
1

Iterative Helical CT Reconstruction in the Cloud
for Ten Dollars in Five Minutes
Jeffrey M. Rosen, Junjie Wu, Jeffrey A. Fessler, Thomas F. Wenisch

Department of EECS, University of Michigan

Abstract—Iterative statistical X-ray CT reconstruction algo-
rithms can improve image quality for low dose scans. Unfortu-
nately, their clinical utility has been hampered by their enormous
computational requirements; typical low-dose reconstructions
require about an hour on commercial systems. Most existing
parallel implementations use a shared memory programming
model, limiting available parallelism. We investigate using a
large compute cluster for a penalized weighted least-squares
algorithm using ordered subsets (PWLS-OS), scaled to hundreds
of cores to accelerate a single helical CT reconstruction problem.
Using Amazon’s Elastic Cloud Compute (EC2) service, our
experimental results show that a typical helical chest scan can
be reconstructed in under five minutes at a cost under $10.

I. INTRODUCTION

Model-based iterative reconstruction for X-ray CT can
improve image quality and promises to enable X-ray dose
reductions compared to conventional filtered back-projection
[1]. Such methods use statistical models and imaging system
models, improving image quality. The primary drawback of
statistical reconstruction methods is their massive computa-
tional requirement. Current commercial model-based recon-
struction methods can require about an hour to reconstruct a
typical helical chest scan. Improving reconstruction times is
essential to enable ubiquitous use of low-dose CT.

Researchers are developing reconstruction algorithms that
reduce computational requirements and/or converge more
quickly. For example, one recent ordered-subsets algorithm
reaches its limit cycle in about 20 iterations [2]. Nevertheless,
compute-times-per-iteration remain high (several minutes for
helical chest CT scans), so matching scanner and reconstruc-
tion throughput requires further improvements.

Parallelization can reduce time-per-iteration, leveraging the
multiple cores present in modern processors by partitioning
computation into multiple simultaneous sub-problems [3].
Most existing parallel implementations share image and sino-
gram data in a global main memory accessible to all processor
cores. Shared memory simplifies parallelization—each core
computes a subset of the image/sinogram, and can read from
any part of the image/sinogram space with only infrequent
synchronization at coarse steps of each iteration. However,
shared memory approaches are limited by the number of cores
that can be provisioned in a single system—at most a few tens
of cores in conventional commodity systems.

In this work, we investigate the alternative of leveraging the
scalability of massive compute clusters to apply distributed

JAF supported in part by NIH grant R01 HL 098686 and by equipment
donations from Intel.

The authors thank Donghwan Kim for assistance with the algorithms in
[2, 8].

computing power to image reconstruction. We demonstrate
distributed image reconstruction using leased resources from a
commercial cloud computing provider. Cloud services provide
low-cost, on-demand, commodity computing resources. They
are relatively cheap when compared to purchasing a cluster,
and can either be used on-demand for flexibility or reserved for
exclusive use and further discounted costs. They also provide a
low-overhead mechanism for expanding computational power.
To increase the number of nodes working on a problem, one
need only purchase more cloud compute time (only seconds
of setup time).

Although we use the cloud to demonstrate the perfor-
mance potential of distributed reconstruction, our methods
are applicable more generally to all distributed systems. For
example, researchers have accelerated reconstruction using the
parallelism in graphics processing unit (GPU) accelerators
[4]. However, ganging multiple GPUs for greater parallelism
presents a significant challenge because they do not share
a single global address space, hence data dependencies are
problematic. Our methods could be applied to such a system
to sub-divide processing across distributed GPUs. Similarly,
emerging devices such as the Xeon Phi coprocessor can be
ganged together to achieve greater performance and scalability
using our approach.

To use distributed computing resources, one must parallelize
reconstruction algorithms across compute nodes that do not
share a single global memory. We follow the paradigm of many
large-scale scientific applications by using explicit message
passing to exchange updates to sinogram and image data
between compute nodes at appropriate synchronization points
in the reconstruction algorithm. As we will show, we can
easily scale the number of nodes collaborating on a single
reconstruction problem until performance is limited by avail-
able communication bandwidth; further speedups will require
either faster (and more expensive) interconnection networks or
innovations to reduce data communication.

