses within
the IH class of defenses: (1) Oxymoron, (2) XoM, and (3) XoM++.

The Oxymoron subclass allows only targets contained in live
code pages. This translates to a target constraint (Live +page) that

limits the set of valid (i.e., attacker-leaked) targets to pages pointed
to by live code pointers.

The XoM subclass contains defenses that hide the code layout
from an attacker. This translates to a target constraint (Live) that
limits the set of valid targets to live code pointers (again stored
and then leaked from memory), given that the attacker can make
no assumptions on the other code pointers.

Finally, defenses in the XoM++ subclass implement XoM seman-
tics and additionally hide the GOT from an attacker. This translates
to a stronger target constraint (Live ¬GOT) than XoM’s, where live
code pointers in the GOT are no longer valid. Since the GOT itself
is no longer reachable and thus not corruptable, this also trans-
lates to a write constraint (¬GOT), which, for simplicity, we leave
implicit in our analysis and presentation of the results (its impact
typically aligns with its target constraint counterpart).

Re-randomization. We distinguish three subclasses within
the RR class of defenses: (1) CodeRR, (2) TASR, and (3) PtrRR. Since
all these subclasses hide the code layout under ideal conditions,
they all impose a target constraint that allows only live code point-
ers to be used as valid targets (Live). However, the subclasses differ
in terms of their write constraints.

First, the CodeRR subclass only hides (i.e., re-randomizes) the
code layout and imposes no additional write constraints. The sec-
ond RR subclass, TASR, does impose an additional write constraint.
Not only does TASR periodically re-randomize the code layout,
but it also re-randomizes the code pointer representation (even
for code pointers stored in data memory). In doing so, it prevents
attackers from successfully overwriting code pointers. This trans-
lates to a write constraint (¬CPtr) that forbids writes to mem-
ory locations containing code pointers. In other words, this con-
straint teaches Newton that the only way to find gadgets that by-
pass CodeRR is to corrupt data pointers (or non-pointers) to force
the program to access an attacker-controlled live code pointer
rather than the original intended target (e.g., corrupting c to hi-
jack c->handler()).

Finally, the PtrRR subclass is similar to TASR, except that the
imposed write constraint is stronger. Not only code pointers but

Non
eLi

ve
 +

pa
ge

Bi
n

ty
pe

sCo
m

pu
te

d

Li
veLi

ve
 ¬

GOT

Sa
fe

 s
rc

 ty
pe

sSr
c
ty

pe
s

None ¬Cptr ¬Ptr Segr

Ta
rg

et
 C

on
st

ra
in

t

Write Constraint

Control Flow Integrity (CFI)
Information Hiding (IH)
Re-Randomization (RR)
Pointer Integrity (PI)

TypeArmor

SafeIFCC/MCFI

IFCC/MCFI

HCFI

CsCFI

Oxymoron

XoM

XoM++

CodeRR TASR PtrRR

ASLR-Guard
CCFI/CPS CPI

Figure 2: Mapping of defense classes to write (x-axis) and
target (y-axis) constraints in Newton. Constraints on the
two axes are sorted based on their effectiveness in reducing
the number of gadgets available to a low-effort attacker on
nginx, when sending a plain HTTP GET request.

all pointers are re-randomized and thus “protected” against over-
writes. This translates to a write constraint (¬Ptr) that forbids
writes to memory locations containing either code or data pointers.
In other words, this constraint teaches Newton that the only way
to find gadgets that bypass PtrRR is to corrupt non-pointers such as
integers (e.g., corrupting idx to hijack func[idx]->handler()).

Pointer Integrity. We distinguish three subclasses within the
PI class of defenses: (1) ASLR-Guard, (2) CCFI/CPS, and (3) CPI. All
three of these prevent an attacker from crafting new code pointers
from scratch, thus enforcing a target constraint that limits targets
to live code pointers (Live).

ASLR-Guard does not impose any additional constraints. It
implements the aforementioned target constraint by using per-
pointer secret keys to encrypt all code pointers. Thus, while an at-
tacker cannot introduce new code pointers, it is still possible to re-
place a code pointer with another arbitrary live code pointer, given
that the secret key is not location-aware.

The second PI subclass, CCFI/CPS, does impose an additional
write constraint that forbids writes to memory locations contain-
ing code pointers (¬CPtr). In the case of CCFI (Cryptographically-
enhanced CFI), this is implemented by encrypting pointers with a
memory location-dependent key. In the case of CPS, the same ef-
fect is achieved by isolating code pointers in a memory region not
accessible to an attacker.

Finally, CPI is equivalent to CPS, except that it isolates not only
code pointers, but also data pointers that point to structures con-
taining code pointers. Thus, CPI imposes a stronger write con-
straint than CPS, forbidding writes to memory locations contain-
ing either code or data pointers (¬Ptr).

5.2 Implementation
Figure 2 graphically depicts the constraints imposed by the de-
fenses, as detailed in Table 1. The x-axis shows the write con-
straints imposed by each defense subclass, while the y-axis shows
the target constraints. Defenses that share both the same write and

1 $ start server
2 constrain-targets $Cons
3 $ C1 = open connection
4 taint-mem
5 $ send request over C1
6 get-gadgets
7

(a) No write constraints.

1 $ start server
2 constrain-targets $Cons
3 $ C1 = open connection
4 taint-mem
5 taint-wash CPtr
6 $ send request over C1
7 get-gadgets

(b) ¬CPtr.

1 $ start server
2 constrain-targets $Cons
3 $ C1 = open connection
4 taint-mem
5 taint-wash Ptr
6 $ send request over C1
7 get-gadgets
8

9

10

11

(c) ¬Ptr.

1 $ start server
2 constrain-targets $Cons
3 taint-prop-toggle off
4 taint-mem
5 $ C1 = open connection
6 taint-flip
7 $ C2 = open connection
8 $ send N requests over C2
9 taint-prop-toggle on
10 $ send request over C1
11 get-gadgets

(d) Segr.

Figure 3: Newton command scripts for finding gadgets un-
der different modeled write constraints.

target constraints impose equivalent security restrictions, so that
each (x ,y) point in Figure 2 forms an equivalence class.

