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ABSTRACT
Statistical iterative image reconstruction methods are com-
pute intensive. Fixed-point calculations can substantially
reduce the computational load, but also increase quantization
error. To investigate the effect of fixed-point quantization, we
analyze the error propagation after introducing perturbation
in a diagonally preconditioned gradient descent algorithm for
X-ray computed tomography. The effects of the quantization
error in forward-projection, back-projection, and image up-
date are calculated using the open loop and loop gain of the
iterative algorithm. We derive an analytical upper bound on
the quantization error variance of the reconstructed image
and show that the quantization step size can be chosen
to meet a given upper bound. The analytical results are
confirmed by numerical simulations.

I. INTRODUCTION

Statistical iterative image reconstruction methods for X-
ray computed tomography (CT) have been proposed to
improve image quality and reduce dose [1]. These methods
are based on accurate projection models and measurement
statistics, and formulated as maximum likelihood (ML)
estimation [2]. Iterative algorithms have been designed to
estimate the image by minimizing a cost function [3]-[5].

CT image reconstruction algorithms are usually imple-
mented in 32-bit single-precision floating-point quantization
to provide high image quality. Fixed-point (integer) arith-
metic uses much less hardware resources than floating-point
and can shorten the latency [6], but it introduces quantization
errors and potentially degrades the image quality. Therefore
it is desirable to analyze the quantization effects to assess
the feasibility of a fixed-point conversion.

In this paper, we model the effect of fixed-point quantiza-
tion as a perturbation of floating-point arithmetic by injecting
uniform white noise after the arithmetic [7]. For simplicity of
the analysis, we choose a diagonally preconditioned gradient
descent algorithm with a quadratic regularizer [8], and inject
noise in the three steps of an iterative image reconstruction:
forward-projection, back-projection, and image update. We
derive an upper bound on the quantization error variance
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of the image update in every iteration and the results are
verified by numerical simulations based on a 40x40x4 test
object over 90 projection views.

II. BACKGROUND

A CT system captures a large series of projections at
different view angles, recorded as sinogram. Mathematically,
sinogram y can be modeled as y = Af + €, where f
represents the volume being imaged and A is the system
matrix, or the forward-projection model, and € denotes
measurement noise. The goal of image reconstruction is to
estimate the 3D image f from the measured sinogram y.
A statistical image reconstruction method estimates f, or f ,
based on measurement statistics, which can be formulated
as a weighted least square (WLS) problem [2].

A 1
f = argmin 3y = ATy 1)

where W is a diagonal matrix with entries based on photon
measurement statistics [2]. To control undesired noise in f
of (1), a penalty term is added to form a penalized weighted
least square (PWLS) [2], [8] cost function:

f = argmin W(f) = argmin Sy~ Aflfy -+ 3R(). @)
where R(f) is known as the regularizer and § is a regu-
larization parameter. For simplicity of analysis, we choose
a quadratic regularizer that adds to the cost function the
square of differences among neighboring pixels, or R(f) =
|C fII?/2, where C'is the difference matrix.

Using a quadratic regularizer and assuming that (A'W A+
BC’'C) is invertible, the solution to (2) is given by f =
(AW A + BC'C)~t A’'Wy. However, the practical size of
matrix A for a commercial axial CT scanner is 10 million by
10 million [2], thus evaluating the inverse of A’'W A+ 38C'C
is inefficient, if not infeasible. Alternatively, iterative meth-
ods have been proposed [3]-[5]. In this paper we consider
a diagonally preconditioned gradient descent method to
solve (2) [5], [8]:

FOHD = fO _ Dyw(f0)
=[O+ D[aW(y - AfD) - se'CfO] . @)
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Fig. 1. Block diagram of iterative image reconstruction.
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Fig. 2. Iterative image reconstruction with perturbed
forward-projection, back-projection and image update.

Fig. 1 shows a block diagram of this iterative image
reconstruction method. Typically a FBP reconstructed image
is used as the initial image, f (), In each iteration, a new 3D
image estimate f (i+1) js obtained by updating the previous
image f (1) with a step of the negative gradient of the cost
function ¥( f ) scaled by a diagonal matrix D. This algorithm
is guaranteed to converge to the unique minimizer of ¥ when
D is chosen properly [5]. This is a one subset version of the
ordered subsets (OS) algorithm given in [5].

III. PERTURBATION-BASED ERROR ANALYSIS

We analyze the effect of perturbation in iterative image
reconstruction and show that both the maximum and the
mean error variance in an image update are bounded for a
given level of uniform white noise. Hereafter, we define ;(,")
as the n'" image update of the perturbed iterative algorithm,
and e as the corresponding image error relative to the

unperturbed version f e, e = fn) _ fén).

