Closed Categories and Categorial Grammar

Daniel J. Dougherty
Wesleyan University

Middletown, CT 06459
ddougherty@eagle.wesleyan.edu

Abstract

Inspired by Lambek’s work on categorial grammar, we examine the proposal that
the theory of biclosed monoidal categories can serve as a foundation for a formal theory
of natural language. The emphasis throughout is on the derivation of the axioms for
these categories from linguistic intuitions. When Montague’s principle that there is a
homomorphism between syntax and semantics 1s refined to the principle that meaning
is a functor between a syntax-category and a semantics-category, the fundamental
properties of biclosed categories induce a rudimentary computationally oriented theory
of language.

1 Introduction

This paper presents some preliminary steps in an approach to natural language via category
theory. The proposal will be a conservative one in the sense that we work within the
tradition of interpreting meanings of phrases as mappings, but the difference here is that
we do not assume more than that — in particular, meanings need not be standard set-
theoretic functions. In fact, the goal is to try to isolate the consequences of a weak claim
about language (that meanings behave like functions), by working in the most general theory
of functions — category theory. Issues of intensionality will not be addressed, but we do
not feel that this is an essential restriction on the approach.

Some of the novelties of this setting are :

e Types are considered as syntactic entities, eligible for semantic interpretation. This
allows a model-theoretic analysis of type shifting.

e The general character of the theory is computational and algebraic, rather than set
theoretic.

e The goal is not an explication of what meanings are, but rather, how they behave.

Our paper attempts to show how one might discover categories for language by working
from semantic intuitions, and further motivates the approach on methodological grounds
(see the discussion of “model-theoretic semantics” below). In this way, we attempt to
consolidate the seminal insights of Lambek and Montague [15], [16]. Montague’s program
for model-theoretic semantics is an active area of investigation ([7] is an introduction).

The work described here was done in 1986, inspired by the early ideas of Lambek on
categorial grammar [9], [10] and the resurrection and development of these ideas by van
Benthem ([5] for example), but independently of [13] (the record of a 1985 conference),
in which Professor Lambek makes essentially the same proposal. The presentations there
focus on a syntactic calculus, whereas we concentrate here on categories as a foundation
for interpretation. Needless to say, the connection between the two is well-known to
Professor Lambek, as the originator of the notion that cartesian closed categories and typed
lambda-calculi are the same subject ([11], [12]). Nevertheless, we were persuaded that it is
worthwhile to present this account, which discovers closed categories by working directly
from the linguistic data, and emphasizes the model-theoretic consequences of the approach.

Lambek’s calculus describes a natural class of syntactic type-computations. The ideas
underlying this calculus have found application in the work of Ades and Steedman [1],
Partee and Rooth [19], Bach [3] and others.

We need to confront some unfortunate clashes of terminology between category theory
and categorial grammar. The term “category” will always have its mathematical meaning
[17], while “syntactic category” will be used to denote NP, VP, or their categorial grammar
correlates. Fortunately, category theorists say “categorical”, while linguists say “categorial”
— this will help.

The abstraction of type b over type a will be denoted by (b/a) (right-searching), (a\b)
(left-searching) , or (a,b) (in an undirected system).

Montague’s treatment of semantics is commonly described as “model theoretic”, but this
is true only in a weak sense. In that treatment, phrases take their meanings in objects
in the hierarchy of function spaces constructed over a set of basic types. But note that
once the sets interpreting the basic types are chosen, everything else (the nature of the
function spaces, the available mappings between them, etc.) is determined by set theory.
Thus, of those facts which are common to all Montague interpretations, there is no way to
distinguish implicit language universals from accidents of set theory. Indeed, given that one
of the features of an avowed model-theoretic semantics is that “true in all models” equals
“true about language”, embracing a strict set-theoretic framework amounts to a claim that
accidents of set theory are language universals.

As an example, note that in every Montague interpretation, the cardinality of the set F
of entities is strictly less than that of the set P = {p|p : E — {0, 1}} of intransitive verb
phrase denotations, which is in turn strictly less than that of the set {g|g : P — {0,1}} of
generalized quantifier denotations. This is not motivated by any linguistic intuition, as far

as we know. Of course, the type assignments leading to the above are subject to dispute,
but the point here is that if all models are function hierarchies, a choice of type has as a
side effect an assertion about cardinalities.