Prior efforts to parallelize filtered back-projection over a
cluster have used the MapReduce programming model [5, 6],
wherein the computation is translated into simple “map” and
“reduce” tasks and a runtime system orchestrates communi-
cation among these tasks. Though they ease programming,
publicly available MapReduce frameworks, such as Hadoop,
store intermediate results on disk when communicating, which
is extremely inefficient for iterative reconstruction algorithms.
To our knowledge, there have been no prior reports of iterative
reconstruction of clinical helical CT scans (with thousands of
projection views) using hundreds of cores on a commodity
cloud computing service. The closest related work is the

The 12th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

241

investigation by Gregor of an unregularized SIRT algorithm
on four 8-core nodes for axial micro CT with 360 views [7].

This paper investigates a penalized weighted least-squares
with ordered subsets (PWLS-OS) reconstruction algorithm [8]
that distributes computation across several multi-core nodes
that communicate via explicit message passing. This approach
scales beyond the limits of a single node, so the number of
cores working in parallel is limited only by available hardware,
communication bandwidth, and cost. We use Amazon’s Elastic
Compute Cloud (EC2) service to demonstrate the potential of
cloud computing environments and show that a 20-iteration
reconstruction of a 320-slice helical chest CT scan using
50 nodes (800 cores) requires less than five minutes at a
total computing cost under $10. A “private” cloud computing
environment (e.g., operated under contract for a large hospital
network) might approach similar costs.

II. METHODS

A. Background

We compute a reconstructed image x̂ by minimizing a
PWLS cost function [1]:

x̂ = argmax
x

1
2
‖y−Ax‖2

W +R(x), (1)

where y denotes the observed X-ray CT sinogram data, W
denotes a diagonal statistical weighting matrix, A is the system
matrix [9], and R(x) is an edge-preserving regularizer that
balances noise and image resolution. We use an R(x) with
first-order finite differences between a voxel and its closest 26
neighbors and a Fair edge-preserving potential [10], but our
methods can be extended to other regularizers.

The PWLS-OS iterative algorithm [3] involves four steps:
forward projection, back projection, regularization, and image
update. Figure 1 depicts the algorithm graphically. The first
step involves forward projecting the estimate xn at the nth
iteration and calculating the weighted sinogram residual:

rn = W(Axn −y). (2)

The calculations for each residual are independent, so they
can be arbitrarily reordered or parallelized [9]. Iterating along
the scan axis in the innermost loop enables reuse of beam
geometry calculations. Only the projection views within a
given subset are projected in a given sub-iteration, so methods
that use fewer subsets, and hence more views per subset, e.g.,
[2], provide more opportunity for parallelism.

Back projection applies the transpose of the system matrix

bn = A′rn. (3)

Back projection must occur after forward projection because
of its dependency on rn. In principle, one can backproject
the residual into every voxel independently, allowing massive
parallelism over voxel space. In practice it is again more
efficient to have an inner loop along the axial direction for
each thread [9]. This strategy leads to parallelization across the
≈ 5122 voxels in a single transaxial slice, which still allows
for tens of thousands of threads.

The regularization step calculates the gradient ∇ of the
regularizer at the current image xn:

gn = ∇R(xn). (4)

Because it depends only on xn, one can perform regularization
in parallel with back projection and in any voxel order.

Finally, the image is updated as follows:

xn+1 = xn −D(bn +gn), (5)

where D denotes a diagonal matrix that is precomputed prior
to iterating using optimization transfer principles [8]. We also
enforce non-negativity in this step.

