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ABSTRACT

Consider the context of selecting an optimal system from amongst a finite set of competing systems,
based on a “stochastic” objective function and subject to a single “stochastic” constraint. In this setting,
and assuming the objective and constraint performance measures have a bivariate normal distribution, we
present a characterization of the optimal sampling allocation across systems. Unlike previous work on this
topic, the characterized optimal allocations are asymptotically exact and expressed explicitly as a function
of the correlation between the performance measures.

1 INTRODUCTION

The simulation-optimization (SO) problem is a nonlinear optimization problem where the objective and
constraint functions, defined on a set of candidate solutions, are observable only through consistent estimators.
The consistent estimators can be defined implicitly, e.g., through a stochastic simulation model. The focus
of this paper is a variation of the SO problem where there exist multiple performance measures defined on
a finite set of candidate solutions, or “systems,” one of which is primary and called the objective function,
while the others are secondary and called the constraint functions. Given that these objective and constraint
function values are observable only as consistent estimators from a stochastic simulation, the constrained SO
problem is to identify the “best feasible system” using only the simulation output, where the “best feasible
system” is the system with the best objective function value amongst those systems whose constraint values
satisfy predetermined threshold levels. While we limit our discussion here to the constrained SO problem,
entry points into the corresponding objective-only and constraint-only problems can be found in Kim and
Nelson (2006), Batur and Kim (2010), Chen et al. (2000), Glynn and Juneja (2004), and Szechtman and
Yücesan (2008).
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There exist two broad problem statements in the literature on “stochastically” constrained SO on
finite sets. The first problem statement is to identify the best feasible system in finite-time with a pre-
specified probabilistic guarantee. Andradóttir and Kim (2010) propose constrained Ranking and Selection
(R&S) to solve the finite-time problem, after assuming the performance measures are independent and
identically distributed (iid) replications from a bivariate normal distribution. The second problem statement
in the literature, and the focus of this paper, is to find a computing budget allocation that minimizes the
probability of selecting any system other than the best feasible system. This problem statement yields
results that are asymptotic in nature, and solutions have been proposed by Lee et al. (2011) for normally
distributed performance measures and by Hunter and Pasupathy (2011) for performance measures from
general light-tailed distributions.

Within the context of the second problem statement, the effect of correlation between the objective
and constraint functions on the asymptotically optimal sampling allocation has not been explored. In Lee
et al. (2011), Bonferroni bounds dissolve the effect of dependence in the solution, and hence correlation
is not explicitly taken into account in the allocation. In Hunter and Pasupathy (2011), the objective and
constraints are assumed independent. The effect of correlation on the optimal allocation thus remains an
important open question. Towards answering this question, we present a series of results that precisely
characterize the effect of correlation on the optimal allocation. The characterized optimal allocations are
asymptotically exact and expressed explicitly as a function of the correlation between the performance
measures. Like Andradóttir and Kim (2010), we assume the performance measures are iid replications
from a bivariate normal distribution. For brevity, we present results without proofs.

1.1 Problem Statement

Our problem statement is a one-constraint version of the problem statement presented in Hunter and
Pasupathy (2011). We consider a finite set i = 1, . . . ,r of systems, each with an unknown objective value
hi ∈ R and unknown constraint value gi ∈ R. Given a constant γ ∈ R, we wish to select the system with
the lowest objective value hi, subject to the constraint gi ≤ γ . That is, we consider

Problem P : Find argmin
i

hi

s.t. gi ≤ γ,

where hi and gi are expectations, estimates of hi and gi are observed together through simulation as sample
means, and a unique solution to Problem P is assumed to exist.

Let α = (α1,α2, . . . ,αr) be a vector denoting the proportion of the total sampling budget n given to
each system, so that ∑

r
i=1 αi = 1 and αi ≥ 0 for all i = 1, . . . ,r. Let the system having the smallest estimated

objective value amongst the estimated-feasible systems be selected as the estimated solution to Problem
P. Then we ask, what vector of proportions α maximizes the rate of decay of the probability that this
procedure returns a suboptimal solution to Problem P?

