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Consider the context of constrained simulation optimization (SO), that is, optimization problems where the
objective and constraint functions are known through dependent Monte Carlo estimators. For solving such
problems on large finite spaces, we provide an easily implemented sampling framework called SCORE (Sam-
pling Criteria for Optimization using Rate Estimators) that approximates the optimal simulation budget
allocation. We develop a general theory, but like much of the existing literature on ranking and selection,
our focus is on SO problems where the distribution of the simulation observations is Gaussian. We first
characterize the nature of the optimal simulation budget as a bilevel optimization problem. We then show
that under a certain asymptotic limit, the solution to the bilevel optimization problem becomes surprisingly
tractable and is expressed through a single intuitive measure, the score. We provide an iterative SO algo-
rithm that repeatedly estimates the score and determines how the available simulation budget should be
expended across contending systems. Numerical experience with the algorithm resulting from the proposed
sampling approximation is very encouraging — in numerous examples of constrained SO problems having
1,000 to 10,000 systems, the optimal allocation is identified to negligible error within a few seconds to one
minute on a typical laptop computer. Corresponding times to solve the full bilevel optimization problem
range from tens of minutes to several hours.
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1. INTRODUCTION

Constrained Simulation Optimization (SO) is a class of nonlinear optimization prob-
lems where the objective and constraint functions can be expressed implicitly, e.g.,
using a stochastic simulation. This implicit definition of the functions is extremely ver-
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0:2 R. Pasupathy et al.

satile, in contrast to more traditional optimization settings that stipulate an explicit
expression of the objective and constraint functions. The versatility of the SO formu-
lation has resulted in its widespread adoption. “Real world” problems in a variety of
areas such as transportation systems, financial engineering, logistics, and healthcare
now routinely employ SO formulations as a framework to solve complex optimization
problems. For overviews and specific examples, see Spall [2003], Fu et al. [2005], Bar-
ton and Meckesheimer [2006], April et al. [2001], Andradéttir [2006], Pasupathy and
Henderson [2006; 2011].

Analogous to deterministic optimization problems, SO problems are broadly cate-
gorized by the nature of the feasible region and the type of solution required. For
instance, they are generally considered either categorical, integer-ordered, or contin-
uous, depending on the nature of the feasible region, with problems falling in more
than one category called mixed SO problems. Furthermore, SO problems in each of the
integer-ordered and continuous categories can either be global or local, depending on
the nature of the solution required. For examples in each of these categories, visit the
library of SO problems at www.simopt.org [Pasupathy and Henderson 2006; 2011].

In this paper, we consider stochastically constrained SO problems on categorical
spaces. This SO variation involves identifying the best system from a finite popula-
tion of systems, as measured by an estimable objective function, from among those
systems that are feasible, as measured by a set of estimable constraint functions. Our
particular interest is solving large-scale problems having many thousands of compet-
ing systems, possibly using recursive algorithms that are easily implementable and
provably near-optimal from the standpoint of computing effort. It is worth noting that
since the SO variation we consider here includes stochastic constraints, it subsumes
the unconstrained version of the categorical SO problem, broadly known as the rank-
ing and selection (R&S) formulation [Kim and Nelson 2006]. Unlike R&S, which has
been heavily studied [Kim and Nelson 2006; Branke et al. 2007], research on the con-
strained version is still in its infancy. Attempts at solution have been relatively few
and very recent; entry points to work in this area include Andradéttir and Kim [2010],
Hunter and Pasupathy [2013], and Lee et al. [2012].

1.1. Overview of Questions Answered

To provide a better sense of the specific questions we answer, consider the following
general setting for identifying the best feasible system from among a finite set of com-
peting systems. Suppose simulation runs are allocated across the available systems
according to a budgeting scheme. After expending a certain amount of the simula-
tion budget, the system with the smallest observed objective function estimate among
those systems estimated to be feasible is chosen as the best system. The estimated best
system may or may not coincide with the true best system, thereby giving rise to the
notion of a false selection event, which is the event that the estimated best system is
not the true best system. The probability of false selection (P{FS}) is the probability
of observing a false selection event.

Our questions in this paper relate to the behavior of the P{FS} as a function of
the simulation budget and its allocation across systems, with an emphasis on settings
where the design space is large. Further, we make no independence assumptions be-
tween the objective and constraint estimators for a system. Specifically, we ask:

Q.1 What is the optimal simulation budget allocation across designs, that is, what is
the nature of the budget allocation that maximizes the rate of decay of P{FS} to
zero?

Q.2 Can a rigorously obtained but tractable approximation of the optimal allocation be
derived, for use in settings where the number of systems is large?
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Q.3 Can the answer to Q.2 be used to construct an easily implementable algorithmic
scheme to solve large-scale stochastically constrained finite SO problems driven by
Gaussian simulation observations?