Another drawback to a restricted notion of “model” is that it prevents us from defining
certain notions model-theoretically. Type-lifting is an example. In order to reflect the
similar syntactic behavior of proper names and quantified noun phrases, Montague assigned
the same type to these classes in the lexicon. This treatment is justified by the observation
that elements of a set F naturally give rise to (principal) ultrafilters. Similarly, the Geach
Rule: “raise phrases of type (a,b) to type ((c,a), (¢,b))” is justified by the canonical lifting
of a function f in (A, B) to the function compose—with—f in ((C, A), (C, B)).

But in every Montague interpretation, there will be (lots of very non-canonical!) functions
from (A, B) to ((A,C), (B,C)). Why then don’t we agree to raise phrases of type (a,b) to,
for example, ((a,c), (b,¢))? The pre-theoretic answer is, “because there is no natural way
to interpret such a shift”. Lambek’s calculus provides a proof theoretic answer — it is not
derivable in the system.

A properly model-theoretic answer will define the notion of “valid” type shift as one which
obtains in all models, and reject the shift proposed above since there are models which
provide counterexamples. For us, these models will be closed categories, and the type-shifts
will be arrows in such categories. The Completeness Theorem hinted at in the last section
tells us that that these answers agree — the Lambek calculus generates precisely the valid
shifts.

The categories presented in the present paper will not have enough structure to reflect
the subtler aspects of either syntax or semantics, but they do provide a natural, flexible
interpretation of abstraction, application, type-lifting, and the like. Qur claim is that
categories for language should have at least the structure of those presented here, and that
these latter form a framework for future work.

Very little background in category theory is assumed; all of the definitions and results
about categories are standard, and proofs are omitted. In the context of categories we treat
the words “map” and “arrow” as synonymous. | owe a debt to F.E.J. Linton for many
discussions about category theory: errors or infelicities below are probably things we didn’t
talk about, and are certainly my responsibility.

2 Closed Categories

In this section we try to motivate the ingredients that should go into a categorical treatment
of grammar and of meaning, and arrive at the notion of closed category, essentially due to
Eilenberg and Kelly [8].

The fundamental assumption is Frege’s compositionality principle. It is helpful to construe
this as two assertions:

e Phrase meanings operate on phrase meanings.

e The meaning of a compound phrase is derived from the meanings of its parts and the
syntactic structure of the phrase.

The first assertion, innocently interpreted, leads to the doctrine:
“types denote sets and meanings are functions on these sets”.

We want to avoid jumping to such a conclusion, for the reasons discussed in the introduction,
and suggest the more general strategy:

“types stand for objects in a category and meanings are arrows”.

This is a constraint on semantics. When we embrace that aspect of Montague’s methodology
which proposes that meaning is a homomorphism from syntax to semantics [15] we commit
ourselves to the idea that syntax is a category as well.

So far, the outline of the categorical approach to categorial syntax is as follows. Types
are objects (a, b, c,..) in a category, phrases are arrows, and complex phrases are built by
composition. The first step is to uncover the nature of these categories. The data for the
syntax-categories we define will reflect the combinatorial principles of categorial grammar,
and the semantics-categories, where meaning computations are done, will need to have
enough structure to interpret the arrows of the syntax.

Ajdukiewicz’s original system of categorial grammar [2] had undirected exponential types
(a,b). Bar-Hillel [4] introduced directionality of the functions, allowing the syntax to forbid
transposition of elements. The use of undirected functional types is sometimes presented
as a simplifying assumption (e.g., in [5]) allowing a focus on mechanics of type shifting
rather than syntax. For Ades and Steedman [1] it reflects a claim that richer modes of
combination can free the grammar from consideration of order. We want to be as sensitive
to the syntax as possible, and do not want to build a claim such as Ades and Steedman’s
into the foundations, and so our syntax-categories will be general enough to encompass each
of these points of view.

Categorial grammar is a grammar of typed function application. Any such system has
a two-layered syntax, since there are rules for constructing types as well as for building
terms, the utterances of the language. (For example, the pure typed lambda calculus builds
types exclusively with an exponentiation operator, while richer versions allow product types,
sums, and even quantification.) We first describe the nature of the objects in our categories,
then discuss the arrows.