Parallelism is readily available in each of these steps; in
principle, one could launch individual execution threads to
calculate each element in xn, rn, bn, and gn. In practice, it
is more efficient to group calculations into threads that allow
common sub-expressions to be factored out of inner-most
loops. Most existing statistical reconstruction implementations
[4, 8] use programming interfaces such as POSIX threads,
which allow concurrent operation on a single copy of xn,
rn, bn, and gn stored in a shared main memory. As each
thread updates a disjoint subset of each matrix, the threads can
proceed without synchronization, except for a global barrier
between each step.

Though shared main memory provides a simple abstraction,
it limits performance scalability. Far greater performance can
be achieved by scaling a workload to execute on a large
cluster. Distributed computation in a cluster is particularly
cost-effective in cloud computing environments, where clusters
can be time-shared and compute time leased by the hour at
low cost.

B. Parallelizing over a cluster

A large cluster can bring far more compute cores to
bear on a problem, but data updates must be transmitted
explicitly between compute nodes. The central challenge of
implementing statistical reconstruction on such a cluster lies
in orchestrating this communication, requiring a fundamentally
different implementation approach than conventional parallel
statistical reconstruction.

Unfortunately, data structures are not easily partitioned and
distributed among nodes in statistical reconstruction algo-
rithms for X-ray CT. Both forward and back projection require
essentially all data in a particular transaxial slice. Data can
be somewhat partitioned along the scan axis, particularly for
small cone angles that limit the axial interaction distance
between image data and views. For a helical CT chest scan
with 320 slices, we partition the image volume into, say,
5 “slabs” of 64 slices each and reconstruct each of those
slabs by an independent set of compute nodes. Because of
the “long object problem” in helical CT, to reconstruct 64
slices of interest, we also reconstruct 32 padding slices on
each end of the slab. These padding slices are discarded after
reconstruction, and thus represent a somewhat undesirable
overhead of the slab-partition approach. This overhead means
that it is inefficient to partition the volume into many more
slabs with fewer slices per slab.

The 12th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

242

fessler
Highlight
min

Fig. 1: Visual representation of computation phases. Arrows represent global barriers between steps.

Fig. 2: Sample execution timeline illustrating phases of computation
and communication. The color of Line 1 indicates the current
algorithmic step. Dark red indicates forward projection, dark blue in-
dicates communication after forward projection, light green indicates
back projection, light red indicates regularization, purple indicates
update, neon green indicates communication after the update step, and
pink indicates barrier synchronization. The remaining lines indicate
forward progress of individual threads on each core.

After each algorithm step, image/sinogram updates are
broadcast and merged with results from all other nodes partic-
ipating in the slab computation. We use the Message Passing
Interface (MPI) for inter-node communication. MPI provides
a means of sending and receiving data both synchronously
(blocking) and asynchronously (non-blocking), as well as
creating global barriers that prevent any node from proceeding
past the point of the barrier until all nodes have reached it.

A straightforward communication approach places a signif-
icant burden on the interconnection network between servers.
At the end of any given step, updating each node’s copy
of x requires each node to broadcast a copy of its portion
of the data to N − 1 other nodes, where N is the number
of nodes participating in a given slab’s reconstruction. An
entire X-ray CT image volume for a helical scan can occupy
about a gigabyte of memory (in single float precision). With a
network bandwidth of 10 gigabits per second (as in Amazon’s
EC2 system), transferring several copies of the entire image
volume incurs considerable delay. Communication is needed
multiple times in each subset and iteration, so the total time
spent sending and receiving over the network ultimately limits
performance scalability. Hence, optimizing communication is
critical. Partitioning the problem into smaller-sized slabs is a
first step towards reducing communication. We also broadcast
only those arrays that must be synchronized, which are the
residual rn and the updated image xn+1.

Figure 1 illustrates the reconstruction steps for a single
subset. The arrows represent global barriers between each step,
and the clouds represent the two necessary broadcast steps.