Our answer to question Q.1 appears in §3 and extends work by Hunter [2011] and
Hunter and Pasupathy [2013]. We answer question Q.2 in §4, where we demonstrate
that the optimal allocation in the large-scale setting reduces to a form that is remark-
ably simple in structure and intuition. Specifically, we show that as the number of
systems becomes large, the optimal simulation budget allocated to any suboptimal
system (henceforth defined as any system other than the optimal system) is inversely
proportional to a suboptimality-infeasibility measure that we call the score. Not sur-
prisingly, the score for a suboptimal system depends only on the random variables
inherent to that system and the optimal system. Furthermore, the score has an ex-
pression that seems easily estimable when the distributions driving the observations
from each system are known or assumed. For example, when the observations corre-
sponding to the constraint and objective functions from each system are independently
normal, the score for a system is the sum of its squared standardized optimality gap
and squared standardized infeasibility gaps across violated constraints, where stan-
dardization implies measuring the gap in standard deviation units. More generally,
calculating the score amounts to minimizing a strictly convex function. See Table I for
score expressions in a few other settings.

From the implementation standpoint in Q.3, when solving constrained SO problems
on large finite spaces, our insight from answering Q.2 points to a solution scheme with
three repeating steps akin to the popular OCBA scheme [Chen et al. 2000]: estimate
the score, update the optimal simulation allocation across systems to be in inverse
proportion to the estimated scores, and then select designs on which to execute the
simulation according to the updated allocation scheme. This procedure results in a
simple sequential algorithm that mimics the optimal budget allocation scheme, while
reliably solving “large” problems with known or assumed distributions. For instance,
as we demonstrate in §7, SO allocation problems with 10,000 systems and driven by
Gaussian simulation observations are “solved” within a minute on a typical laptop
computer. Without the use of the proposed approximation, the corresponding comput-
ing times are over six hours.

1.2. Competitors

Relatively little has been written on the topic of constrained SO on categorical spaces.
Among the first papers on this topic are Andradéttir and Kim [2010] and Batur and
Kim [2010], which deviate slightly from the question we consider here. Specifically,
while we seek implementable allocation schemes that are provably near-optimal in the
limit, Andradéttir and Kim [2010] and Batur and Kim [2010] seek finite-time simula-
tion allocation schemes and termination strategies that identify the best system with
probability exceeding a stipulated threshold. Given this finite-time objective, the au-
thors propose schemes that can provide a rigorous finite-time probabilistic guarantee
while striving to exceed the stipulated threshold by as little as possible.

The more recent paper by Lee et al. [2012] is closer to the current paper with respect
to using an infinite-time objective in measuring algorithmic efficiency. However, un-
like the current paper, the allocation proposed in Lee et al. [2012], called “OCBA-CO,”
is not optimal in any rigorous sense. (See Hunter and Pasupathy [2013] for examples
where the allocation proposed by Lee et al. [2012] deviates substantially from the op-
timal allocation, leading to inferior decay rates of false selection.) Also a basis for the
allocation proposed in Lee et al. [2012] is that the objective and constraint function
estimators are uncorrelated, unlike the current paper.
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Another work of particular relevance is Hunter and Pasupathy [2013], which
characterizes the optimal sampling plan for contexts where the objective and con-
straint function estimators are mutually independent. What we propose here deviates
from Hunter and Pasupathy [2013] in two ways, the first of which is crucial.

(i) The allocation procedure proposed in Hunter and Pasupathy [2013] involves solv-
ing a convex optimization problem at each step in a sequential procedure. This
renders implementing Hunter and Pasupathy [2013] unsuitable when the number
of systems in contention exceeds a few hundred (see Table II). The simulation al-
location scheme proposed in this paper is aimed at solving problems with much
larger numbers of systems, of the order of a few thousand, with negligible loss in
simulation budgeting efficiency. As we shall demonstrate, we achieve this result
as a limiting form of expressions generalized from Hunter and Pasupathy [2013].
Thus our proposed allocations are “closed-form” and do not require solving a convex
optimization problem as in Hunter and Pasupathy [2013].

(#7) The theory in Hunter and Pasupathy [2013] assumes that the objective and con-
straint function estimators are independent, unlike the current paper. The theory
in both the current paper and in Hunter and Pasupathy [2013] treat general distri-
butions, although our implementation focus is on simulations driven by Gaussian
observations.

2. PROBLEM SETTING AND FORMULATION

In this section, we outline a formal problem statement, notational conventions, and
assumptions.

2.1. Problem Statement

The problem statement we consider is identical to the following problem statement
from Hunter and Pasupathy [2013]. We study this problem statement in the case
where the number of systems r is large.