It is interesting to note that even defenses that seem quite dif-
ferent on the surface actually turn out to offer comparable guar-
antees. For instance, the figure reveals the following equivalence
classes containing multiple defenses each: {XoM,CodeRR,ASLR −
Guard }, {TASR,CCFI/CPS }, and {PtrRR,CPI }. Note that these
equivalences hold only when assuming "perfect" implementations
of each defense, without any implementation-specific vulnerabili-
ties. In addition, our constraint-based classification abstracts away
implementation details and hence ignores implementation-specific
differences across defenses. For instance, the ¬Ptr constraint in
RuntimeASLR protects all data pointers, and could thus be consid-
ered stronger than the same constraint in CPI, which protects only
data pointers that can be used to read code pointers. The key ad-
vantage of our approach is that it allows us to focus on the general
constraints for gadget generation across many different defenses.

We now demonstrate how to concretely implement constraints
for the mapped defenses inNewton, using the commands detailed
in §4. We organize the following discussion around the write con-
straints imposed by each defense.

Corrupting code pointers. All defense subclasses that do not
implement write constraints allow any memory to be corrupted,
including code pointers. These defenses are on the left of the x-
axis in Figure 2 (None).

To model these defenses, we use the Newton script shown in
Figure 3a. All our example scripts assume a low-effort attacker at-
tacking a server application. After starting the server, the script
first informs Newton about any target constraints; this guides
Newton’s static and dynamic analysis of callees and live code
pointers. Newton has internal support for each of the possible
target constraints shown in Table 1 and Figure 2.

Next, the script taints all memory using the taint-mem com-
mand. We then send a normal request to the server, causing New-
ton to track any taint propagated during this request. As the re-
quest is processed, Newton logs tainted callsites, their arguments,
dependencies, and potential targets. These gadgets can then later
be retrieved by the user (get-gadgets command).

Corrupting data pointers. Defense subclasses with the¬CPtr
write constraint prevent code pointers from being overwritten,
but do not protect other memory locations. This includes the
CCFI/CPS and TASR subclasses. As a result, under these defenses,
it is still possible to corrupt data pointers (as well as non-pointers).

We model these defenses in Newton using the script shown in
Figure 3b. The script is identical to the script we used to model de-
fenses without any write constraints, except that after tainting all
memory, we use the taint-wash command to untaint code point-
ers. This has the result of simulating that code pointers are not
overwritable by an attacker, thus modeling defenses in the ¬CPtr
write constraint class.

Corrupting non-pointers. Under defenses that implement
the ¬Ptr write constraint, neither code nor data pointers can be
written, limiting the attacker to overwriting only non-pointers.We
simulate this using the script shown in Figure 3c, in which we clear
the taint for both code and data pointers after tainting memory.

Corrupting segregated state. Asmentioned in §5.1, wemodel
the CsCFI subclass using write constraints instead of target con-
straints, as this makes CsCFI easier to emulate in Newton. As de-
scribed earlier, the write constraints impose a “segregated mem-
ory” defense model, in which an attacker corrupts program state
in such a way that this state is not modified by subsequent history-
flushing requests. The attacker then uses an arbitrary number of
these requests to flush the context of the CsCFI defense, after
which it becomes possible to use the previously corrupted state
to trigger an exploit.

We model this in Newton using the script shown in Figure 3d.
The script begins by starting the victim server and setting the tar-
get constraints, as usual. Next, we disable taint propagation, after
which we taint all memory and open an attack connection (c1),
and finally flip the taint state of all memory. Opening the connec-
tion has the effect of clearing taint on the memory touched by the
connection state. Thus, when we flip the taint state, the untainted
memory (containing the connection state) becomes tainted, while
all other memory becomes untainted. This way, we model the ini-
tial segregated (connection) state, which will serve as the attack
surface in the final exploit. Note that the segregated state is not an
idle state as our attack connection is still open, and that there are
possibly many more active open connections in parallel.

We now send an arbitrary number of idempotent requests to the
server over an independent history-flushing connection c2. This is
to model flushing the CsCFI context and also ensure there is no
interference with the state of connection c2. Finally, we re-enable
taint propagation, resume the attack connection c1 (left open pre-
viously), and send the final request. The final result of the analysis
is a list of callsites (with possible targets and dependencies) which
are tainted only by attacker-controlled connection-specific state,
and are thus controllable by the attacker after the history-flushing

attack is complete. This voids the concern that some of the long-
lived structures in the quiescent state may be modified by parallel
connections.

6 EVALUATION
We evaluate Newton against three web servers (nginx, Apache,
and lighttpd), a general-purpose distributed memory cache sys-
tem (memcached), an in-memory database (redis), and a domain
name system (bind). As is common these days, we compile the
servers as position independent code, using gcc as our compiler.

Using Newton scripts as presented in §5.2, we instruct our tar-
get constraint manager to apply each of the target-based policies
from §5 (in addition to the baseline as described in §2). As described
there, we divide the deployed defenses into those with static target
constraints, and dynamic ones.

Also recall from §5.2 that our scripts instruct the write con-
straint manager to apply the following types of write constraints:
(1) None, this is our baseline where an attacker can corrupt any-
thing, including code pointers; (2) ¬CPtr, policies that restrict the
corruption of code pointers; (3) ¬Ptr, policies that enforce pointer
integrity; and (4) Segr, for context-sensitive CFI.

We first perform a detailed evaluation for nginx, in which we
provide statistics on the controllability of each executed indirect
callsite. Later, in §7, we show how to use this information to mount
defense-aware attacks against nginx. In the second part of this
evaluation, we provide summarized results for all tested servers,
to illustrate the wide applicability of our attack methodology.

Note that we do not evaluate the expressiveness of code-reuse
attacks based on Newton, i.e., we do not study whether Newton
can produce Turing-complete attacks. The motivation behind this
is that Turing-completeness neither guarantees nor is a prerequi-
site for successful exploitation and as such does not affect the ap-
plicability ofNewton: an attacker is unlikely to care about finding
all Turing-complete gadgets if only one or two already provide him
with enough means to gain arbitrary code execution. We consider
a study in which existing defenses are evaluated with respect to
whether they prevent Turing-complete ROP attacks as an interest-
ing starting point for future work.

Although our evaluation focuses on popular system services,
the principles of Newton also apply to user applications like
browsers, document readers, and word processors. The large mem-
ory footprint of such applications, however,means that our libdft-
based DTA engine (which is 32-bit only) quickly runs out of mem-
ory. This limitation is not fundamental to Newton, and can be
addressed in future work with additional engineering effort (i.e.,
porting libdft to x86_64).

6.1 In-Depth Analysis of nginx
We now evaluate the controllability of each executed indirect call-
site in nginx, under all types of write and target constraints. We
first examine the residual attack surface per target constraint, and
then do the same for each write constraint.

