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Abstract—Low-dose X-ray CT can reduce the risk of cancer to
patients. However, it requires computationally expensive statis-
tical image reconstruction methods for improved image quality.
Iterative algorithms require long compute times, so we focus on
algorithms that “converge” in few iterations. This paper proposes
to apply ordered subsets (OS) methods to Nesterov’s fast first-
order methods for 3D X-ray CT problems. Nesterov’s algorithms
use previous iterates to provide momentum towards the optimum
and thus achieve a fast convergence rate of O(1/n2), where n
counts the number of iterations. We also propose to use separable
quadratic surrogates (SQS) (with a non-uniform (NU) approach)
in Nesterov’s algorithms. We use a real patient helical CT scan
to show that the proposed algorithms converge rapidly, and we
investigate the behavior of OS methods in Nesterov’s algorithms.

I. INTRODUCTION

Based on the statistics of X-ray CT, we reconstruct a (non-

negative) image x ∈
Np

+ from noisy measurements y ∈ Nd

by minimizing a convex and continuously differentiable objec-
tive function Ψ(x). This paper focuses on a penalized weighted
least squares (PWLS) problem [1]:

x̂ = argmin
x!0

{

Ψ(x) !
1

2
||y −Ax||2W + βR(x)

}

, (1)

where A is a projection operator, and the diagonal matrix
W provides statistical weighting. R(x) is a (edge-preserving)
regularization function and β balances the data-fit term and
R(x). Due to the large scale of the problem (in 3D CT),
iterative algorithms for minimizing Ψ(x) require considerable
compute time. Thus, the goal of this paper is to develop
iterative algorithms that “converge” in fewer iterations.

This paper focuses on Nesterov’s fast first-order algorithms
[2], [3] that use previous iterates as momentum for additional
acceleration towards the optimum. The former [2] uses two
previous iterates as momentum, while the latter [3] uses all
accumulated previous iterates. Both provide a fast convergence
rate of O(1/n2) where n counts the number of iterations,
whereas usual gradient-based methods have O(1/n) conver-
gence rate [4].

In our recent work [5], we combined ordered subsets (OS)
methods [6], [7] with Nesterov’s early work [2] that has
been used to develop a fast iterative shrinkage-thresholding
algorithm (FISTA) [4]. We also used a separable quadratic
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surrogates (SQS) method [7] (and a non-uniform approach [8])
in Nesterov’s algorithm (in [5]). These combinations provided
very promising results as they converged very rapidly even
with relatively small number of subsets. (Using fewer subsets
is preferable, as it decreases inexactness in OS methods and
also reduces the overhead of computing the regularizer.) In
addition, the overhead needed for proposed algorithms with
OS-SQS is minimal as Nesterov’s algorithms are simple. In
this paper, we apply OS and (NU-)SQS methods to the more
recent Nesterov’s algorithm (2005) [3] and observe that this
combination achieves as fast a convergence as the method
in [5] but with improved stability.

We propose to use OS methods here as they can initially
accelerate any gradient-based algorithms dramatically by ap-
proximating ∇Ψ(x) using only a subset of measurements. But,
OS methods usually approach a limit-cycle looping around the
optimum [6], [7]. (The more the subsets, the more the initial
acceleration but with increased inexactness in the iterates.)
However, the stability of OS methods in the proposed Nes-
terov’s algorithms is unknown. Therefore, we experimentally
investigated the behavior of OS in Nesterov’s algorithms with
respect to the number of subsets. We found that our newly
proposed Nesterov’s algorithm based on [3] with OS-SQS is
more stable than the previous combination in [5].

In this paper, we propose to combine OS-SQS methods
with Nesterov’s fast first-order algorithms for X-ray CT image
reconstruction. We first explain two of Nesterov’s algorithms
and illustrate their application to the X-ray CT problem
in (1) with OS-SQS algorithms. Then we show the results
for accelerated convergence of the two proposed algorithms
using a real patient CT scan. We also discuss the stability of
OS in Nesterov’s algorithms.

II. NESTEROV’S ALGORITHMS

Nesterov published a fast first-order method using two
previous iterates as a momentum for smooth functions1 in [2],
and it was extended later for non-smooth functions by Beck et

al. [4], which is one of the state-of-the-art methods in image
restoration. In [3], Nesterov also proposed new formulation of
a fast first-order method using all previous iterates.

Both algorithms [2], [3] have been used widely for various
optimization problems. They have also been used for X-ray
CT reconstruction showing a noticeable acceleration [9], [10].
However, Nesterov’s algorithms by themselves are not very

1A smooth function f(x) is continuously differentiable with Lipschitz
continuous gradient L satisfying ||∇f(x) − ∇f(z)|| ≤ L||x − z|| for all
x, z ∈ Np .



attractive in CT, as the cost function Ψ(x) in (1) has a large
Lipschitz constant that slows down the convergence [11]. Here,
we suggest new combinations of Nesterov’s algorithms and
OS-SQS methods that show very promising results.