The first part of the functionality principle requires that meanings play two roles; they
must behave like functions and like inputs. Categorically, this means that for objects a
and b, the set of all arrows from ¢ to b must also appear, in some sense, as an object.
This latter property is precisely what the definition of “closed category” (Definition 2.1
below) is intended to capture. This requirement is met by function spaces in the category
SET upon which Montague-style semantics is founded — exponentiation is function-space
construction. (Note that even though SET doesn’t distinguish between the interpretations
of a\b and b/a, categorial syntaz does.)

Turning to the second of Frege’s principles, a few words are in order about the notion
“syntactic structure of the phrase”. Pure categorial grammar uses only the exponentiation
operators \ and / (or perhaps a single symmetric operator) on types, and concatenation
in the term syntax. It is natural to introduce a pairing operator into the type syntax, to
construct a type for a pair of lexical items, (such an operator has been profitably added to
the lambda calculus, for example). After all, the syntax should be able to find a place for the
pair af as a phrase composed of items of types @ and b. Thus the objects of our categories
should be subject to a pairing operation. This signals a shift to monoidal categories. It
would be misleading to call the operation a product, as will be seen later.

Ajdukiewicz’s categorial grammar, which allows only simple application in its semantic
component, could do without pairing in its syntax since two constituents of types, say a
and (a\b), are always immediately combined, and always in the same way. For us, the
most significant consequence of the introduction of pairing will be that application can be
represented as an operation in the system, specifically as an arrow in the syntax category,
out of a pair made from types such as @ and (a\b).

When we look ahead to interpreting the types and phrases in a semantics-category, we can
see that in fact the operators *, \, and / should actually be functors, that is, that they
induce operations on arrows as well. Consider * first. Suppose f : a—a’ and ¢ : b—b' are
phrases. The map f is an indication that there is a computation from meanings of phrases
of type a to meanings of phrases of type a’, and similarly for g. The meaning of the map
(f * g) can be thought of simply as the joint computation. Functoriality requires that this
pairing respects composition. This is nothing more than a weak version of compositionality
(in this instance the confluence of mathematics and linguistics jargon is felicitous).

Exponentiations should naturally extend to functors as well, that are, in a/b and b\a,
contravariant in the argument b and covariant in a. This means that for f : b—a and
g : c—d there is an arrow (f\g) from (a\c) to (b\d), and an arrow (g/ f)from (c/a) to (d/b).
The construction corresponds to the following intuition. Suppose phrases of type b can shift
to type a and that type c shifts to d. Then a phrase v of type (a\c) can be thought of as
also belonging to type (b\d) : when such a phrase is presented with a type b item, that item
can be promoted to type a, then ~ is applied, then the type ¢ result shifted to type d.

It is convenient to recognize the empty string as the identity element for pairing. This should
live in some type: let 1 denote the categorical object interpreting that type. Intuitively, we
think of the empty string as being the only inhabitant of that type, but all that is required
is that the object 1 serve as the identity for object pairing.

The final piece of data to go into the definition of closed category reflects the insight that
led to Lambek’s revival and generalization of Ajdukiewicz’s original categorial grammar.
We motivate it here by an example in the category of sets. Suppose h is a function of two
variables, from X X Y into A. Then for a fixed y in Y one can define a function A, from X
to A, defined by hy(z) = h(z,y). We have just described a process (a function) by which
elements of Y yield functions from X to A. The process itself depended on A, and it is
traditionally called curry(h) after the logician Haskell Curry.

Definition 2.1 [Eilenberg and Kelly (1965)]

A biclosed monoidal category (or simply closed category) C is a category with the following
data:

Pairing: a functor from C x C to C,
mapping X, Y to (X xY),

Exponentiation: two functors from C°? x C to C,
mapping X, Y to (X=Y), and X,Y to (Y<=X), respectively,

Unit: an object 1, and for each X, two isomorphisms :
lux : (1 + X)—X, and rux : (X *1)—X.

Adjointness: a collection of natural isomorphisms :
curryxy,4: Hom(X «Y, A) =2 Hom(Y, (X=A)), and
curryy y 4 : Hom(X *Y, A) = Hom(X, (A<Y)).