Target constraints. Table 2 depicts the residual attack surface
in nginx under different target constraints. We consider dynamic
and static target constraints separately, in Tables 2a and 2b, respec-
tively. It should be noted that the numbers shown for dynamic

Table 2: Number of permissible targets in nginx under each target constraint policy.

(a) Results for dynamic target constraints. Targets: absolute number of legal function targets found in the main nginx module, libc, other modules, and in total,
respectively. Target location: locations of the code pointers to legal targets (stack, heap, or .data/.got/other segment in a particular module).

Dynamic
target constraint

Targets Target location

nginx libc other total stack heap nginx libc other
data GOT other data GOT other data GOT other

None 1035 2763 794 4592 – – – – – – – – – – –
Live +page 811 1264 411 2486 15 475 261 399 81 666 26 67 207 257 32
Computed 363 323 100 786 1 64 270 32 25 240 2 42 65 38 7

Live 362 316 89 767 1 64 269 31 25 237 2 41 60 31 6
Live ¬GOT 360 279 69 708 1 64 269 0 25 237 0 41 60 0 6

(b) Results for static target constraints.Targets: median (andminimum/maximum) number of legal function targets per callsite.Target distribution: minimum/90th
percentile/maximum number of targets pointing to each module, per callsite.

Static
target constraint

Targets (median) Target distribution

nginx libc other total min max nginx libc other
min 90p max min 90p max min 90p max

Bin types 328 960 370 1665 953 2820 201 758 758 549 1625 1625 203 437 437
Safe src types 117 176 65 376 2 394 2 135 153 0 230 230 0 69 72
Src types 12 0 0 19 1 61 1 58 61 0 0 20 0 0 28
Source 12 0 0 19 1 61 1 57 61 0 0 20 0 0 28

target constraints are susceptible to the coverage of our dynamic
analysis. As mentioned, we assume a low-effort attacker; thus, the
numbers shown in Table 2a cover the casewhere the attacker sends
only a simple GET request to nginx. It is conceivable that a more
determined attacker could uncover even more attack surface than
shown in Table 2a.

Also note that we show absolute numbers for dynamic con-
straints, but median results for static constraints. This is because
static target constraints limit the number of targets per callsite,
while dynamic constraints limit the total number of legal pointers
in memory.

To interpret the tables, we look at one example row from each
table. We begin with an example from Table 2a. Consider the Com-
puted target constraint, which is used by the HCFI defense sub-
class, implemented by Per-Input CFI [51]. Under this constraint,
only code pointers which have been computed during program ex-
ecution can be used by an attacker. Table 2a shows that after server
initialization and handling of the GET request, 786 such pointers
reside in memory. Thus, each indirect callsite may target each of
these. Of the computed pointers, 1 was stored on the stack, and 64
on the heap. The remaining originate from the loadedmodules: 270
from nginx’ data sections (.data, .data.rel.ro, or.rodata),
32 from its global offset tables (.got, .got.plt), and 25 pointers
were found in the remaining sections and other modules.

To explain Table 2b, we consider the Safe src types constraint,
imposed by the SafeIFCC/MCFI defense subclass, which provides
type-based caller/callee matching. In this, the median indirect call-
site is allowed to target 176 libc functions, and 376 functions in
total. The most restricted callsite may call only 2 functions, while
the least restricted is allowed to call 394 functions. Each callsite
may target at least 2 functions in nginx, while 90% of the callsites
may target 69 functions in modules other than nginx or libc.

Overall, the main takeaway from Table 2 is the ease with which
our methodology allows us to compare the strength of even ex-
tremely different defense subclasses. For instance, it is clear from
Table 2a that the strongest dynamic target constraint is Live ¬GOT,
imposed by the XoM++ defense subclass. Comparing Tables 2a
and 2b, it is also clear that static type-based constraints are in gen-
eral stronger than dynamic ones, with the strongest target con-
straints being imposed by source-level type-based defenses. It is
also worth noting that even for the strongest target constraints,
there is still a significant residual attack surface.

Write constraints. Wenow consider the potential controllabil-
ity of callsites in nginx given varying write constraints. Moreover,
we also show that for each executed callsite, a nontrivial attack
surface remains even under the strongest combinations of write
and target constraints. To obtain information onwhich callsites are
potentially controllable, we examine the taint information which
Newton yields during the aforementioned attacker-initiated GET
request to nginx. We present these results in Table 3.

To illustrate the semantics of Table 3, consider callsite num-
ber 27, at location http_request.c:1126. The target (function
pointer) of this callsite is tainted by a code pointer, meaning that it
can be controlled under write constraints which allow corrupting
code pointers. Moreover, it is controllable from segregated state, so
that the callsite is usable in a history flushing-based attack against
CsCFI. All three arguments are tainted by non-pointer values, mak-
ing them controllable even under the strictest write constraints.
Controlling three arguments is often sufficient; for instance, both
execve and mprotect take only three arguments (and system
takes one).

Without any additional target constraints, the callsite at loca-
tion http_request.c:1126 has 4592 legal targets. Imposing the

Table 3: Taint information and residual attack surface for nginx. Callsite: controllable indirect call when sending a plain HTTP
GET request. Taint source: taint information for the function pointer (target) and first six arguments (arguments actually used
are underlined). None indicates an untainted value, while CPtr, DPtr, and ¬Ptr indicate taint through a code pointer, data
pointer (and possibly CPtr), or non-pointer value (and possibly Ptr), respectively. Segr: marked if the call target is tainted by
segregated state, and the call may thus be used in a history flushing attack against CsCFI. Targets: available targets for the
given callsite under Baseline target constraints, Live ¬GOT (strongest dynamic) constraints, and Source types (strongest static)
constraints. Best: available targets when combining Live ¬GOT and Src types.

Callsite
Taint source Targets

Func.
ptr.