We first review Nesterov’s algorithms briefly. Both [2]
and [3] begin by using an optimization transfer technique
[12]. Nesterov uses a convex cost function Ψ(x) that is
continuously differentiable with Lipschitz constant L, which
can be majorized at the nth iteration as:

Ψ(x) ≤ φ(n)
L (x) (2)

! Ψ(x(n)) +∇Ψ(x(n))′(x − x(n)) +
L

2
||x− x(n)||2.

The optimization transfer step minimizes the surrogate φ(n)
L (x)

at nth iteration:

x(n+1) = argmin
x!0

φ(n)
L (x) =

[

x(n) −
1

L
∇Ψ(x(n))

]

+
, (3)

where [·]+ enforces a non-negativity constraint. Then the
algorithm (3) is accelerated using previous iterates as shown
in Figs. 1 and 2 [2], [3]. We use the choice of parameters
suggested in [13] for the algorithm in Fig. 2, which provides
faster convergence than the choice in [3].

Initialize x(0) = v(0), t0 = 1

for n = 0, 1, 2, · · ·

tn+1 =
(

1 +
√

1 + 4t2n

)

/2

x(n+1) =
[

z(n) −
1

L
∇Ψ(z(n))

]

+

z(n+1) = x(n+1) +
tn − 1

tn+1
(x(n+1) − x(n))

Fig. 1. Nesterov’s algorithm (1983) [2].

Initialize x(0) = v(0) = z(0), t0 = 1

for n = 0, 1, 2, · · ·

tn+1 =
(

1 +
√

1 + 4t2n

)

/2

x(n+1) =
[

z(n) −
1

L
∇Ψ(z(n))

]

+

v(n+1) =

[

z(0) −
1

L

n
∑

k=0

tk∇Ψ(z(k))

]

+

z(n+1) =

(

1−
1

tn+1

)

x(n+1) +
1

tn+1
v(n+1)

Fig. 2. Nesterov’s algorithm (2005) [3].

The sequences
{

x(n)
}

generated by both algorithms are
proven to have the following convergence rate [2], [3]:

Ψ(x(n))−Ψ(x̂) ≤ O

(

L

n2

)

. (4)

This is promising since ordinary optimization transfer in (3)
provides only O(1/n) rate [4]. However, the large Lipschitz
constant L in CT problem causes slow convergence even with
the O(1/n2) rate.

III. PROPOSED NESTEROV’S ALGORITHMS

WITH ORDERED SUBSETS

We suggest combining ordered subsets with Nesterov’s
fast first-order algorithms. Ordered subsets algorithms group
projection views into M subsets evenly, and assume

∇Ψ(x) ≈ M∇Ψ0(x) ≈ · · · ≈ M∇ΨM−1(x), (5)

where we define the subset gradient:

∇Ψm(x) ! A′
mWm(Amx− ym) +

β

M
∇R(x) (6)

for m = 0, · · · ,M − 1. The matrices Am, ym and Wm are
sub-matrices of A, y, and W corresponding to mth subset.
We accelerate Nesterov’s algorithms by replacing ∇Ψ(·) in
Figs. 1 and 2 with M∇Ψm(·). We count each mth sub-
iteration as 1/M iteration, since M∇Ψm(·) requires roughly
1/M amount of computation of ∇Ψ(·). Then we expect to
have the following convergence rate in early iterations:

Ψ(x(n+ m
M

))−Ψ(x̂) " O

(

L

(nM +m)2

)

. (7)

This rate will not hold as the sequence
{

x(n+ m
M

)
}

nears the
optimum where the condition (5) fails.

Owing to the acceleration in proposed algorithms based
on the M2 effect of OS in (7), it is possible to use fewer
subsets for better accuracy in OS. However, it is unknown
how the inexactness in OS methods affect the behavior of the
Nesterov’s algorithms. (Ordinary OS methods are known to
reach a limit-cycle looping around the optimum.) Therefore,
we investigated OS algorithms with Nesterov’s algorithms in
Section IV, where we found that Nesterov’s algorithm (2005)
with OS methods is better stabilized than the earlier one.

For CT, it is computationally expensive to find the smallest
possible Lipschitz constant L, and the backtracking line search
scheme in [4] would be undesirably slow. Instead, we use
a separable quadratic surrogate (SQS) method [7] for the

optimization transfer step in (3), replacing φ(n)
L in (2) by

φ(n)
SQS(x) ! Ψ(x(n))+∇Ψ(x(n))′(x−x(n))+

1

2
||x−x(n)||2D,

(8)
where D is a diagonal matrix. The advantage of using SQS

is that we can compute an exact surrogate φ(n)
SQS(x) with

modest computation. We can further accelerate the SQS-type
algorithms by our recently proposed non-uniform approach
[8].

We summarize the proposed algorithms, namely OS-SQS-
Nes83 and OS-SQS-Nes05, in Figs. 3 and 4 that respectively
combine OS-SQS with the two methods of Nesterov in Figs. 1
and 2.

IV. RESULTS

We used a 3D helical X-ray CT data set of a human shoulder
to show the acceleration of proposed algorithms. We computed
the root mean square difference (RMSD) between the current
and converged2 image within the region-of-interest (ROI) in

2We generated an (almost) converged image by running 100 iterations of
(convergent) NH-ABCD-SQS [8] followed by 2000 iterations of (convergent)
SQS.