As a first application of the axioms, consider the adjointness
Hom(X xY,A) = Hom(Y, X=A)
and set Y equal to (X=A). The conclusion is that
Hom(X * (X=A),A) = Hom((X=A4), (X=A4)).

But the second Hom-set always has the identity map in it, so we conclude that there is
always a map in Hom(X * (X=A4), A), and a special one at that, since it corresponds to
an identity under a natural isomorphism. We shall call this map appx 4. Clearly we could
play the same game using the other adjointness, and we would derive a map app’XA from

(A=X)* X to A.

We can begin to support the claim that the objects (X=-A) “behave like” function spaces.
In the category of sets, each app is indeed application, and, when £ is a function from X xY
to A and curry(h) maps Y to the function-space X = A, the application operator undoes
the currying. This situation is faithfully reflected in any closed category:

Proposition 2.2 (Universality of app and app’) For each two objects X and A in a
closed category, there are maps

o appx.4: X ¥ (X=A)—A, and

o apply 41 (AEX) x X—=A,
which are unique with respect to the following properties (respectively):

o for every h: (X xY)—A,appo(idx * curry(h)) = h, and

o for every h: (X xY)—=A, app’o (curry’(h) xidx) = h .

As it happens, the property above is equivalent to adjointness, and so could have been taken
as the key defining property of closed categories.

Another interesting map is determined if one returns to the Hom-set equation and
substitutes (X *Y) for A. We leave this to the reader.

Definition 2.3 A closed category is

associative if it has a collection of natural isomorphisms:

assoca g (Ax (BxC))—((A*B) (), and

symmetric if it has a collection of natural isomorphisms:
symu g : (A% B)—(B x A).

All of the data above is subject to a COHERENCE restriction, which means that all reasonable
diagrams involving the maps defined above commute [17].

Lemma 2.4 In a symmetric closed category, there are natural isomorphisms

absymxy : (X=Y)—=(Y<X).

It follows that in a symmetric closed category any maps to or from some (X=Y) induce
maps to or from (Y <X), by composing with absym or its inverse. So an undirected system
can be thought of as a choice of one of the operators, say = , and an automatic translation
of any computation involving < into one involving = . An undirected type syntaz is the
reflection of such a decision; the symmetry is advertised by notation such as (z,y).

The issue of associativity is related to the methodological question of whether the input
to the semantic component is considered to be an unstructured string or a syntax tree. It
turns out that associativity is needed in order to have a composition arrow from objects
(A=B) and (B=(C)) to (A=C). This latter is the embodiment of a proposal made by
several authors (for example, Ades and Steedman’s Forward Partial Combination).

Examples. Each of the following is a symmetric associative closed category.

e SFET, the category of sets and functions between them.

o CAT, the category of all small categories (those with only a set’s worth of objects
and maps), with functors between them.

e CL, the category of complete lattices and complete lattice homomorphisms. This
suggests the intriguing possibility of using Scott domains for natural language
semantics. Related examples include the category of Boolean algebras and the
category of Heyting algebras. Keenan and Faltz [14] have made a proposal making
extensive use of Boolean-algebraic models.

e Generalizing all of the above, any cartesian closed category satisfies Definition 2.1. In
fact, the categories of Definition 2.1 will fail to be cartesian closed just when pairing is
not a categorical product. This generality is crucial for categories which are to serve
for syntax, as will be seen in the next section.

e The example which has been the motivation for this entire project is this: The types
in a lexicon serve as objects, and proofs in the Lambek calculus serve as arrows. The
rules of the Lambek calculus correspond precisely to the requirements for a closed
category.

Hom sets as objects.

We have not yet made any use of 1. In the category SET, when pairing is interpreted as
cartesian product, any one-element set can serve as 1; let us assume one has been fixed.
Now note that arrows from 1 to a set S pick out a single element of S, and indeed it is a
standard trick to identify elements in SFET with arrows from 1 . Remarkably, the axioms
for closed categories allow us do that generally, as we now show.

The fact that 1 is the identity for * generates some natural isomorphisms between Hom-sets:
Proposition 2.5 For any X and A,
Hom(X,A)= Hom(1, X=A) = Hom(1, A<=X).

This is an immediate consequence of the basic adjointness condition from Definition 2.1 and
the facts that 1 x X and X %1 are each isomorphic with X.