Segr Arg0 Arg1 Arg2 Arg3 Arg4 Arg5 Baseline
Live
¬GOT

Source
types

Best

1 ngx_connection.c:808 CPtr ¬Ptr ¬Ptr ¬Ptr None ¬Ptr None 4592 708 2 1
2 ngx_epoll_module.c:642 DPtr DPtr ¬Ptr None None None None 4592 708 19 6
3 ngx_event.c:245 CPtr None ¬Ptr None None None None 4592 708 1 1
4 ngx_event.c:286 CPtr DPtr ¬Ptr None None DPtr DPtr 4592 708 2 2
5 ngx_event_accept.c:258 DPtr DPtr ¬Ptr ¬Ptr None ¬Ptr None 4592 708 6 1
6 ngx_http_chunked_filter_module.c:79 CPtr ¬Ptr None None None None ¬Ptr 4592 708 58 18
7 ngx_http_chunked_filter_module.c:92 CPtr ¬Ptr None ¬Ptr None ¬Ptr None 4592 708 11 8
8 ngx_http_charset_filter_module.c:235 CPtr ¬Ptr ¬Ptr ¬Ptr None None None 4592 708 58 18
9 ngx_http_charset_filter_module.c:552 CPtr ¬Ptr None None None ¬Ptr ¬Ptr 4592 708 11 8
10 ngx_http_core_module.c:852 ¬Ptr ¬Ptr ¬Ptr ¬Ptr None None ¬Ptr 4592 708 8 7
11 ngx_http_core_module.c:874 CPtr ¬Ptr ¬Ptr ¬Ptr None None ¬Ptr 4592 708 58 18
12 ngx_http_core_module.c:906 ¬Ptr ¬Ptr ¬Ptr ¬Ptr None ¬Ptr None 4592 708 58 18
13 ngx_http_core_module.c:1075 CPtr ¬Ptr ¬Ptr ¬Ptr None None ¬Ptr 4592 708 58 18
14 ngx_http_core_module.c:1357 ¬Ptr ¬Ptr ¬Ptr DPtr None ¬Ptr ¬Ptr 4592 708 58 18
15 ngx_http_core_module.c:1825 CPtr ¬Ptr None None None None ¬Ptr 4592 708 58 18
16 ngx_http_core_module.c:1840 CPtr ¬Ptr None None None None None 4592 708 11 8
17 ngx_http_gzip_filter_module.c:256 CPtr ¬Ptr None None None ¬Ptr None 4592 708 58 18
18 ngx_http_gzip_filter_module.c:323 CPtr ¬Ptr None None None None None 4592 708 11 8
19 ngx_http_headers_filter_module.c:152 CPtr ¬Ptr None None None None None 4592 708 58 18
20 ngx_http_log_module.c:252 DPtr ¬Ptr ¬Ptr None None ¬Ptr ¬Ptr 4592 708 6 1
21 ngx_http_log_module.c:297 DPtr ¬Ptr ¬Ptr DPtr None ¬Ptr ¬Ptr 4592 708 12 11
22 ngx_http_not_modified_filter_module.c:61 CPtr ¬Ptr None ¬Ptr None None ¬Ptr 4592 708 58 18
23 ngx_http_postpone_filter_module.c:82 CPtr ¬Ptr None None None None None 4592 708 11 8
24 ngx_http_range_filter_module.c:230 CPtr ¬Ptr None None None ¬Ptr None 4592 708 58 18
25 ngx_http_range_filter_module.c:551 CPtr ¬Ptr None ¬Ptr None ¬Ptr None 4592 708 11 8
26 ngx_http_request.c:514 DPtr DPtr ¬Ptr ¬Ptr None ¬Ptr None 4592 708 19 6
27 ngx_http_request.c:1126 CPtr 3 ¬Ptr ¬Ptr ¬Ptr None None ¬Ptr 4592 708 3 3
28 ngx_http_request.c:3002 ¬Ptr ¬Ptr ¬Ptr ¬Ptr None ¬Ptr None 4592 708 58 18
29 ngx_http_ssi_filter_module.c:329 CPtr ¬Ptr None None None None ¬Ptr 4592 708 58 18
30 ngx_http_ssi_filter_module.c:392 CPtr ¬Ptr None None None ¬Ptr ¬Ptr 4592 708 11 8
31 ngx_http_userid_filter_module.c:205 CPtr ¬Ptr ¬Ptr None None None ¬Ptr 4592 708 58 18
32 ngx_http_variables.c:404 ¬Ptr ¬Ptr ¬Ptr ¬Ptr None ¬Ptr ¬Ptr 4592 708 61 49
33 ngx_http_write_filter_module.c:238 ¬Ptr 3 ¬Ptr ¬Ptr None None ¬Ptr None 4592 708 2 1
34 ngx_output_chain.c:65 ¬Ptr ¬Ptr None None None None None 4592 708 11 8
35 ngx_palloc.c:80 ¬Ptr ¬Ptr None ¬Ptr None None ¬Ptr 4592 708 56 7

strongest dynamic target constraint (Live ¬GOT) reduces this to
708 targets, while the strongest static target constraint (Source
types) allows only 3 targets; the same number of targets as is al-
lowed under the combination of these write constraints.

Note in Table 3 that 13 of the 35 callsites have a target that
is tainted by a non-code pointer value, making them controllable
even when code pointers are protected. Moreover, 8 callsites have
a target tainted by a non-pointer value, making these callsites con-
trollable under all write constraints imposed by current defenses.
Many of these callsites have a significant number of legal targets,
ranging up to 49 targets even when combining the strongest static
and dynamic target constraints.

6.2 Generalized Results
Table 4 shows that nginx is representative for all evaluated servers.
The fraction of tainted callsites is comparable, with the exception
that callsites in httpd are not controllable using segregated state;
httpd creates a new process for each connection, preventing our
history flushing attack. In all evaluated servers, attacker-controlled
callsites remain even under ¬Ptr write constraints.

Moreover, in all servers, a significant number of legal targets
remain even under the strongest dynamic target constraints (Live
¬GOT), with the exception of a small number (the aforementioned
cases with httpd, and one case in memcached). The same is true

Table 4: Summarized number of controllable callsites and targets for each server. Callsites: number of tainted (controllable)
callsites under varying write constraints. Targets (dynamic): total permissible targets (absolute) under each dynamic target
constraint. Targets (static): total permissible targets (median) under each static target constraint.