Figure 2 illustrates the computation timeline over about four
(out of 12) subset updates, derived from measured results for
execution on 10 nodes of 16 cores each. Each colored segment

1 16 324864 8096 128 160 192 224
1

16
32
48
64
80
96

128

160

192

224

Numbers of Cores

S
p

ee
d

u
p

Ideal Speedup

Observed Speedup

Fig. 3: Speedup of a single iteration of one slab for varying node
configurations.

of the top bar represents an individual task, and the segment
length indicates the amount of time taken for that task (in
seconds). The 16 bottom bars show execution time for each
core in the first node to perform the task identified by the color
in the topmost bar. Synchronization and communication time
(dark blue, pink, and neon green in the top bar; large blank
regions in the remaining bars) occupy a significant fraction of
overall execution time.

III. EXPERIMENTAL RESULTS

We report on our distributed version of PWLS-OS imple-
mented in the C99 programming language using the openMPI
and POSIX thread libraries. Our implementation produces
identical output to that of a previously existing multithreaded
version, confirming our methods do not sacrifice image quality.

Our test environment consisted of Amazon EC2 HPC
cc2.8xlarge nodes, each having dual eight-core 2.6 GHz Xeon
processors, 60.5 GB of memory, and 10 gigabit ethernet. We
used Amazon’s group placement policy for all experiments to
ensure nodes were located physically close to each other.

We used simulated helical CT data where the image volume
for a single slab is 512 × 512 × 128 slices with a 70 cm
transaxial field of view (FOV) and 0.625 mm slice thickness.
Out of an entire 9-turn helical scan, with pitch = 63/64,
we used 3 turns (2952 views) for reconstructing each slab.
The views were each 64 rows by 888 channels. We use the
separable footprint projector [9]. Voxels within the 70 cm FOV
are reconstructed using [8]. We used 12 subsets because that
is suitable for our latest accelerated OS algorithm [2].

Figure 3 shows the computational speedup for a single
iteration plotted for a single core up to 224 cores (each node
contains 16 cores) for our implementation compared to ideal
(linear) speedup. Speedup [11] for a system with n cores is

Time taken for 1 core
Time taken for n cores

. (6)

The 12th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

243

1 32 64 96 128 160 192 224
10

1

10
2

10
3

Number of Cores

T
im

e
p

er
 It

er
at

io
n

 (
se

c)

Fig. 4: Timing results for a single iteration
on one slab for varying node configurations.

FP BP Reg Update Comm
0

5

10

15

20

25

30

35

T
im

e
(s

ec
)

10 nodes
1 node
Linearly scaled
10 nodes

Fig. 5: Time (per iteration) spent in each step
for one slab in the 10-node and 1-node cases
compared to ideal linear scaling.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

Numbers of Nodes

C
o

st
 p

er
 S

la
b

 (
$)

Fig. 6: Cost for a single slab of a 20-iteration
scan for varying node configurations.

Figure 3 shows that the observed speedup growth slows as
nodes are added due to communication time and bandwidth
constraints. This behavior results in a knee in the speedup
curve as it approaches a maximum speedup of about 64.

Figure 4 depicts the time taken to complete a single iteration
for 1 core to 224 cores in 1-node increments. As expected, the
time curve decreases more and more slowly as the number of
nodes increases, asymptotically approaching a minimum of
about 12 seconds. Communication begins to dominate around
160 cores (10 nodes), at which point the benefit of using more
nodes becomes insignificant.

Figure 5 shows computation times of individual steps for the
observed 10-node, 1-node, and ideal linear scaling 10-node
cases. Linear scaling for n nodes is defined as achieving a
speedup of n, so a linearly scaled 10 node system would take
one tenth of the time of the 1 node case per iteration. The
actual time taken in each compute step (blue) is reasonably
close to the ideal linearly scaling case (red). Thus individual
steps scale well even though total iteration time exhibits much
less than linear speedup due to communication time. The
significance of communication time is evident; it accounts for
nearly half the time per iteration in the 10-node case.

Figure 6 plots the cost of running 20 PWLS-OS iterations to
reconstruct a single 128-slice slab versus the number of nodes
used. The cost increases monotonically because communica-
tion is such a significant factor in performance. The total cost,
however, is still inexpensive.