1.2 Organization

We present notation and assumptions in Section 2. We derive the rate function of the probability of false
selection in Section 3. In Section 4 we provide an optimal allocation strategy that maximizes the rate of
decay of the probability of false selection, and in Section 5 we provide an approximate solution to the
maximization problem when it is reasonable to assume that the optimal allocation of the best feasible
system is much higher than the optimal allocation of other systems. Section 6 contains concluding remarks.

2 PRELIMINARIES

Let (Hi,Gi) be a random output vector from the simulation. We make the following assumption throughout
the paper.
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Assumption 1 We assume we may obtain iid replicates of the bivariate normal random vector (Hi,Gi),
with correlation ρi, |ρi|< 1. That is, [

Hi

Gi

]
∼ BV N

([
hi

gi

]
, Σi

)
,

where Σi is the variance-covariance matrix

Σi =

(
Var(Hi) Cov(Hi,Gi)

Cov(Gi,Hi) Var(Gi)

)
=

(
σ2

hi
ρi σhiσgi

ρi σhiσgi σ2
gi

)
,

and σ2
hi
< ∞,σ2

gi
< ∞. We denote the vector of correlations between the objective and constraint functions

across systems as ρ = (ρ1,ρ2, . . . ,ρr).
We also assume the systems are simulated independent of each other.

Assumption 2 The output random vectors (Hi,Gi) are mutually independent for all i = 1, . . . ,r.
Under Assumption 1, by the Gärtner-Ellis theorem (see, e.g., Dembo and Zeitouni 1998), (Ĥi, Ĝi) =

( 1
αin ∑

αin
k=1 Hik,

1
αin ∑

αin
k=1 Gik) satisfies the large deviations principle (LDP) with good rate function

αiIi(x,y) =
αi

2
[

x−hi y−gi
]

Σ
−1
i

[
x−hi

y−gi

]
=

αi

2(1−ρ2
i )

(
(x−hi)

2

σ2
hi

− 2ρi(x−hi)(y−gi)

σhiσgi

+
(y−gi)

2

σ2
gi

)
.

Since the marginal distributions for each Hi and Gi are also normal, Ĥi and Ĝi likewise satisfy the LDP
with good rate functions

αiIi(x) =
αi(x−hi)

2

2σ2
hi

and αiJi(y) =
αi(y−gi)

2

2σ2
gi

.

For notational convenience, let system 1 be the best feasible system. We also make the following assumption.
Assumption 3 We assume hi 6= h1 for all i = 2, . . . ,r and gi 6= γ for all i = 1, . . . ,r.
That is, Assumption 3 states that no system sits exactly on the the constraint value or has an objective
value exactly equal to that of system 1. Assumption 3 ensures that the relevant rate functions are nonzero.

3 RATE FUNCTION OF THE PROBABILITY OF FALSE SELECTION

Let us formulate the probability of false selection as the probability that system 1 is declared infeasible or
that system 1 is beaten in estimated objective value by another estimated-feasible system. That is,

P{FS}= P{(Ĝ1 > γ)∪ (∪r
i=2(Ĝi ≤ γ)∩ (Ĥi ≤ Ĥ1))} (1)

The P{FS} in equation (1) has the lower bound

max
(

P{Ĝ1 > γ}, max
2≤i≤r

P{(Ĝi ≤ γ)∩ (Ĥi ≤ Ĥ1)}
)

and the upper bound

r×max
(

P{Ĝ1 > γ}, max
2≤i≤r

P{(Ĝi ≤ γ)∩ (Ĥi ≤ Ĥ1)}
)
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such that

lim
n→∞

1
n

logP{FS}= lim
n→∞

1
n

logmax
(

P{Ĝ1 > γ}, max
2≤i≤r

P{(Ĝi ≤ γ)∩ (Ĥi ≤ Ĥ1)}
)
. (2)

We note that as in Hunter and Pasupathy (2011), there are two main terms: one for the feasibility of system
1, and a second term representing the event that another estimated-feasible system “beats” system 1 in
estimated objective value. The following proposition states that the overall rate function is the minimum
rate function of the probability of each of these two events.
Proposition 1 The rate function for P{FS} is

− lim
n→∞

1
n

logP{FS}= min
(

α1J1(γ), min
2≤i≤r

(
inf

xi≤x1, yi≤γ
(α1I1(x1)+αiIi(xi,yi))

))
.

