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Abstract—While iterative reconstruction (IR) methods have
potential advantages over conventional FBP reconstruction such
as reduced patient dose and improved noise properties, their use
of statistical weighting and space variant scanning geometries
can lead to nonuniform and anisotropic spatial resolution. Due
to the large number of voxels in the image volume, regularization
design methods based on discrete Fourier transforms would
require prohivitive computational cost. In this paper, we propose
a quadratic regularization design method for 3D axial X-ray com-
puted tomography (CT) that aims to improve resolution isotropy
and uniformity. Simulations and a phantom experiment show
that the proposed method leads to more uniform and isotropic
spatial resolution in 3D axial CT with modest computational cost.

I. INTRODUCTION

Improved noise and spatial resolution properties are one
of the potential advantages of statistical image reconstruction
methods over conventional filtered back-projection (FBP) re-
construction [1]. Regularized image reconstruction methods,
such as penalized weighted least squares (PWLS) method
or a penalized-likelihood (PL) method, provide noise control
by integrating a roughness penalty into the cost function.
Although statistical weighting and system models are respon-
sible for improving image quality, their interaction with a
conventional quadratic roughness penalty results in images as
anisotropic and nonuniform spatial resolution. This holds even
for idealized shift-invariant imaging systems [2], and becomes
most severe near the end slices of 3D axial or helical CT.

Several previous regularization designs aim to match the
local impulse response of the estimator to a target impulse re-
sponse by matrix manipulations and discrete Fourer transforms
[2], [3]. The matrix and FFT methods need too much com-
putation when applied to an entire image volume. Expecially
for 3D axial or helical CT. A fast analytical regularization
design method for 2D fan-beam X-ray CT that uses continuous
space analogs to simplify the regularization design problem
was proposed in [4]. In [5], the authors addressed the problem
for 3D axial CT, but for a simplified 3D system that was
modeled as a stack of 2D fan-beam systems. In this paper, we
propose a regularization design for 3D axial X-ray computed
tomography (CT) accounting for cone angle. Simulations and
a phantom experiment show that the proposed method leads
to more uniform and isotropic spatial resolution in 3D axial
CT with modest computational cost.
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II. METHOD

A. Local Impulse Response

Consider a penalized weighted least squares (PWLS) objec-
tive function of the form

Ψ(x) = L- (x)+R(x), L- (x) =
1

2
‖y −Ax‖2

W
, (1)

where y is the measurement vector, A is the system matrix,
x = (x1, · · · , xN ) is the discretized version of the object
being imaged, and W = diag{wi} is a statistical weighting
matrix. A conventional quadratic regularizer is expressed as

R(x) = β
∑

j

Nl∑

l=1

κl(j)κjr
l
j
1

2
((cl ∗ ∗ ∗ x) [n,m, z])2 , (2)

where index j is a lexicographical ordering of [n,m, z], Nl

is the number of neighbors (13 in 3D), cl is a function
performs finite differences between neighboring voxels (see
(11) below), κ’s are the user-defined weights [2] for controlling
spatial resolution in the reconstructed image, and {rlj} are the
directional regularizer coefficients that we will design.

For a quadratic regularizer, the local impulse response (LIR)
at the jth voxel for the PWLS estimator is given as:

lj = [A′WA+R]−1A′WAδj , (3)

where R is the Hessian of the regularizer R(x) and δj denotes
an impulse function at jth voxel [2]. Our purpose is to design
R such that our local impulse response lj matches a target lo

that has more isotropic spatial resolution, at every pixel j. We
simplify this process by turning to the frequency domain.

Assuming A′WAδj and Rδj are approximately locally
circulant [6], we can approximate (3) as follows:

Lj =
F (A′WAδj)

F (A′WAδj) + βF (Rδj)
, (4)

where F (·) denotes the 3-D DFT.
Instead of directly using the discrete Fourier transform, we

use the continuous-space analog of Hj ! F (A′WAδj) in
spherical coordinates ν ! (ρ,Φ,Θ). We use a closed-form
approximation for Hj that was suggested in [7]:

Hj(ν) ≈ KJ(ν)
w̃j(Φ)

ρ cos(Θ)
(5)

K = Π∆3
x∆zD

2
sd/D

2
so

J(ν) = sinc(∆xρ cos(Θ) cosΦ)
2

×sinc(∆yρ cos(Θ) sinΦ)
2sinc(∆zρ sin(Θ))