Notation. Suppose f: X—A, and let g : 15(X=A4) or g : 13(A<=X). Then we write
o [f:1=5(X=A), and
o f]:1-(A<X)
e \g: X—A

for the maps given by the bijections from Proposition 2.5.

From now on, the phrase “l-element of A” will mean “arrow from 1 to A.”

Now if h : X—A, then [h:1—(X=A). The sense in which the objects (X=-A) represent
the Hom-sets Hom(X, A) can now be stated :

elements of Hom (X, A) correspond to 1-elements of (X=A)

As it stands, this is pure convention. We need to go further and justify our earlier informal
claim that the exponentiation objects behave like Hom-sets, now better stated as “the
1-elements of (X=A) behave like arrows from X to A”.

Suppose z is a 1-element of X and h : X—A. Then hox is a 1-element of A. But in the
category we can use our application arrow app on the pair A and z, or more precisely, the
1-element (z * [h) of the object X x (X=-A). This also yields a 1-element of A. The next
lemma says that these will always coincide:

Proposition 2.6 lLet x:1—-X and h: X—A. Then
hox = app(x ayo(z * [h), and
hox = app’(XA)o (1h * z).

If z is a 1-element of X and A a map from X to A, then we will often think of hoz as the
result of “applying” h to z — this usage is justified by the previous lemma.

The essence of what has been abstracted from the category of sets is this very fruitful
ambiguity: we interpret types as certain objects (such as (A=-B)), but these can also be
regarded as collections of arrows (such as Hom(A, B)). Thus an individual phrase meaning
can be treated as an element (e.g., when it is input to another meaning), or as an arrow
(e.g., when it is thought of as an operator).

In the next section we show how phrases of basic types such as e, t, etc., may now be
interpreted as 1-elements of the appropriate category objects. In this way, we uniformly
treat all meanings as maps.

3 Syntax-categories

The previous section defined and attempted to motivate the kind of category structure
which seems appropriate to syntax. In this section we work out some small examples to get
a sense of the phenomena our program might cover.

Definition 3.1 Fix B, a set of base type symbols.

Typ is the set of type expressions generated from B and the constant symbol 1 by the
binary operations / and \ .

A lezicon is a set of entries of the form [« : a], where « is a lezical item and a € Typ.
e A syntax tree is a binary tree whose leaves are lexical items.

e A phrase is a syntax tree with a linear ordering on its leaves.

Some notes: The lexicon is not assumed to be a function, that is, a given « can be assigned
different types. The order on the leaves of a phrase represents the order of the words as
an utterance; it need have no relation to the tree order. The interior nodes of a phrase
are not labeled, and in particular, there are no non-terminal symbols being used. The fact
that our syntax trees are binary is a reflection of the fact that the categorical pairing is a
binary operation, and ultimately from the fact that function application, the true primitive
operation, is binary.

Example. Let B = {e,t}.

Take the lexicon L to contain the following (writing p for (e\?)):

e [John : €], [Ann : €],

e [walk : p],
e [loves: (p/e)],
o [every : ((t/p)/p)].

Both John loves Ann and Ann John walk are phrases, the significant difference being that
the only the first will be naturally associated with an arrow from 1 to ¢ in every closed
category (as we will demonstrate). This is what qualifies the former phrase to be a sentence.

Definition 3.2 Let B be given and let Lex be a lexicon over B. A syntaz-category over
Lex is a triple < C,w, it >, where

e (is a closed category,
e w is a function from B to the objects of C, and

e 4 is a function from Lex to the arrows of C, such that when [a: a] €Lex, u([a : a]) is
an arrow from 1 to w(a).

Note that since Typ is freely generated over the type symbols B, any function w from B
into a closed category C will extend uniquely to a homomorphism from all of Typ (with /
and \) to C (with < and =). The same name, w, will be used for the extension.

Example. Given a lexicon, there is a particular syntax-category which arises naturally,
called the syntax-category generated by that lexicon. The underlying closed category is,
informally, the smallest closed category containing the type symbols from B as objects, and
the objects of Lex as arrows. In the notation of the previous definition, we take w and p
each to be the identity. We call this the initial model for syntax given by the lexicon.