For notational simplicity, let the rate function infxi≤x1, yi≤γ (α1I1(x1)+αiIi(xi,yi)) be denoted by
Ki(α1,αi). Then expanding the normal and bivariate normal rate functions, we have

Ki(α1,αi) = inf
xi≤x1
yi ≤ γ

(
α1(x1−h1)

2

2σ2
h1

+
αi

2(1−ρ2
i )

(
(xi−hi)

2

σ2
hi

− 2ρi(xi−hi)(yi−gi)

σhiσgi

+
(yi−gi)

2

σ2
gi

))
.

The following lemma provides the location of the infimum in Ki(α1,αi).
Lemma 1 Under Assumption 1, the infimum in Ki(α1,αi) is achieved at

x∗1 = x∗i =
(α1/σ2

h1
)h1 +(αi/σ2

hi
)hi

(α1/σ2
h1
)+(αi/σ2

hi
)

, y∗i = gi +ρiσgi

(α1/σ2
h1
)

(α1/σ2
h1
)+(αi/σ2

hi
)

(h1−hi)

σhi

, i ∈ Γ(ρ,α) (3)

x∗1 = h1, x∗i = hi +ρiσhi

(γ−gi)

σgi

, y∗i = γ, i ∈ Sb(ρ) (4)

x∗1 = x∗i =

α1h1

σ2
h1

+
αi

σ2
hi
(1−ρ2

i )

(
hi +ρiσhi

(γ−gi)

σgi

)
(

α1

σ2
h1

+
αi

σ2
hi
(1−ρ2

i )

) , y∗i = γ, i ∈ Sw(ρ,α) (5)

where

Γ(ρ,α) =

{
i : hi > h1 and gi ≤ γ +ρiσgi

(σ2
hi
/αi)

(σ2
h1
/α1)+(σ2

hi
/αi)

(hi−h1)

σhi

}
,

Sb(ρ) =

{
i : hi ≤ h1 +ρiσhi

(gi− γ)

σgi

and gi > γ

}
,

Sw(ρ,α) =

{
i : hi > h1 +ρiσhi

(gi− γ)

σgi

and gi > γ +ρiσgi

(σ2
hi
/αi)

(σ2
h1
/α1)+(σ2

hi
/αi)

(hi−h1)

σhi

}
.

As in Hunter and Pasupathy (2011), let us define the sets for zero correlation as feasible and worse
(Γ), infeasible and better (Sb), and infeasible and worse (Sw). Formally,

Γ = {i : hi > h1 and gi ≤ γ, i 6= 1} ,
Sb = {i : hi ≤ h1 and gi > γ, i 6= 1} ,
Sw = {i : hi > h1 and gi > γ, i 6= 1} ,
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respectively.
In the set definitions given in Lemma 1, for positive ρi, Γ(ρ,α)⊇Γ andSb(ρ)⊇ Sb, whileSw(ρ,α)⊆ Sw.

This result is intuitive: since the performance measures are positively correlated, a system from Sw that is
“close enough” to h1 in objective value or “close enough” to γ in constraint value and succeeds in crossing
one of these barriers will likely succeed in crossing the other. Therefore some systems in Sw may “pretend”
to be in either Γ or Sb when there is positive correlation. When there is negative correlation, the opposite
occurs. Thus Γ(ρ,α)⊆ Γ and Sb(ρ)⊆ Sb, while Sw(ρ,α)⊇ Sw. Now systems in Γ and Sb “pretend” to
be in Sw. For example, due to negative correlation, a system in Γ that is “close enough” to the constraint
might be declared infeasible when it “beats” system 1 in objective value. Of the two types of correlation,
intuitively it seems that negative correlation is “better” since negative correlation may result in an increased
rate of decay of the probability of false selection. However it is worth noting that this result depends on
the formulation of the problem in Section 1.1.