Server Callsites Targets (dynamic) Targets (static)
Write constraint Tainted Baseline Live +page Computed Live Live ¬GOT Bin types Safe src types Src types

nginx

None 35

4,592 2,336 786 767 708

1,952 988 201
¬CPtr 13 1,952 953 193
¬Ptr 8 1,952 787 160
Segr 2 1,571 108 5
Segr & ¬Ptr 1 1,571 2 2

lighttpd

None 12

4,450 1,867 497 474 409

1,686 249 50
¬CPtr 7 1,512 228 37
¬Ptr 2 1,187 56 6
Segr 8 1,686 230 39
Segr & ¬Ptr 2 1,187 56 6

httpd

None 33
6,113 3,835 2,002 1,985 1,928

3,464 1,471 310
¬CPtr 27 3,464 1,469 302
¬Ptr 13 3,408 1,079 139
Segr 0 0 0 0 0 0 0 0 0
Segr & ¬Ptr 0 0 0 0 0 0 0 0 0

redis

None 14

5,381 2,311 771 612 546

2,253 470 219
¬CPtr 11 2,253 470 219
¬Ptr 11 2,253 470 219
Segr 2 1,227 13 11
Segr & ¬Ptr 2 1,227 13 11

memcached

None 8

4,326 2,420 752 738 391

2,314 275 35
¬CPtr 3 1,624 243 7
¬Ptr 3 1,624 243 7
Segr 1 2,105 18 18
Segr & ¬Ptr 0 0 0 0 0 0 0 0 0

bind

None 43

7,693 2,829 1,028 1,010 918

2,762 1,323 393
¬CPtr 40 2,762 1,253 383
¬Ptr 39 2,762 1,241 371
Segr 1 1,936 199 20
Segr & ¬Ptr 1 1,936 199 20

for static target constraints; even under source-level type-based
target constraints, an attacker has multiple targets to choose from
(ranging from 2 to 393 targets) in each case where callsite corrup-
tion is possible. For several servers, including nginx, lighttpd,
redis, and bind, these results apply even to a segregated state
attack model with type-based target constraints.

These results show that Newton is capable of locating con-
trollable callsites and a choice of potential targets under even the
strongest defenses. Recall that these results assume a low-effort
attacker, sending only a single request to each server; thus, these
results are a lower-bound for the number of controllable callsites.

7 CONSTRUCTING ATTACKS WITH Newton
This section documents our experience using Newton to bypass
two advanced state-of-the-art defenses: CsCFI [16, 28, 44, 54, 67]
and CPI [43]. Our case studies are constructed in an architecture-
independent fashion: unlike traditional ROP, we operate on pro-
gram semantics. Thus, our results are generally applicable on dif-
ferent architectures, such as x86 and ARM. We specifically focus

our analysis on secure implementations of CPI and CsCFI, given
that existing work has already discussed the general limitations of
CFI [13, 14, 23, 27, 32, 33] and leakage-resistant randomization [58].

7.1 CsCFI
In this case study, we target CsCFI on nginx. As described in §5,
to bypass CsCFI’s write constraint (Segr), we look for callsites con-
trollable from a segregated (connection-specific) state. We (1) open
a connection c1 to prepare its memory state, (2) flush the branch
history by sending n parallel requests over another connection c2
(disabling CsCFI’s protection), and finally (3) send a request over
connection c1 to divert control flow from a C1-controlled callsite.

As shown in Table 3, Newton provides us with two candidate
callsites to bypass CsCFI (those with the Segr column checked).We
select callsite 33 in the function ngx_http_write_filter:

chain = c->send_chain(c, r->out, limit);

Here, c is a pointer to our connection state (ngx_connection_t),
which contains a code pointer called send_chain. Clearly, the con-
nection state and code pointers stored therein are isolated from
other connections. Other than send_chain and c itself (first argu-
ment), Newton also reports that the second r->out argument is
tainted and controllable from corrupted connection-specific state.

With manual inspection, we verified that (1) controlling the tar-
get and arguments with an arbitrary memory write to segregated
state allows request handling to complete without crashes, (2) we
also control the third argument by controlling the limit_rate
and limit_rate_after configuration variables and flipping a sin-
gle (uncovered) branch in the execution, and (3) execution contin-
ues correctly if the send_chain call is diverted to a different tar-
get returning a 0 value, allowing us to chain successful calls via
repeated interactions with the server.

Newton also provides us with a list of all the possible 4592
targets (no target constraints) for our selected callsite. We target
mprotect to escalate code reuse to a code corruption attack. This
function expects three arguments: (1) the start address of the af-
fected memory region, (2) the size of the region, and (3) the protec-
tion flags.

To select the start address, we overwrite the c pointer and re-
point it to a counterfeit object prepared with identical connection
state in a memory location of our choosing. To select the protec-
tion flags, we overwrite the limit_rate_after variable to ensure
the final limit computation has the PROT_READ|WRITE|EXEC bits
set in the lowest byte. To select the size, we need to redirect the
r->out pointer to a value of our choosing. However, it is chal-
lenging to enforce a small r->out pointer value, since the lower
part of the address space is not normally mapped. To address this
challenge, we aim for a large mprotect surface, spanning from
the heap (i.e., the controlled c pointer) all the way to libc code.
The latter is the next region in line in the address space, only sep-
arated from the heap by a single unmapped gap. To fill the gap,
we use a preliminary request to redirect control to libc’s malloc
without worrying about its argument—since this is a pointer, call-
ing malloc will result in a large allocation, adjacent to libc in our
setting.

At this point, we safely hijack our victim callsite to call mprotect
and make the (now larger) heap and the entire libc code read-
able, writeable, and executable. Once mprotect succeeds, we issue
another request to corrupt libc’s gettimeofday function with
our own shellcode. The shellcode runs when nginx processes the
next request, giving us arbitrary code execution. Figure 4 shows
an overview of the attack.

Evidently, even a state-of-the-art defense like CsCFI alone is
not sufficient to stop an attacker armed with dynamic analysis.
Instead, to limit the power of these attacks, we must carefully
combine context-sensitive CFI with traditional CFI or other de-
fenses. Note that state-of-the-art binary-level CFI policies based
on argument/return count matching (TypeArmor) cannot prevent
our mprotect hijacking attack, given that the callsite is diverted
with a compatible function signature. Thus, stronger static (e.g.,
Src types) or dynamic (e.g., Live) target or write constraints that
protect pointer corruption (e.g., CPI’s ¬Ptr) are necessary.

To confirm the real-world applicability of Newton, we suc-
cessfully implemented the above attack in practice. Using gdb to

mimic an attacker’s arbitrary read and write memory primitive,
we recorded a video that shows how one can use our attack to
mark libc memory pages as readable, writable, and executable.
The video, accompanied with annoted details, is available on our
project webpage.3

7.2 CPI
In this case study, we target CPI on nginx. CPI enforces a ¬Ptr
write constraint, protecting code and data pointers. Thus, we use
Newton’s results in Table 3 to find callsites tainted by a non-
pointer value, and select callsite 32. The callsite is in the function
ngx_http_get_indexed_variable, and selects its callee from
an array of structures with function pointers, as follows:

v[index].get_handler(r, &r->variables[index],
v[index].data)

Newton’s output pinpoints the taint source that we need to cor-
rupt to control the get_handler function pointer: the data field
in an ngx_http_log_op_s structure. It is worth noting how little
effort it takes to find this dependency with Newton, as inspecting
the source code reveals a complex data flow. The tainted data flows
through multiple nginx-specific data structures and functions—
none of which our low-effort attacker needs to know.