Using the lexicon of the previous example, let C be given, and consider the initial model for
syntax. Again writing p for (e\t), we have the following:

o 1 ([John : €]) : 1—e, and p([Ann: €]) : 1—e,

10

o u ([walk : p]): 1—p,
o 1 ([loves : p/e]) : 1—=(p/e)

e it ([every] : (t/p)/p) : 1—(t/p)/p)

and so forth.
Notation. Given a syntax category, let us call an arrow f:1 — A a term of type A.

Unfortunately, phrases of length greater than 1 will be not associated with terms without
invoking a technicality. In any closed category, if f:1—A and g : 1— B, then the paired
arrow (f * g) maps (1% 1) to (A B). Since (1 * 1) is isomorphic to 1, we naturally get
from f % ¢ a 1-element, that is, a term.

Notation. Use (f % g) to stand for the term just described.

Now we are in a position to associate with phrases an arrow out of 1, in a manner which
extends the data in the lexicon:

Definition 3.3 Let < C,w, > be a syntax-category and ¥ a phrase.
Then the term corresponding to the phrase 3, p(X), is defined by induction on the tree
underlying >

1. if ¥ is a single node, say [0 : a], then

2. if ¥ has I’ and A as its left and right subphrases, then
H(E) = (u(1) % (A)).

When a syntax-category is fixed, phrases determine terms uniquely, so we will often speak
of (for example) “the term John walks” rather than “the term corresponding to the phrase

John walks.”

Note that every string corresponds to a term, whether it yields an “interesting” arrow in the
syntax-category or not. For example the phrases shown in the example earlier are associated
with terms as follows:

e John (loves Ann) corresponds to (7 % (I x m)) , an arrow from 1 to the object
(e (((e\t)/e) x €)).

o (Ann John) walk corresponds to (m x (7 xw)), a term of type (e * (e * (e\t))).

We have not yet explained the sense in which the first phrase qualifies as a sentence and
the second “doesn’t parse”. We prefer to present this in the context of semantics, in the
next section.

11

4 Semantics as a functor

The reflection of Montague’s idea of a homomorphism between syntax and semantics in
the present setting is the notion of a functor between a syntax-category and a semantics-
category.

Definition 4.1 Let C be a syntax-category. A semantics functoris any functor 7 : C — S
from C to a closed category & which preserves the structure of Definition 2.1.

The value of an arrow in C is the image of the arrow in §.

Informally, we will refer to the image of a semantics-functor as a semantics-category. We
naturally view the image of ¢ under a semantics functor as the object of truth-values, and
will designate it T'. The value of a term will be an arrow from the 1 of the semantics-category
to T' — such arrows are the meanings in our semantics-category.

We now give some examples to indicate how computation in a semantics-category might
proceed, and in particular how some type shifting is inherent in the structure of closed
categories. Since semantics-categories are closed, they comes equipped with arrows app,
curry, etc. These are crucial in computing meanings for terms.

Some meaning computations

Consider the lexicon of the previous section, let C be the initial model for syntax, and fix a
semantics-functor for C. To simplify notation, suppose that the semantics-functor maps the
syntax-object e to semantics-object F, etc, and that term j is mapped to semantics-arrow
7, and so forth.

1) Consider John walks. The value of this term will be

Jxw:1=(E« (E=T)).
We also have appg 10(7 * w) : 1=7T. So the value of John and the value of walk combine
via application to yield a T-value.

Another construction is to consider A7, which is explicitly an arrow from E to 7. This
composes with w to yield an arrow from 1 to T. Proposition 2.5 assures us that these are
the same map.

2) Next consider (Fvery man) walks. This will have value
(vxm)*xw:1=((((T<P)<P) x P) x P),

which reduces to a 1-element of 7' by two uses of app’.

3) No type-lifting was involved the first example above. The fact that the same word
can sometimes behave as a function and sometimes as an argument, without changing
type, is built into the system. Type-lifting is available, though, in a natural way. We
present Montague’s treatment of names as an example. We have already seen that
Hom((E x (E=T),T) is not empty — it contains appg . Now by curry’, we conclude
that Hom(FE,T<(F="1T)) is not empty, in every closed category.

12

Let us denote by mont the map which is curry’(appr 1). So montog : 1—(T<(E=T)).
This is the generalized quantifier meaning of John. We calculate:

(montog) xw : 1= (T<(E=T)) * (E=T),

and so app’ immediately returns a 1-element of 7. The naturality of all of our canonical
arrows implies that this gives the same result as the first one. The use of app’ rather than
app signals the fact that after the type-shift on John, the function is on the left of its
argument.