For each set Γ(ρ,α), Sb(ρ), and Sw(ρ,α), given the result from Lemma 1, we can solve for the rate
functions. These rate functions are given in the following proposition.
Proposition 2 Under Assumption 1, the relevant rate functions are

Ki∈Γ(ρ,α)(α1,αi) =
(h1−hi)

2

2(σ2
h1
/α1 +σ2

hi
/αi)

,

Ki∈Sb(ρ)(α1,αi) =
αi(γ−gi)

2

2σ2
gi

,

Ki∈Sw(ρ,α)(α1,αi) =

(h1−hi)
2−2ρiσhi(h1−hi)

(γ−gi)

σgi

+
αi(γ−gi)

2

σ2
gi

(
σ

2
h1
/α1 +σ

2
hi
/αi
)

2(σ2
h1
/α1 +(σ2

hi
/αi)(1−ρ2

i ))
.

The rate functions for sets Γ(ρ,α) and Sb(ρ) are identical to the rate functions of Γ and Sb in the
independent case. That is, while the sets depend on ρ , rate functions for systems in these set do not depend
on ρ . In the independent case, the rate function for systems in Sw comprises two added terms: one for
“optimality” that is identical to the rate function for systems in Γ, and one for “feasibility” that is identical
to the rate function for systems in Sb. In the correlated case, the rate function for systems in Sw(ρ,α)
comprises three added terms: one for “optimality” and one for “feasibility” that are similar to the rate
functions for systems in Γ(ρ,α) and Sb(ρ), plus an interaction term.

The following theorem states the probability of false selection for the bivariate normal case as a function
of the correlation ρ .
Theorem 1 Under Assumption 1, the rate function of the probability of false selection is

− lim
n→∞

1
n

logP{FS}= min
(

α1(γ−g1)
2

2σ2
g1

, min
i∈Γ(ρ,α)

(h1−hi)
2

2(σ2
h1
/α1 +σ2

hi
/αi)

, min
i∈Sb(ρ)

αi(γ−gi)
2

2σ2
gi

,

min
i∈Sw(ρ,α)

(h1−hi)
2−2ρiσhi(h1−hi)

(γ−gi)

σgi

+
αi(γ−gi)

2

σ2
gi

(
σ

2
h1
/α1 +σ

2
hi
/αi
)

2(σ2
h1
/α1 +(σ2

hi
/αi)(1−ρ2

i ))

)
.

As in Hunter and Pasupathy (2011), we find that the overall rate function will be determined by the
most likely of four events. In the correlated case, these events are: (i) system 1 is incorrectly declared
infeasible; (ii) a system from Γ(ρ,α) “pretends” to be optimal; (iii) a system from Sb(ρ) “pretends” to be
feasible; (iv) a system from Sw(ρ,α) “pretends” to be optimal and feasible.
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4 OPTIMAL ALLOCATION STRATEGY

We wish to allocate the αi’s to solve the following optimization problem:

max min
(

α1J1(γ), min
2≤i≤r

Ki(α1,αi)

)
(6)

s.t.
r

∑
i=1

αi = 1, αi ≥ 0.

This problem can be re-expressed as

Problem Q : max z s.t.

α1J1(γ)≥ z,

Ki(α1,αi)≥ z, 2≤ i≤ r,
r

∑
i=1

αi = 1, αi ≥ 0.

Proposition 3 The rate function Ki(α1,αi) is a concave function of (α1,αi).
Since α1J1(γ) is also a concave function of α , Problem Q is a concave maximization problem.

Let Problem Q∗BV N be as Problem Q except with the inequality constraints on Ki(α1,αi) replaced by
equality constraints and forcing αi > 0. Following a proof similar to that given in Hunter and Pasupathy
(2011), it can be shown that Problems Q and Q∗BV N are equivalent, that is, they have an identical optimal
solution and optimal value. Problem Q∗BV N is written as

Problem Q∗BV N : max z s.t.