Newton also reveals that the taint source for the three ar-
guments (Table 3) are all tainted by a non-pointer value. The
last argument is controllable via the tainted index. The first
two arguments are controllable by corrupting the allocator state
much earlier in the execution. For example, the taint of the first
ngx_http_request_t* argument originates 11 functions ear-
lier in the execution, in ngx_http_process_request_headers.
Again, Newton hides this complexity from the user.

With simple manual inspection, we also found that (1) the re-
quest data pointed to by the first argument is controllable by send-
ing an incomplete HTTP request (which we complete later to trig-
ger the exploit), (2) controlling the target and arguments with an
arbitrary memory write allows request handling to complete with-
out crashes, and (3) execution continues if the get_handler call
is diverted to a different target, making it possible to chain calls
via repeated interactions with the server.

Other than information on how to effect an arbitrary memory
write and divert control flow, Newton also provides us with a list
of the 767 usable targets stored in memory. This reflects CPI’s Live
target constraint. A complication is that we only control the index
into the v array of ngx_http_variable_t structures. Since each
structure contains 6 word-sized fields, only 1/6 of memory can be
used to select live code pointer targets. Fortunately, this alignment
restriction is bypassable using memory massaging (on the heap,
stack, etc.) [11]. Moreover, Newton found the address of dlopen
live in memory, allowing us to load arbitrary shared objects on the
victim system and expand the set of available live targets.

For example, if we call dlopen on “/bin/ed” or other shared
objects which use the system library call, we force the linker
to bind the system code pointer in memory (GOT). This is eas-
ier after corrupting the linker configuration (LD_LIBRARY_PATH,
LD_BIND_NOW). At that point, we again corrupt the index integer
to redirect get_handler to the newly created live code pointer.
3https://vusec.net/projects/newton

https://vusec.net/projects/newton

Figure 4: Chaining malloc and mprotect in nginx to make libc code pages writable, using the callsite c->send_chain(c,
r->out, limit). This figure illustrates memory layout and key variables of the nginx process before, during, and after
our attack against CsCFI.
We first overwrite the send_chain code pointer in c with the address of malloc. Since the callsite uses the address of c as first
argument, this results in a 0x565fe958B = 1.3 GB allocation, adjacent to libc code.We then overwrite the same code pointer with the
address of mprotect and construct a counterfeit c structure at a convenient location: knowing that the value of r->outwill be the len
argument for mprotect(void *addr, size_t len, int prot), we place c at libc−r->out, i.e., 0xf7eb6000−0x565f3320 =
0xa18c2000 (rounded to the page boundary). To make nginx use our counterfeit object, we must also update the data pointer in
the relevant ngx_event_t *rev structure. By using partial HTTP requests, we divide a single control-flow diversion into multiple
steps: (1) open a connection c1 and send a partial request; (2) use the arbitrary memory read/write primitive to corrupt the connection
state of c1, e.g., overwrite the send_chain code pointer; (3) open connections c2 . . . cn to perform n HTTP requests in parallel to flush
CsCFI history, i.e., recorded branches that set send_chain to ngx_sendfile_chain are pruned from memory, (4) finish the partial
request of c1, triggering the control-flow diversion while CsCFI is unable to find in which context the overwritten code pointer was
originally set.

Subsequently, we send another request to chain an invocation of
the (now live) system library call, allowing us to execute arbitrary
commands on the victim system. To “massage” the GOT to obtain
a correctly aligned system code pointer, we carefully choose the
system-dependent shared object to load.

We note that, other than CPI, the above attack bypasses all the
defenses in the bottom-left quadrant marked by the <¬Ptr, Live>
data point in Figure 2, including CCFI, TASR, PtrRR, XoM, and Ty-
peArmor. Thus, an important lesson learned is that we must com-
bine CPI with other strong defenses to further limit the attack sur-
face. CPI combined with a secure implementation of CsCFI, for in-
stance, would prevent us from controlling callsite 32.

When crafting the above attack in practice, we found that GNU
libc enforces strict constraints on the flags provided to dlopen:
unused bits should be zero, or else an error is returned.4 This limits
our attack, as it means that index should now be chosen such that
the address of r->variables[index] is a valid flag for dlopen
(e.g., RTLD_NOW), while v[index].get_handler still points to
dlopen. Successful exploitation thus depends on the libc version.
Musl libc, for example, does not enforce these constraints. Run-
ning nginx with musl libc, however, voids dlopen pointers in
memory. Instead, we found code pointers to many functions of the
exec() family, opening alternative ways for bypassing CPI.
4https://sourceware.org/git/?p=glibc.git;h=3e539cb47e9fabfdda295926b4270b0f...

https://sourceware.org/git/?p=glibc.git;h=3e539cb47e9fabfdda295926b4270b0f3cc7fa65

8 RELATEDWORK
Aswe already discussed code-reuse defenses at length in the paper,
this section discusses the literature on code-reuse attacks only.

Return-into-libc (ret2libc) [25] represents the first generation
of code-reuse attacks. Traditionally targeting the 32-bit x86 ISA,
ret2libc uses a memory corruption vulnerability to inject a return
address on the stack pointing to an existing (libc) function, fol-
lowed by function arguments. Thus, a subsequent ret instruction
transfers control to the prepared function, essentially thwarting
DEP [2]. By preparing multiple call frames, function calls can be
chained. On the x86-64 architecture, most function arguments are
passed in CPU registers, making ret2libc more challenging.

Return-Oriented Programming (ROP) [57] generalizes ret2libc,
and is now the de-facto standard in real-world code-reuse attacks.
ROP also manipulates the stack, but doesn’t chain complete func-
tions. Instead, ROP uses small code fragments ending in return
instructions, called gadgets. ROP is an extremely potent attack
technique, which allows attackers to implement arbitrary Turing-
complete computations in most practical programs [60].