III-A. Perturbation of forward-projection

We proceed by first perturbing the forward-projection to
model the effect of fixed-point quantization [7]. We add a
random error vector, agf ), to the ideal forward-projection, as
illustrated in Fig. 2. We further assume that the error samples
are uncorrelated. Specifically, we assume

n Agy, Ag 0y G Af
o v [ ] e =
cov (=ff), =) =0 Vi, Yj, i # J, @)

where Ay, denotes the quantization step size.
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From (3), the first image update of the perturbed algorithm
can be written as

O = FO D [aw (y— (AFO +£)) - e'cfO)]

= fO + Kpel, 5)
where Ky, & —DA'W is the open loop gain of the error

due to perturbation in forward-projection. Similarly, we have
the second image update as

2 = J0+ D [aw (y— (AfD + ) - BCC i)
(6)

Substituting (5) into (6) and simplification yields

fé?) = f(Q) + MKprEg) + Kfpé-g;)a
where M = [ — D(A'WA + BC'C) is the loop gain of
the error in this iterative method. (Note that M is related
to the Hessian of the cost function [8], which is given by
H = AW A + SC’'C). By induction, the image update of
the n'" iteration and the image update error are given by

i = o) 4 e

n—1
e =3 MFRpelr Y,
k=0

fp
Using (4), the mean of e(™) is zero, and the covariance is
A? n—1 ,
n n _ k / k
cov (e( ),e( )> = T;kZ_OM Ky K, (M ) .

Note that a covariance matrix is positive semidefinite [9],
and its eigenvalues are nonnegative [10]. Thus, an upper
bound on the error variance is the maximum eigenvalue, i.e.,
spectral radius, of the covariance matrix of (™. Evaluating
the spectral radius is nontrivial due to the term A*. Since
matrix D is a real diagonal matrix with positive diagonal
entries, we can decompose M as

M =1-DH = D3 (I—D%HD%) D%,

The Hessian matrix H is a nonnegative definite and so is
I - D:HD:3, by the design of D. Thus by the spectral
theorem [11], there exists a unitary matrix U and a diagonal
matrix ¥ such that /—Dz HDz = UXU’. Then M becomes

M = D:USU'D"=. 8)

Similarly, (A’W)(A’W)’ is also nonnegative definite and
can be decomposed using a unitary matrix V' and a nonneg-
ative diagonal matrix F' [11]. It follows that

KipKf, = (-DA'W)(~DA'W) = D(VFV')D. (9
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Substituting (8) and (9) into (7), we have

cov (e("), e(")>

2 n—1
% S D:UustU'DE (VFV') DEUSFU'DE.

Thus the spectral radius equals the 2-norm and its upper
bound can be derived using the matrix norm property that
| AB ||<|| A |||l B || [12]. After considerable simplification,
we have

p (cov (e("), e(")))
(x’cov (e(”), e(")) ac)
wlali=1

= maXx
2 n—1

_Sh Z | F2V'D3US*U' D2z |2
12 w”w“ 1

AV — (X2
fp 2 p(E*)"
< —p(Fp(D*)——=—. 10
< BP0 T (10)
The spectral radius of the covariance matrix measures
the maximum error variance in the n'" iteration. i.e.,
U(Qn)max % 1) (cpv (e(f), e("))). Next, we ar'lalyze the mean
error variance in an image update, which is related to the
trace, or sum of diagonal entries, of the covariance matrix,
ie., afn)mear} £ ¢r (cov.(e(fl),e("))) /n'v, where Ny is .the
number of diagonal entries in the covariance matrix. Using

the property that tr(AB) < p(B)tr(A) [11], we have

tr (cov (e(”)7 e(")))

2 n—1

— ﬁtr D:USFU'D: (VEV') D:UXFU' D2

12
k=0

2 n—1
Lo Zp (%) tr( %(VFV)DzUkuD)

| /\

A% 1—p(X?)"
< 1P 4 P S
D tr(D (VFV') D) 1 2)

To guarantee the convergence of iterative reconstruction
algorithm, the matrix D is always selected such that D! >
H,ie., D' — H is positive definite, which implies p(I —
DH) < 1, where H is the Hessian of the cost function [8].
It follows that

p(X) =

)

p(U'(I = D*HD>)U) = p(I — D2 HD?)
= p(D"3(I — DH)D?) = p(I — DH) < 1.