α1(γ−g1)
2

2σ2
g1

≥ z,

(h1−hi)
2

2(σ2
h1
/α1 +σ2

hi
/αi)

= z, i ∈ Γ(ρ,α)

αi(γ−gi)
2

2σ2
gi

= z, i ∈ Sb(ρ)

(h1−hi)
2−2ρiσhi(h1−hi)

(γ−gi)

σgi

+
αi(γ−gi)

2

σ2
gi

(
σ

2
h1
/α1 +σ

2
hi
/αi
)

2(σ2
h1
/α1 +(σ2

hi
/αi)(1−ρ2

i ))
= z, i ∈ Sw(ρ,α)

r

∑
i=1

αi = 1, αi > 0.

We propose that the solution to Problem Q∗BV N be obtained using a solver.

5 AN APPROXIMATE CLOSED-FORM SOLUTION

This section presents a closed-form solution to Problem Q∗BV N under the assumption that α∗1 � α∗i . Thus
the solutions in this section are only appropriate when such an assumption is reasonable. For example,
such a scenario may arise when the number of systems in Γ(ρ,α) and Sw(ρ,α) is large.

The α∗1 � α∗i assumption appears often in previous OCBA literature (see, e.g., Lee et al. (2011)).
Notationally, we remove the “stars” from α in this section to emphasize that the α value presented here
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is an approximation to the true optimal solution. First, let us use the α1� αi assumption to simplify the
characterization of the sets Γ(ρ,α) and Sw(ρ,α). We define the sets Γα1�αi(ρ) and Sα1�αi

w (ρ) as

Γ
α1�αi(ρ) =

{
i : hi > h1 and gi < γ +ρiσgi

(hi−h1)

σhi

, i 6= 1
}
,

Sα1�αi
w (ρ) =

{
i : hi > h1 +ρiσhi

(gi− γ)

σgi

and gi > γ +ρiσgi

(hi−h1)

σhi

, i 6= 1
}
.

Set Sb(ρ) needs no modification, as it does not depend on (α1,αi). The corresponding rate functions are

Ki∈Γα1�αi (ρ)(α1,αi) =
αi(h1−hi)

2

2σ2
hi

= αiIi(h1),

Ki∈Sb(ρ)(α1,αi) =
αi(γ−gi)

2

2σ2
gi

= αiJi(γ),

Ki∈Sα1�αi
w (ρ)

(α1,αi) =
αi

2(1−ρ2
i )

(
(h1−hi)

2

σ2
hi

−2ρi
(h1−hi)

σhi

(γ−gi)

σgi

+
(γ−gi)

2

σ2
gi

)
= αiIi(h1,γ).

Let I(·) denote the indicator function. Under Assumption 1 and the assumption that α∗1 � α∗i , it follows
from the equality constraints in Problem Q∗BV N that the sample allocated to systems other than system 1
should follow the proportion

αi

αk
=

Ik(h1)I(k∈Γα1�αi (ρ))+ Jk(γ)I(k∈Sb(ρ))+ Ik(h1,γ)I(k∈Sα1�αi
w (ρ))

Ii(h1)I(i∈Γα1�αi (ρ))+ Ji(γ)I(i∈Sb(ρ))+ Ii(h1,γ)I(i∈Sα1�αi
w (ρ))

.

6 CONCLUDING REMARKS

Simulation optimization on a finite set and subject to stochastic constraints is a topic that remains largely
unexplored. For the specific but useful setting where the objective and constraint performance measures can be
jointly sampled from a multivariate normal distribution, there appears to be much inherent problem structure
that can be exploited toward developing asymptotically optimal and easily implementable algorithms. For
instance, suppose we use a simple fully-sequential algorithm that selects that system having the smallest
estimated objective function value among the estimated-feasible systems, after expending a given simulation
budget. Within the setting of such algorithms, our results characterize the nature of sampling plans that
maximize the decay rate of the probability that the algorithm returns a suboptimal system, as the simulation
budget tends to infinity. The characterization takes the form of a concave maximization problem.

We note that the theory presented in this paper assumes that the rate functions of the systems are
known. In practice, the rate functions must be estimated, and hence our results may only be implemented
approximately through estimators. As in Hunter and Pasupathy (2011), our results readily inspire an
implementable sequential selection algorithm using sample means and covariances to estimate the rate
functions. Ongoing research provides such an implementable sequential algorithm and extends our current
results to the context of multiple constraints.
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