2

w̃j(Φ) =
∑

β∈Bj(Φ)

w̄β,j

dβ,j
√
1− (ζj cos(θj))2 cos2(φj − Φ)

,

where Dso · (ζj ,φj , θj) denotes the location of the jth voxel
in spherical coordinates, K is a constant depending on voxel



sizes and scanner geometry, J(ν) is a factor depending only
on spatial frequencies, w̄β,j ! wβ('s∗j ) where 's∗j is the positon
on the detector that maximizes the footprint of voxel j at
source angle β, dβ,j is the distance from the source to the
xy-projection of voxel j, and Bj(Φ) is the set of the values of
β for which the ray passing through voxel j is perpendicular
to the frequency vector ν where the ray and frequency vector
are both projected onto the xy-plane [7]. Substituting (6) into
(4) yields the following expression for the continuous space
analog of Lj :

Lj ≈
KJ(ν)w̃j(Φ)/(ρ cos(Θ))

KJ(ν)w̃j(Φ)/(ρ cos(Θ)) + βRj(ν)
, (6)

where Rj(ν) is the local frequency response for the regularizer
near pixel j (see (15) below).

B. Target Impulse Response

The local frequency response associated with penalized
unweighted reconstruction is isotropic at the isocenter for a
full scan, so we use it as our target response. At isocenter, (6)
for uniform weights (wi = 1) is given as

Ho(ν) ≈ KJ(ν)
ũo(Φ)

ρ cos(Θ)
, (7)

ũo(Φ) = |Bj(Φ)| .

Now the target local frequency response is

Lo ≈
KJ(ν)ũo(Φ)/(ρ cos(Θ))

KJ(ν)ũo(Φ)/(ρ cos(Θ)) + βRo(ν)
, (8)

where Lo is the continuous-space analog of Lo.

Our purpose is to match the local impulse response at jth
voxel to the target impulse resonse, i.e., we want

Lj ≈
KJ(ν)w̃j(Φ)/(ρ cos(Θ))

KJ(ν)w̃j(Φ)/(ρ cos(Θ)) + βRj(ν)
(9)

≈
KJ(ν)ũo(Φ)/(ρ cos(Θ))

KJ(ν)ũo(Φ)/(ρ cos(Θ)) + βRo(ν)
≈ L0.

Cross multiplying and simplifying yields the goal

ũo(Φ)Rj(ν) ≈ w̃j(Φ)Ro(ν). (10)

C. Regularization Structure

We first define a first-order differencing function that penal-
izes lth neighbor as

cl =
1√

n2
l +m2

l + z2l
(δ(n,m, z)−δ(n−nl,m−ml, z−zl)),

(11)
where nl,ml, zl denote the offset of the neighbor. Taking the
Fourier transform of (11) yields the following expression for
the local frequency response |Cl(ω1,ω2,ω3)|

2

=
1

n2
l +m2

l + z2l

∣∣∣1− e−i(ω1nl+ω2ml+ω3zl)
∣∣∣
2

=
1

n2
l +m2

l + z2l
(2− 2 cos (ω1nl + ω2ml + ω3zl)) . (12)

Using the approximation 2−2 cos(x) ≈ x2 [4] (12) simplifies

|Cl(ω1,ω2,ω3)|
2 ≈

1

n2
l +m2

l + z2l
(ω1nl + ω2ml + ω3zl)

2 .

(13)
We convert (13) to spherical frequency coordinates. The
relationship between frequency and sampling yields ω1 =
2π∆xρ cos(Φ) cos(Θ), ω2 = 2π∆yρ sin(Φ) cos(Θ), and ω3 =
2π∆zρ sin(Θ). Substituting these into (13) yields the follow-
ing expression for |Cl(ω1,ω2,ω3)|

2

≈
1

n2
l +m2

l + z2l
(2πρ)2(nl∆x cos(Φ) cos(Θ)

+ml∆y sin(Φ) cos(Θ)+zl∆z sin(Θ))
2 (14)

The local frequency response of the regularizer (2) is now

Rj(ρ,Φ,Θ) = (2πρ)2κ2j

Nl∑

l=1

rlj (e(Φ,Θ) · [e(Φl,Θl)⊗∆])2 ,

(15)
where e(Φ,Θ) ! (cos(Φ) cos(Θ), sin(Φ) cos(Θ), sin(Θ)),
∆ ! (∆x,∆y,∆z), ⊗ is element-wise multiplication, and we
assumed that κj ≈ κl for l within the neighborhood of j.