Problem Statement: Consider a finite set i« = 1,2,...,r of systems, each
with an unknown objective value h; € R and unknown constraint values
gij € R,j=12,...,sand ¢ = 1,2,...,r. Given constants v; € R, j =
1,2,...,s, we wish to select the system with the lowest objective value h;,
subject to the constraints g;; < +;. That is, we consider

Problem P: Find arg min h;

1,2,..., T

s.t. 9ij < Vi for allj =1,2,...,s,

where h; and g;; are expectations, estimates of h; and g;; are observed to-
gether through simulation as sample means, and a unique solution to Prob-
lem P is assumed to exist.

Let o = (a1, a9, ..., ) be a vector denoting the proportion of the total sam-
pling budget given to each system, so that >.._; o; = 1 and «; > 0 for all
1 =1,2,...,r. Let the system having the smallest estimated objective value
among the estimated-feasible systems be selected as the estimated solution
to Problem P. Then we ask, what vector of proportions o maximizes the rate
of decay of the probability that this procedure returns a suboptimal solution
to Problem P?
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2.2. Notational Conventions

Where it is reasonable to do so, we generally use upper case letters for random vari-
ables, lower case letters for fixed quantities, bold type for vectors, and script letters for
sets. For brevity, we write ¢ < r and j < s to indicate : = 1,2...,rand j = 1,2...,s.
Throughout the paper, we let system 1 denote the best feasible system, that is, the
system with the smallest value of h; that satisfies the constraints g;; <, for all j < s.

We also adopt the following notation throughout the paper. (i) For vectors a =
(a1,az2,...,am,) and b = (by,bs, ..., by), the notation a < b means a; < b; for all i < m.
(#9) dist(z, B) = inf{||z — y|| : y € B} denotes the Euclidean distance between a point
x € R? and a set B C RY. (iii) diam(B) = sup{|jz — y|| : =,y € B} denotes the diam-
eter of the set B C RY. (iv) For a sequence of real numbers {a,}, we say a, = o(1)
if lim, o0 a, = 0; and a,, = O(1) if {a,} is bounded, i.e., 3¢ > 0 with |a,| < ¢,Vn. We
say that a, = ©(1) if 0 < liminfa, < limsupa, < co. (v) Let C = {1,2,...,k} be a
finite set and let X = (X3, Xs,...,Xx) be a corresponding random vector having the
k x k covariance matrix . If C' C C, then X(C) denotes the random vector comprising
the elements of X with indices corresponding to C, and ¥(C') denotes the covariance
matrix of X (C).

2.3. Assumptions

This paper follows from the general theory for constrained simulation optimiza-
tion with correlation between the objective and constraint estimators outlined in
Hunter [2011]. To this end, we require the same assumptions as those required in
Hunter [2011]. First, to estimate the unknown quantities h; and g; = (gi1, gi2; - - -, Gis)»
we assume we may obtain replicates of the output random variables (H;, G;) =
(H;,Gi1,Gia, . ..,G;s) from each system, where each system is simulated independently
of the others.

ASSUMPTION 1. The systems are simulated independently of each other, that is, the
random vectors (H;, G;) are mutually independent for all i < r.

We also require the assumption that no system lies exactly on a constraint, and that
no system has exactly the same objective function value as that of the best feasible
system, system 1. This assumption is standard in literature that seeks an optimal
sampling allocation since it ensures that two values may be distinguished with a finite
simulation budget.

ASSUMPTION 2. Weassume h; #h1Vi=2,...,rand g;; #v;Vi<r,j<s

Since this paper builds directly from the theory derived in Hunter [2011], the fol-
lowing two assumptions, standard in literature using large deviations theory, are re-
quired. Since our focus in this paper is to derive a broad sampling law for a large num-
ber of systems, we replicate these assumptions for completeness and refer the reader
to Dembo and Zeitouni [1998] for further explanation. We first define the required
notation.

For all systems i < r and constraints j < s, denote the sample ‘means after ¢
samples as [;(t) = 13, Hy and Gy;(t) = 130, _, Giji. Define (H,(t),Gi(t)) =
(H;(t),Gir(b), ..., Gis(t). Weuse (H;, G;) = (Hi(cit), Gi(a;t)) as shorthand for the esti-
mator of (h;, g;) when system i receives «; > 0 proportion of the total sampling budget ¢.
For simplicity, we ignore that «;t is not necessarily an integer. Let the cumulant gener-

ating functions of f;(t), Gi;(t), and (Hi(t), Gy (t)) be A (6) = log E[e?T:()], AY) (9) =

log E[e?@i(], and Agghci)(a) = log E[e®(H:().Gi())] respectively, where 6 € R,
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0 ¢ R°™, and (-,-) denotes the dot product. Let the effective domain of a function
f(-) be denoted by Dy = {z : f(z) < oo} and its interior by D}. Let Vf(x) be the
gradient of f with respect to z, and f/(z) the derivative of f with respect to x.