The initial ROP attack signaled the start of an arms race around
a third-generation of code-reuse attacks. Several defense tech-
niques were developed, only to be shown susceptible to improved
code-reuse attacks. Jump-Oriented Programming (JOP) [9] bypasses
some execution monitoring defenses [24] and Counterfeit Object-
Oriented Programming (COOP) [59] and related attacks [13, 14, 23,
27, 32, 33] bypass many existing Control-Flow Integrity (CFI) [1]-
based defenses. Finally, other attacks such as JIT ROP [22, 63],
SROP [10], and AOCR [58] bypass information hiding defenses,
including leakage-resistant variants [58]. The “gadget-stitching”
model extends even beyond code reuse, also adopted by state-of-
the-art techniques to craft data-only attacks [37, 38]. Note that al-
though these recent efforts on Data-Oriented Programming (DOP)
show similar weaknesses in modern defenses as outlined in this
paper, a key difference is that most of those defenses were never
designed to mitigate data-only attacks. Attacks crafted with New-
ton, on the other hand, fall within the defenses’ threat models.

Although the way Newton finds gadgets shows some similar-
ity to how ACICS gadgets are found [27], the latter are more con-
strained: only attacks where the function pointer and arguments
are directly corruptible on the heap or in global memory are con-
sidered. As shown in §7,Newton finds more sophisticated attacks,
where these elements may be corrupted in complex, indirect ways.

The focus on (manual or automatic) static analysis makes code
reuse increasingly complex given increasingly sophisticated de-
fenses. With Newton, we show that a switch to a simple and nat-
ural dynamic analysis approach significantly simplifies the discov-
ery and stitching of gadgets, even in the face of state-of-the-art
defenses. Moreover, we argue that ret2libc-style attacks on 64-bit
architectures are not only practical, but also much easier, if an at-
tacker piggybacks on the benign data flows of the application.

9 CONCLUSION
The “geometry” of innocent flesh on the bone has characterized
ten years of code-reuse research: an attacker statically analyzes
binary code to find gadgets, chains them together, and “calls” into

security-sensitive syscalls. This model is simple to understand, but
scales poorly as we assume increasingly sophisticated defenses.

In this paper, we showed that, by also considering the “dy-
namics” of innocent flesh on the bone, even a low-effort attacker
can easily find useful defense-aware gadgets to craft practical at-
tacks. We implemented Newton, a gadget-discovery framework
based on simple static and dynamic (taint) analysis. Using New-
ton, we found gadgets compatible with state-of-the-art defenses
in many real-world programs. We also presented an nginx case
study, showing that aNewton-armed attacker can find useful gad-
gets and craft attacks that comply with the restrictions of strong
defenses such as CPI and context-sensitive CFI.

Our effort ultimately shows that, to sufficiently reduce the at-
tack surface against a dynamic attack model, we must combine
multiple state-of-the-art code-reuse defenses or, alternatively, de-
ploy more heavyweight defenses at the cost of higher overhead.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments
and input to improve the paper. This work was supported by the
Netherlands Organisation for Scientific Research through grants
NWO 639.023.309 VICI “Dowsing” and NWOCSI-DHS 628.001.021,
and by the European Commission through project H2020 ICT-32-
2014 “SHARCS” under Grant Agreement No. 644571.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow

Integrity. In CCS.
[2] S. Andersen and V. Abella. Changes to Functionality in Microsoft Windows

XP Service Pack 2, Part 3: Memory Protection Technologies, Data Execution
Prevention. (2004). http://technet.microsoft.com/en-us/library/bb457155.aspx.

[3] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-
berger, and Jannik Pewny. 2014. You Can Run but You Can’t Read: Preventing
Disclosure Exploits in Executable Code. In CCS.

[4] Michael Backes and Stefan Nürnberger. 2014. Oxymoron: Making Fine-Grained
Memory Randomization Practical by Allowing Code Sharing. In USENIX SEC.

[5] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. 2003. Address Obfuscation:
An Efficient Approach to Combat a Broad Range of Memory Error Exploits. In
USENIX SEC.

[6] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. 2005. Efficient Techniques
for Comprehensive Protection from Memory Error Exploits. In USENIX SEC.

[7] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely Rerandomization for Mitigating Memory Disclosures. In
CCS.

[8] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking Blind. In S&P.

[9] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-
Oriented Programming: A New Class of Code-Reuse Attack. In ASIACCS.

[10] Erik Bosman and Herbert Bos. 2014. Framing Signals—A Return to Portable
Shellcode. In S&P.

[11] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2016. Dedup
Est Machina: Memory Deduplication as an Advanced Exploitation Vector. In
S&P.

[12] Kjell Braden, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2016. Leakage-Resilient Layout Random-
ization for Mobile Devices. In NDSS.

[13] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity. In USENIX SEC.

[14] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In USENIX SEC.

[15] Xi Chen, Herbert Bos, and Cristiano Giuffrida. 2017. CodeArmor: Virtualizing
the Code Space to Counter Disclosure Attacks. In EuroS&P.

[16] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H. Deng.
2014. ROPecker: A Generic and Practical Approach For Defending Against ROP
Attacks. In NDSS.

[17] Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Kop-
pen, Per Larsen, Christopher Liebchen, Mike Perry, and Ahmad-Reza Sadeghi.

http://technet.microsoft.com/en-us/library/bb457155.aspx

2016. Selfrando: Securing the Tor Browser against De-anonymization Exploits.
In PETS.

[18] Stephen Crane, Andrei Homescu, and Per Larsen. 2016. Code Randomization:
Haven’t We Solved This Problem Yet?. In SecDev.

[19] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stephan Brunthaler, and Michael Franz. 2015. Readactor:
Practical Code Randomization Resilient to Memory Disclosure. In S&P.

[20] Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,
Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael
Franz. 2015. It’s a TRaP: Table Randomization and Protection against Function-
Reuse Attacks. In CCS.

[21] Thurston H.Y. Dang, PetrosManiatis, and DavidWagner. 2015. The Performance
Cost of Shadow Stacks and Stack Canaries. In ASIACCS.

[22] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and
Fabian Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-
Time) Return-Oriented Programming. In NDSS.

[23] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection. In USENIX SEC.

[24] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2009. Dynamic
Integrity Measurement and Attestation: Towards Defense Against Return-
oriented Programming Attacks. In ACM STC.

[25] Solar Designer. Return-to-libc attack. BugTraq. (Aug. 1997).
[26] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany

Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. 2015. Missing the Point(er): On the Effectiveness of Code Pointer In-
tegrity. In S&P.

[27] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin C. Ri-
nard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu:
On the Weaknesses of Fine-Grained Control Flow Integrity. In CCS.

[28] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding Control
Flows Using Intel Processor Trace. In ASPLOS.