4) Finally, look at the term introduced earlier corresponding to the string (Ann John) walk.
This will get a value which is a map from 1 to ((F'* F) * (E=T)). There is no natural map
which will interact with this. Of course one always has “non-standard models”, categories
in which there are arrows with which this phrase’s value may combine, even models in which
this phrase may be a component of a “truth value” arrow. But a string will parse correctly
as a sentence in the present conception precisely when there are maps in every model which
lead it to a truth value.

This last example indicates why we do not want to take cartesian closed categories for
syntax, and in particular, why there should not be definable projections from (X xY) to X
and to Y. If there were, we could apply these to the type (£« E) inside of ((E* E)*(E=T))
above, shifting this latter type to () % (E=T), then evaluate to T as usual. The effect
of such a projection is to ignore one of the words in the sentence. In general, if there is a
projection map from a type (X xY), say to X, then a phrase of type y, when combined
with an z-type, can have no effect! This doesn’t seem to happen with any regularity in
language.

The Lambek calculus

Every model comes equipped with some arrows, such as id, app, mont, etc., just by virtue
of its being a closed category, We might call these the valid, or the logical arrows. The
lexicon determines other arrows as interpretations of the “dictionary” values; these might
be described as “contingent”. Meaning in a model is then computing with the arrows at
hand - the contingent meanings in the language interacting with the logical arrows.

The question naturally arises - what are the logical arrows? The answer is, precisely those
derivable in the Lambek calculus. The argument is based on general considerations of
universal algebra, if we define the class of closed categories as an equational variety. A very
clear presentation of this point of view in the context of cartesian closed categories will be
found in [LS86]. The modifications required to treat (simply) closed categories are routine.

Hint of proof of Completeness: For type expressions x and y, there will be a map in all
closed categories from w(z) to w(y) just when there is a closed ¥-term of type z—y. But
this is just what “valid” will mean, when z and y are (paired types corresponding to) the
left and right sides of a Lambek sequent. The result follows by a Curry-Howard style “types
as formulas” observation: the rules for building 3 terms mimic the proof rules exactly.

Completeness of the Lambek calculus for a different notion of semantics is found in [6].

13

Thus the theory of syntax outlined here is first-order, even equational (and decidable, as
shown by Lambek). Passing to viewing strings as arrows in a category provides a refined
point of view on the type shifting of categorial grammar, in that the canonical type shifts
whose existence is licensed there are all definable by terms in the equational logic.

Richer categories

The present paper has adopted a moderate approach; we only committed ourselves to the
assumptions necessary to make sense of the notion of meanings as maps between types. In
order for this setting to incorporate the insights of linguistics research, each of the syntax-
categories and semantics-categories will need to be enriched. Some initial ideas:

The interpretation of the basic types certainly will admit more structure. Probably the
closed categories serving for semantics should have a designated object € to serve as the
interpretation of the type ¢, and axioms formulated to induce €2 to behave properly. The
obvious way to arrange this would be to use toposes as semantics-categories. In a topos, €2
is the subobject classifier, which is the topos theory notion of “set of truth values”.

To begin to treat intensionality, we might designate an object S in each category to
correspond to a possible worlds index type s in the lexicon.

Another idea for treating intensionality which is compelling at first glance is to use functor
categories. These are categories of the form SET, where A is a small category. A standard
intuition is to view the objects of A as states of knowledge, and the objects of SET# as
variable sets, with truth in SET% being parameterized by the structure on the states
imposed by A. The nature of truth in a functor category, however, is such that if we are
to treat the the objects of A as possible worlds, there can be a map (in .A) between worlds
A and B only if the true assertions in world A (as reflected in SET#) are contained in the
true assertions in world B. So, for instance, the maps in A should not correspond to the
passage of time.

On the syntactic side, the presence of a pairing operator in the type syntax now permits
a treatment of functions of more than one variable, for example transitive verb phrases as
functions of two e arguments, or determiners taking two ((t\e)\e) arguments. Our categories
are already set up to interpret a word whose intuitive type is, say, “from ((¢#\e)\e) and
((t\e)\e) to t”, as an arrow from (T<FE)<E) « (T<FE)<E) toT.