In steady state as n — oo, the upper bounds of (10)
and (11) become

AR, p(D*)p(F)

2 < (00) (c0) < A S S
a(n)max = p(cov(e , € )) =12 1— p(z2) ’
A tr(D(VFV')D)
< () ploo)yy < 2t HDVEV)D)
CT(n)meannv = tr(cov(e € )) =19 — p(zg)
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Therefore, both the maximum and the mean error variance
of an image update are bounded. For example, given € > 0,
if we choose Ag, such that

120 -p=p) [ 1
Afp<\/ o(D?) \/ A

2
0 (00)max

then

<€, < €.

2
U(oo)mean

The result implies that we can make the error due to
perturbation in forward-projection arbitrarily small for this
algorithm by choosing an appropriate quantization step size,
provided quantization noise can be modeled as in (4).

III-B. Perturbation of forward-projection, back-

projection, and image update

Following the derivation from the previous section, we
can also model the effect of fixed-point quantization in the
back—pro(iectlon and image update by injecting uniform white
noises €bp ) and 51m) , as indicated in Fig. 2. Similar to (4),

we make the following assumptions:

n App A
£ N,Lf[bp bp},

(n) 7% Aim
2 2 U{

12
Eim 2,2}m>
where Ay, and Aj, denote the quantization step sizes of
back-projection and image update respectively.

Similar to (5), we can express the perturbed image update
of the first iteration as

FO =(fO 1+ ) + DIA'W (y
+ep) - poC (7 + )]
_f(l +K E + Kbpg(O) + ME(O)

im ?

— (A(fO + ) + )

where Ky £ D is the open loop gain of the error due
to perturbation in back-projection. It follows that the image
update error in the n'" iteration is

n—1
et = Z(Mk(Kp5g o k)"‘K peg;; o k)"’_Msi(g{_l_k)))«
k=0

We assume independence of the three noise vectors.
Using (4), (8), (9), and (12), the mean of e(™) is zero, and
the covariance can be written as

2 n—1

A
cov (e(”), 6(")> =

S (MF K Ky (MF))+

2 n—1 A2 n—1
bp k / ky/ “ip k41 E+1y/
2 S (M K K, (M)') + 2 3D (M (M4,
k=0 k=0
Following a similar approach as in the previous section,
we can derive the upper bounds on the spectral radius and
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Fig. 3. Theoretical bound and numerical simulation of stan-
dard deviation of the image updates : (a) forward-projection
with the quantization step size of Ag, = 2 [HUxmm] (b)
forward-projection, back-projection, and image update with

Agp, = 2"[HUxmm], Ay, = 2'[mm], Ay, = 273[HU]
the trace of the covariance matrix.
AR p(D?)p(F) A%, p(D?)
(00) S(00)yy « o PAT)PU)  Zbp A7)
pleov(e™ ™)) s T 5 T 12 12 00
L A (B )p(D)p(D’l)
12 - p(X?) ’
Af tr(VFV’DQ) A?, tr(D?)
(00) p(00) 2NV ) e A
tr(cov(e'™’,e'>)) < T 57 2 1= (9
Am o)D)
12 1—p(22)°

Therefore, both the maximum and the mean error variance
of the reconstructed image are bounded after considering
perturbation in forward-projection, back-projection, and im-
age update. The error can be made arbitrarily small for this
algorithm by choosing an appropriate quantization step size.

IV. RESULTS AND CONCLUSION

To verify the analysis, we performed numerical simu-
lations of an iterative reconstruction of a 40x40x4 test
object in an axial cone-beam arc-detector X-ray CT system
with a detector size of 170x10 over 90 projection views.
The PWLS diagonally preconditioned gradient descent al-
gorithm (3) was simulated with a quadratic roughness reg-
ularizer. We evaluated analytical quantization error variance
and its upper bound in each iteration, which are compared
to measured quantization error variance from simulations by
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injecting uniformly distributed error vectors that correspond
to quantization step sizes of Ag, = 27[HUxmm], A, =
2'%[mm], and A;,, = 273[HU]. Fig. 3 shows the standard
deviation of the image update error due to (a) perturbation
in forward-projection alone and (b) perturbation in forward-
projection, back-projection, and image update. The measured
standard deviation matches the analytical standard deviation
and stays below the upper bound. Due to limited space, we
only show one set of quantization step size, but alternative
choices could be equally used. Both the analytical and simu-
lation results in Fig. 3 point to the conclusion that the error
variance of image updates converges to a fixed level after
a sufficient number of iterations. Note that evaluating the
analytical error variance is not feasible for large object sizes.
Quantizing iterative methods to confirm our perturbation
model and tightening the upper bound remain our future
work.
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