Based on diminishing returns when using more than 10
nodes, we focus on the 10-node case as a reasonable con-
figuration. Using 10 nodes (160 cores) per slab, the total
time for reconstructing a 5-slab scan (320 usable slices) is
15 sec

iteration × 20 iterations = 300 seconds. Likewise, the cost of
performing a reconstruction is 10 nodes

slab × 5 slabs× $0.00067
sec ×

15 sec
iteration × 20 iterations = $10. For a longer helical scan with
640 slices the cost would scale to $20 (by using more nodes
for the additional slabs) but the 5-minute reconstruction time
would remain unchanged.

IV. SUMMARY AND CONCLUSIONS

Use of statistical reconstruction methods is impeded by their
computation time. We have investigated using commercial
cloud computing to improve the speed of MBIR through

parallel computing. Our results, generated using Amazon’s
EC2 service, show that even with significant communication
overhead, attractive reconstruction times (5 minutes) can be
achieved at a low price ($10). If high resolution targeting of
a region of interest (ROI) is needed, then a two-stage recon-
struction will be needed [12] that would increase the time and
cost accordingly. As expected, node-to-node communication
is a limiting factor on performance, even for a relatively small
number of nodes. Future work includes reducing communica-
tion by using data compression techniques, and by devising
iterative algorithms that do not require full synchronization
after every update.

REFERENCES
[1] J-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh. A three-dimensional

statistical approach to improved image quality for multi-slice helical CT.
Med. Phys., 34(11):4526–44, November 2007.

[2] D. Kim, S. Ramani, and J. A. Fessler. Ordered subsets with momentum
for accelerated X-ray CT image reconstruction. In Proc. IEEE Conf.
Acoust. Speech Sig. Proc., 2013. To appear.

[3] D. Kim and J. A. Fessler. Parallelizable algorithms for X-ray CT image
reconstruction with spatially non-uniform updates. In Proc. 2nd Intl.
Mtg. on image formation in X-ray CT, pages 33–6, 2012.

[4] M. Wu and J. A. Fessler. GPU acceleration of 3D forward and backward
projection using separable footprints for X-ray CT image reconstruction.
In Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med,
pages 56–9, 2011.

[5] B. Meng, G. Pratx, and L. Xing. Ultrafast and scalable cone-beam
CT reconstruction using MapReduce in a cloud computing environment.
Med. Phys., 38(12):6603–9, December 2011.

[6] S. Srivastava, A. R. Rao, and V. Sheinin. Accelerating statistical image
reconstruction algorithms for fan-beam x-ray CT using cloud computing.
In Proc. SPIE 7961 Medical Imaging 2011: Phys. Med. Im., page
796134, 2011.

[7] J. Gregor. Distributed multi-core implementation of SIRT with vector-
ized matrix kernel for micro-CT. In Proc. Intl. Mtg. on Fully 3D Image
Recon. in Rad. and Nuc. Med, pages 64–7, 2011.

[8] D. Kim, D. Pal, J-B. Thibault, and J. A. Fessler. Improved ordered
subsets algorithm for 3D X-ray CT image reconstruction. In Proc. 2nd
Intl. Mtg. on image formation in X-ray CT, pages 378–81, 2012.

[9] Y. Long, J. A. Fessler, and J. M. Balter. 3D forward and back-projection
for X-ray CT using separable footprints. IEEE Trans. Med. Imag.,
29(11):1839–50, November 2010.

[10] R. C. Fair. On the robust estimation of econometric models. Ann. Econ.
Social Measurement, 2:667–77, October 1974.

[11] J. L. Hennessy and D. A. Patterson. Computer architecture: A quanti-
tative approach. Morgan Kaufmann, San Francisco, 4 edition, 2006.

[12] A. Ziegler, T. Nielsen, and M. Grass. Iterative reconstruction of a region
of interest for transmission tomography. In Proc. SPIE 6142 Medical
Imaging 2006: Phys. Med. Im., page 614223, 2006.

The 12th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

244