[29] Jason Gionta, William Enck, and Per Larsen. 2016. Preventing Kernel Code-
Reuse Attacks Through Disclosure Resistant Code Diversification. In CNS.

[30] Jason Gionta, William Enck, and Peng Ning. 2015. HideM: Protecting the Con-
tents of Userspace Memory in the Face of Disclosure Vulnerabilities. In CO-
DASPY.

[31] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2012. Enhanced
Operating System Security Through Efficient and Fine-grained Address Space
Randomization. In USENIX SEC.

[32] Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
2014. Out Of Control: Overcoming Control-Flow Integrity. In S&P.

[33] Enes Goktas, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and
Georgios Portokalidis. 2014. Size DoesMatter:Why Using Gadget-Chain Length
to Prevent Code-Reuse Attacks is Hard. In USENIX SEC.

[34] Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhiqiang Lin. 2017. PT-CFI:
Transparent Backward-Edge Control Flow Violation Detection Using Intel Pro-
cessor Trace. In CODASPY.

[35] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. David-
son. 2012. ILR: Where’D My Gadgets Go?. In S&P.

[36] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael
Franz. 2013. Profile-guided Automated Software Diversity. In CGO.

[37] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic Generation of Data-Oriented Exploits. In USENIX SEC.

[38] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-Oriented Programming: On the Expressiveness
of Non-Control Data Attacks. In S&P.

[39] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. 2012. libdft: Practical Dynamic Data Flow Tracking for Commod-
ity Systems. In VEE.

[40] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and PengNing. 2006.
Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomiza-
tion of Commodity Software. In ACSAC.

[41] Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and Effi-
cient Multi-Variant Execution Using Hardware-assisted Process Virtualization.
In DSN.

[42] Hyungjoon Koo andMichalis Polychronakis. 2016. Juggling the Gadgets: Binary-
level Code Randomization Using Instruction Displacement. In ASIACCS.

[43] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In OSDI.

[44] Yutao Liu, Peitao Shi, XinranWang, Haibo Chen, Binyu Zang, andHaibing Guan.
2017. Transparent and Efficient CFI Enforcement with Intel Processor Trace. In
HPCA.

[45] Kangjie Lu, Stefan Nürnberger, Michael Backes, and Wenke Lee. 2016. How to
make ASLR win the Clone Wars: Runtime Re-Randomization. In NDSS.

[46] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim,
and Wenke Lee. 2015. ASLR-Guard: Stopping Address Space Leakage for Code

Reuse Attacks. In CCS.
[47] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015.

CCFI: Cryptographically Enforced Control Flow Integrity. In CCS.
[48] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.

2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for
C. In PLDI.

[49] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. In ISMM.

[50] Ben Niu and Gang Tan. 2014. Modular Control-Flow Integrity. In PLDI.
[51] Ben Niu and Gang Tan. 2015. Per-Input Control-Flow Integrity. In CCS.
[52] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano

Giuffrida. 2016. Poking Holes in Information Hiding. In USENIX SEC.
[53] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smash-

ing the Gadgets: Hindering Return-Oriented Programming Using In-place Code
Randomization. In S&P.

[54] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2013. Trans-
parent ROP Exploit Mitigation Using Indirect Branch Tracing. In USENIX SEC.

[55] PaX Team. Address Space Layout Randomization (ASLR). (2003). pax.grsecurity.
net/docs/aslr.txt.

[56] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychron-
akis, and Vasileios P. Kemerlis. 2017. kRˆX: Comprehensive Kernel Protection
against Just-In-Time Code Reuse. In EuroSys.

[57] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-
Oriented Programming: Systems, Languages, and Applications. TISSEC 15, 1
(2012).

[58] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,
Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,
Ahmad-Reza Sadeghi, andHamedOkhravi. 2017. Address Oblivious Code Reuse:
On the Effectiveness of Leakage Resilient Diversity. In NDSS.

[59] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-Oriented Program-
ming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applications.
In S&P.

[60] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2011. Q: Exploit
Hardening Made Easy. In USENIX SEC.

[61] Jeff Seibert, HamedOkhravi, and Eric Söderström. 2014. Information LeaksWith-
out Memory Disclosures: Remote Side Channel Attacks on Diversified Code. In
CCS.

[62] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86). In CCS.

[63] Kevin Z. Snow, FabianMonrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout Randomization. In S&P.

[64] Mingshen Sun, John C. S. Lui, and Yajin Zhou. 2016. Blender: Self-Randomizing
Address Space Layout for Android Apps. In RAID.

[65] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte:
Thwarting Memory Disclosure Attacks Using Destructive Code Reads. In CCS.

[66] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Er-
lingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX SEC.

[67] Victor van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-
sensitive CFI. In CCS.

[68] Victor van der Veen, Enes Göktaş, Moritz Contag, Andre Pawloski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks At The
Binary Level. In S&P.

[69] Stijn Volckaert, Bart Coppens, and Bjorn de Sutter. 2015. Cloning Your Gadgets:
Complete ROP Attack Immunity with Multi-Variant Execution. In TDSC.

[70] Zhe Wang, Chenggang Wu, Jianjun Li, Yuanming Lai, Xiangyu Zhang, Wei-
Chung Hsu, and Yueqiang Cheng. 2017. ReRanz: A Light-Weight Virtual Ma-
chine to Mitigate Memory Disclosure Attacks. In VEE.

[71] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.
Binary Stirring: Self-Randomizing Instruction Addresses of Legacy x86 Binary
Code. In CCS.

[72] Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z. Snow,
FabianMonrose, andMichalis Polychronakis. 2016. No-Execute-After-Read: Pre-
venting Code Disclosure in Commodity Software. In ASIACCS.

[73] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code Re-
Randomization. In OSDI.

[74] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and
Randomization for Binary Executables. In S&P.

[75] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries.
In USENIX SEC.

pax.grsecurity.net/docs/aslr.txt
pax.grsecurity.net/docs/aslr.txt

	Abstract
	1 Introduction
	2 Threat Model
	3 Overview of Code-reuse Defenses
	4 Overview of *
	4.1 Constraints
	4.2 Write Constraint Manager
	4.3 Target Constraint Manager
	4.4 Command Manager

	5 Mapping Defenses in *
	5.1 Deriving Constraints
	5.2 Implementation

	6 Evaluation
	6.1 In-Depth Analysis of nginx
	6.2 Generalized Results

	7 Constructing Attacks With *
	7.1 CsCFI
	7.2 CPI

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