For the target response, Ro becomes

Ro(ρ,Φ,Θ) = (2πρ)2κ2o

Nl∑

l=1

rlo (e(Φ,Θ) · [e(Φl,Θl)⊗∆])2 ,

(16)
where κo is the user-defined weights for target spatial reso-
lution at the isocenter, and {rlo} is the pre-defined directional
weights, which determines the shape of the target response.

D. Regularization Design

Substituting (15) and (16) into (10) and simplifying yields

Qj(Φ,Θ) ≈
κ20w̃j(Φ)

κ2j ũo(Φ)
Qo(Φ,Θ), (17)

where

Qj(Φ,Θ) !
Nl∑

l=1

rlj (e(Φ,Θ) · [e(Φl,Θl)⊗∆])2 . (18)

We solve the following weighted minimization problem
to design the directional weighting coefficient vector rj =
(r1j , · · · , r

Nl

j ) at the jth voxel

rj ! argmin
rj≥0

∫ 2π

0

∫ π
2

−π
2

Dw(Φ,Θ)|w̌j(Φ,Θ)

−
Nl∑

l=1

rjl (e(Φ,Θ) · [e(Φl,Θl)⊗∆])2|2dΘdΦ, (19)

where the nonnegativity constraint ensures the regularizer’s
convexity and we define the modified weighting function

w̌j(Φ,Θ) !
κ20w̃j(Φ)

κ2j ũo(Φ)

Nl∑

l=1

rlo(e(Φ,Θ) · [e(Φl,Θl)⊗∆])2.

(20)
We choose Dw = cos(Θ) to have more uniform distribution
of sampled points. We view (19) as a weighted projection of



w̌j(Φ) onto the space spanned by {[e(Φl,Θl)⊗∆]2}. Inserting
the weight cos(Θ) into the data-fitting part and expanding this
term into 6 orthonormal basis functions, we can decompose∑Nl

l=1 r
l
j cos

2(Θ)(e(Φ,Θ) · [e(Φl,Θl)⊗∆])2 as PTrj , where
P is an operator whose columns are the six orthonormal
vectors, and T is a 6 × Nl linear combination matrix whose
mth row is the following inner product

Tml =
1

2π2

∫ 2π

0

∫ π/2

−π/2
(e(Φ,Θ) · [e(Φl,Θl)⊗∆])2pmdΘdΦ.

(21)
The orthonormal basis functions are given as follows

p1(Φ,Θ) =

√
8

3
cos2(Θ)

p2(Φ,Θ) =
16
√
5
sin(Φ) sin(Θ) cos3(Θ)

p3(Φ,Θ) =
16
√
5
cos(Φ) sin(Θ) cos3(Θ)

p4(Φ,Θ) =

√
96

5
cos2(Θ)(cos(2Θ)−

2

3
)

p5(Φ,Θ) =
8

√
35

cos(2Φ)(1 + cos(2Θ)) cos2(Θ)

p6(Φ,Θ) =
32
√
35

cos4(Θ) cos(Φ) sin(Φ),

and assuming ∆x = ∆y , the lth column of T is given by




√
3
2 (

1
4∆

2
x cos

2(Θl)+
1
3∆

2
z sin

2(Θl))
√
5
5 ∆x∆z sin(Φl) sin(Θl) cos(Θl)√
5
5 ∆x∆z cos(Φl) sin(Θl) cos(Θl)

− 1√
30
∆2

z sin
2(Θl)

√
35
28 ∆

2
x cos

2(Θl)(cos2(Φl)− sin2(Φl))√
35
14 ∆

2
x cos(Φl) sin(Φl) cos2(Θl)





.

Since P has orthonormal columns, we can represent the min-
imization problem (19) as the following simplified expression

rj = argmin
r≥0

∥∥Tr − bj
∥∥2

, (22)

where P ∗ denotes the adjoint of P and bj ! P ∗ẘj(·), i.e.,

bjk = 1/(2π2)
∫ ∫

pk(Φ,Θ)ẘj(Φ,Θ)dΦdΘ for k = 1, · · · , 6,
where ẘj(Φ,Θ) = w̌j(Φ,Θ) cos2(Θ). The minimization
problem (22) is much smaller than (19). We solve (22) using
NNLS algorithm [8].