Extensions to the type lifting mechanism may also be in order, especially in the presence of
several-variable functions. One deficiency of the Lambek calculus is that it does not provide
for the shift of and or or to higher types. If we assume that there is a diagonal functor
D, sending object X to (X * X) we can justify type lifting on types that are (intuitively)

functions of two variables. For instance, maps such as and and or from (7« T) to T will
then naturally lift to ((E=T) «x (E=T)) to T.

In any event, one of the key features of the program outlined in this paper is that a change
in one of syntax or semantics automatically has consequences for the other if we require
meaning to be a functor. The idea to build the nature of the this link into the foundations
is Montague’s, of course, but it came at the cost of a somewhat rigid theory of syntax.

14

We have tried to suggest a foundation with enough structure to coordinate the insights of
researchers in syntax and in semantics.

References
[1] Ades, A. E., and M. J. Steedman, On the Order of Words, Linguistics and
Philosophy 4, 517-558, 1982.

[2] Ajdukiewicz, K. Die syntaktische Konnexitat, Studia Philosophica 1, pp. 1-27,
1935.

[3] Bach, E. Some Generalizations of Categorial Grammars. In Landman and Veltman
(eds), Varieties of Formal Semantics, Foris, Dordrecht (GRASS series, V. 3), pp.
1-23, 1984.

[4] Bar-Hillel, Y. A Quasi-Arithmetical Notation for Syntactic Description, Language
29, pp.47-58, 1953.

[5] van Benthem, J. Fssays in Logical Semantics, Reidel, 1986.

[6] Buszkowski, W. Completeness Results for Lambek Syntactic Calculus, Zeitschr.
Sfur math. Logik und Grunclagen d. Math. 32, 13-28, 1986.

[7] Dowty, D. R., R. E. Wall, and S. Peters. Introduction to Montague Semantics,
Reidel 1981.

[8] Eilenberg, S., and G. M. Kelly. Closed Categories, Proceedings of the Conference
on Categorical Algebra, La Jolla 1965, Springer-Verlag, 421-562, 1966.

[9] Lambek, J. The Mathematics of Sentence Structure, American Mathematical
Monthly 65, 154-170, 1958.

[10] Lambek, J. On the Calculus of Syntactic Types, in R. Jakobsen, ed., Structure
of Language and its Mathematical Aspects, Proceedings of Symposia in Applied
Mathematics XII, American Mathematical Society, 1961.

[11] Lambek, J. Deductive systems and categories 111, Lecture Notes in Mathematics
274, 57-82.

[12] Lambek, J. Functional completeness of cartesian closed categories, Annals of Math.
Logic 6 (1074), 259-292.

[13] Lambek, J. Categorial and Categorical Grammars. In Oehrle, Bach, and Wheeler
eds), Categorial Grammars an atural Language Structures, Reide .
ds), C! jal G d N [L S Reidel 1988

[LS86] Lambek, J., and P. J. Scott. Introduction to Higher Order Categorical Logic,
Cambridge University Press, Cambridge, 1986.

15

[14] Keenan, E. L. and L. M. Faltz. Boolean Semantics for Natural Language, Reidel,
1986.

[15] Montague, R. Universal Grammar, Theoria 36, pp. 373- 398, 1970. Reprinted in
[20].

[16] Montague, R. The Proper Treatment of Quantification in Ordinary English, In
J. Hintikka et. al. (eds.), Approaches to Natural Language, Dordrecht, 1973.
Reprinted in [20].

[17] MacLane, S. Categories for the Working Mathematician, Graduate Texts in
Mathematics 5, Springer-Verlag, 1971.

[18] Meseguer, J., and J. A. Goguen. Initiality, Induction, and Computability, in
M. Nivat and J. Reynolds, eds., Algebraic Methods in Semantics, Cambridge
University Press, 1984.

[19] Partee, B., and M. Rooth. Generalized Conjunction and Type Ambiguity, in R.
Baurle, C. Schwarze, and A. von Stechow, eds., Meaning, Use, and Interpretation
of Language, de Gruyter, 361-383, 1983,

[20] Thomason, R. H. (ed.) Formal Philosophy: Selected Papers of Richard Montague,
Yale University Press, 1974.

16