Initialize x(0) = v(0), t0 = 1

for n = 0, 1, 2, · · ·

for m = 0, 1, · · · ,M − 1

tnM+m+1 =
(

1 +
√

1 + 4t2
nM+m

)

/2

x(n+m+1
M

) =
[

z(n+
m
M

) −D−1M∇Ψm(z(n+
m
M

))
]

+

z(n+
m+1
M

) = x(n+m+1
M

) +
tnM+m − 1

tnM+m+1

(x(n+m+1
M

) − x(n+ m
M

))

Fig. 3. Proposed Nesterov’s algorithm (1983) with ordered subsets (OS-
Nes83).

Initialize x(0) = v(0) = z(0), t0 = 1

for n = 0, 1, 2, · · ·

for m = 0, 1, · · · ,M − 1

tnM+m+1 =
(

1 +
√

1 + 4t2
nM+m

)

/2

x(n+m+1
M

) =
[

z(n+
m
M

) −D−1M∇Ψm(z(n+
m
M

))
]

+

v(n+
m+1
M

) =

[

z(0) −D−1
nM+m
∑

k=0

tkM∇Ψ(k)M (z(
k
M

))

]

+

z(n+
m+1
M

) =

(

1−
1

tnM+m+1

)

x(n+m+1
M

) +
1

tnM+m+1

v(n+
m+1
M

)

Fig. 4. Proposed Nesterov’s algorithm (2005) with ordered subsets (OS-
Nes05). The notation (k)M stands for k modM .

Hounsfield Units (HU):

RMSD =
||x(n)

ROI − x̂ROI||2
√

Np,ROI
[HU] (9)

versus iteration, to evaluate the convergence rate. In Fig. 5(a),
we used different number of subsets such as 1, 24, and 48 sub-
sets and observed that the ordered subsets highly accelerated
both Nesterov’s algorithms.

However, OS-Nes83 algorithms diverged when we used
more than 40 subsets (as seen in the case of 48 subsets
in Fig. 5(a)), while OS-Nes05 algorithm remained stable with
more than 100 subsets. (Results not shown here.) Based on
our observations, we believe that OS-Nes05 is more stable
than OS-Nes83. We can intuitively understand this behavior,
since OS-Nes05 method uses accumulated momentum that
is less prone to local inexactness, while OS-Nes83 uses the
difference between two previous iterates as momentum which
may be very inaccurate in OS-type methods. However, we
need theoretical justification to better understand the behavior
of OS in Nesterov’s algorithms, and we leave it as a future
work.

We also combined a non-uniform (NU) approach [8] with
OS-SQS-Nes05 to investigate the net resulting acceleration.
In Fig. 5(b), we obtained some acceleration when including
NU, but the algorithm reached a larger limit-cycle than the
case without NU. OS-Nes05 with 24 subsets showed promis-
ing acceleration (with a slightly larger limit-cycle), but the
algorithm with 48 subsets reached a quite large limit-cycle
after initial acceleration. Further refinement of NU method is
needed to reach a relatively small limit-cycle while achieving
noticeable acceleration for large M .

Fig. 6 presents the initial filtered back projection (FBP)
image x(0), the converged image x̂, and reconstructed images
at 12th iteration from four different algorithms for comparison.
Both SQS-Nes05 and OS48-NUSQS at 12 iteration are still far
from the converged image. The proposed algorithms OS48-
SQS-Nes05 and OS24-NUSQS-Nes05 reach low RMSD level
after 10 iterations in Fig. 5(b), and their reconstructed images
at 12 iteration are very close to the converged image. The
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Fig. 5. Plots of RMSD in (9) versus iterations for various proposed Nesterov’s algorithms with OS-NUSQS. (There are no changes in RMSD during the
first iteration, since we count the precomputation of D as one iteration.)
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Fig. 6. Center slice of FBP image x(0), converged image x̂, and reconstructed images at 12th iteration.

results confirm that the proposed combinations of OS and
Nesterov’s algorithms reach a decent image (close to x̂) in
few iterations.

V. DISCUSSION

In this paper, we used a helical CT data set that corresponds
to 984 projection views per turn with pitch 1.0. From the
results, we were able to assess the behavior of OS-(NU)SQS-
Nes empirically for this specific geometry. However, the
number of subsets used for this geometry may not be optimal
for other geometries. So, it is important to investigate the
problem of selecting the appropriate number of subsets for
a given geometry that would ensure fast convergence without
encountering stability issues.

VI. CONCLUSION

We proposed two algorithms that combine Nesterov’s meth-
ods with OS. The proposed algorithms provide dramatic
acceleration in X-ray CT reconstruction with relatively small
number of subsets. We found that the Nesterov’s algorithm
(2005) [3] is more stable with ordered subsets than the other
choice [2] in our experiment. But, this should be examined
on various other data sets, and we leave the theoretical
justification as a future work.

Here, we investigated two specific methods [2], [3] for
combining “momentum” terms with ordered subsets. There
are many other possible ways to introduce momentum into
OS methods and our future work aims at finding ways that
are fast yet relatively stable for OS-type updates.
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