The minimization problem (22) is under-determined and
may have many different solutions rj that are all global
minima. Too many zeros in rj may degrade the image since
there will zeros in the Hessian [4]. To ensure that certain rj

values are greater than some small positive number εjl , we
modity (22) as follows

rj = argmin
r≥0

∥∥Tr − (bj − T εj)
∥∥2

(23)

= argmin
r≥0

∥∥Tr − b̄j
∥∥2

, (24)

where b̄j ! bj − T εj . After minimization, we use the
coefficients r̄j = rj + εj for our new regularizer (See [4]
for a possible way to select εj).

III. RESULTS

We simulated a 3rd-generation axial cone-beam CT system
using the separable footprint projector [9]. The simulated
system has Ns = 888 channels and Nt = 64 detector rows
spaced by ∆s = 1.0239 mm and ∆t = 1.09878 mm, and 984
evenly spaced view angles over a 360 degree scan. The source
to detector distance was 949 mm, and the source to rotation
center distance was 541 mm. We included a quarter detector
offset in the channel direction to reduce aliasing. The XCAT
phantom [10] was used, and the image was reconstructed to
a 512 × 512 × 122 grid with pixel size ∆x = ∆y = 0.9766
mm and ∆z = 0.625 mm. Poisson noise was added to the
sinogram, and the statistical weighting was chosen as wi =
exp(−[Ax]i). The regularization parameter β was selected
such that the target PSF at the isocenter has a full-width at
half-maximum (FWHM) of approximately 1.4 mm in xy and
0.9 mm in z.
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Fig. 1. Impulse responses of conventional regularization (middle column)
and proposed regularization (right column) at (-66,217,-17) (mm), which is a
fully sampled location. Target impulse response is given as a reference (left
column). Each row corresponds to xy, xz, and yz profiles, respectively. Each
contour was plotted based on its own peak value.
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Fig. 2. Impulse responses of conventional regularization (middle column)
and proposed regularization (right column) at (-117,-67,17) (mm), which is a
insufficiently sampled location. Target impulse response is given as a reference
(left column). Each row corresponds to xy, xz, and yz profiles, respectively.
Each contour was plotted based on its own peak value.

Figs. 1 and 2 compare impulse responses of conventional
regularization and proposed regularization for two different
voxels with different sampling properties. There is a consid-
erable anisotropy at both locations, especially for voxels with
insufficient sampling. The main reasons for the anisotropy are
statistical weighting and scan geometry. The spatial resolution
of the voxel in Fig. 1 is primarily affected by the statisti-
cal weights, and our proposed method gives more isotropic



impulse response. The location in Fig. 2 is greatly affected
by scan geometry, and our proposed method achieves limited
improvements.

Fig. 3 compares reconstructed images with various meth-
ods. Iteratively reconstructed images show better noise char-
acteristics compared to the FDK reconstruction, but they
may have more anisotropic spatial resolution especially at
the voxels with less samplings. The true image blurred by
the target impulse response was provided as a reference to
assess the improvements of our proposed method. In Fig. 4
closely compares the reconstructed images with conventional
regularization and the proposed regularization. Overall, the
reconstructed image with the proposed regularizer has better
resolution characteristics, but has slightly more noise. At
locations indicated by the arrows, the proposed regularization
shows noticeable improvements (better match to target).

- -

(a) (b)

(c) (d)

Fig. 3. Reconstructed images at end slice (a) FDK reconstruction (b) True
image blurred by the target impulse response (c) Iterative reconstruction with
conventional regularizer (d) Iterative reconstruction with designed regularizer

IV. DISCUSSION

We proposed a regularization design method for 3D axial
CT that aims to improve resolution uniformity and isotropy.
The proposed regularization showed improved spatial resolu-
tion characteristics compared to the conventional regulariza-
tion for the full scan geometry. However, the designed impulse
responses do not match the target response precisely and lo-
cations with insufficient sampling still suffer from anisotropic
resolution. Since 3D axial short scans can suffer from severe
anisotropy at the end slices due to their scan geometry, the pro-
posed method may have difficulties achieving desired isotropic
resolutions for short scans. We hope to compensate for this
with improved regularization design. Furthermore, since edge-
preserving regularization is mostly used in practice instead
of the quadratic regularization, we will investigate using the
designed directional weights in edge-preserving regularization.
Our future work will address these issues and focus on refining

Fig. 4. Reconstructed images with conventional regularization (middle row)
and proposed regularization (bottom row) at different locations on end slices.
True image blurred by the target impulse response is given as a reference (top
row).

the method to obtain better spatial uniformity for different scan
geometries and to further improve the computational efficiency
of the method.
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