ASSUMPTION 3. Let the following hold for each i < r and j < s:

(D the limit Ay, c,)(0) = tllm %Agg Gi)(te) exists as an extended real number ¥ 6 €

R*™, where we denote Ay, (6) = Jim %Ag? (t0) and A, (6) = lim %Ag)J (th)V 0 € R;
(2) the origin belongs to the interior of DA, a,y thatis, 0 € DX(HL_G”;
(3) An,,c.)(0) is strictly convex and C* on DR s, e’
(4) M,.G;)(0) is steep, that is, for any sequence {6(t)} € Dy, ., converging to a
boundary point of Dy, . . then tli)rgo VA, (0(1))] = oo.

Under Assumption 3, the large deviations principle (LDP) holds for the esti-
mators H;(t), G;;(t), and (H;(t),G;(t)) with good, strictly convex rate functions
Li(x) = supger{br — Am,(0)}, Jij(y) = supger{fy — Ag, (0)}, and ILi(z,y) =
supgers=+11(0, (z,9)) — A(u,,c,)(0)}, respectively [Dembo and Zeitouni 1998, p. 44]. Let
7:(717"'a75)’

(.13, y) S ]:(OHi,Gi) = 1nt{VA(H1G1)(0) :0 € 'DX(HFGH},

and let 73 denote the closure of the convex hull of the set of points {(h;,~) : (hi,7) €
R0 <r}.

ASSUMPTION 4. The closure of the convex hull of all points (h;,vy) € R* is a
subset of the intersection of the interiors of the effective domains of the rate functions
Ii(z,y)Vi<r, thatis, F5 C 05:1-7'—(01{13 Gi)

Henceforth, for ease of notation, we redefine all vectors as column vectors.

3. CHARACTERIZATION OF THE OPTIMAL BUDGET ALLOCATION

Recall that our problem context is Problem P (see §2.1), and our solution context in-
volves three steps: sample from each of the designs to obtain objective function and
constraint function estimators; estimate the feasible set of systems by observing their
constraint function estimators; and estimate the optimal system from the estimated
feasible set as that system having the smallest estimated objective function value. In
this section, we rigorously characterize the optimal allocation as the allocation that
minimizes the probability that the system returned as the “solution” at the end of
some sampling effort ¢ is not the true best system.

We build upon the characterization of the optimal budget allocation for general dis-
tributions in the presence of correlation between the objective and constraint esti-
mators that was formally derived in Hunter [2011]. Hunter [2011] characterizes the
optimal allocation as the solution to a concave maximization problem. We replicate
the key results here, and then further characterize the solution to the concave max-
imization problem in terms of its Karush-Kuhn-Tucker (KKT) conditions [Boyd and
Vandenberghe 2004]. This will set us up towards developing limiting approximations
of the optimal budgeting plan in §4.

Recall that ¢ is the computing budget, «; € [0, 1] is the fraction of the simulation
budget devoted to system i, H; = (o;t)~* @ Hi, and Gy = (a;t) ' S0 Gijp.. From
Hunter [2011], the probability of incorrectly estimating the best system, henceforth

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2014.



Stochastically Constrained Ranking and Selection via SCORE 0:7

called the probability of false selection P{FS}, is

P{FS} = P{[U;_,G1j > 7] Uiy (M, Gij < 7)) N (H; < Hy)]} o))
system 1 system i system i
estimated estimated beats
infeasible feasible system 1
and the rate function of the P{FS} is
.1 ) . .
_ t1i>r§o n log P{FS} = min (1%1? a1 J15(75), 21;1;1, Ri(a, ai)) , (2)

where «;J1;(7;) is the rate function for the probability that system 1 is classified in-
feasible on the jth constraint, and R;(a1, o) = infy, <4y, yi<vy (1 L1 (213) + i li(24,Y5)) is
the rate function for the probability that system i is estimated feasible and system i
has a “better” estimated objective function value than system 1.

We are interested in identifying the allocation o that maximizes the rate of decay in
(2). This problem can be formally stated as

maximize min (minoqjlj(’yj), min Ri(ozl,ai)> st. Yl ,a;=1 >0 (3)
j<s 2<i<lr

We may equivalently write this problem as

Problem Q) : maximize =z s.t.
arJij(vi) >z, j<s,
Ri(ar, ;) > 2, i=2,...,r,
Siqoi=1a;>0,
where for each i = 2,...,r, the values of R;(a1, «;) are obtained by solving
Problem R; : minimize oyl (z1;) + @ li(xi,y:) st oz <z, oy <.

Thus Problem R; allows us to solve for the rate function of system i for any particular
a, where i = 2,...,r. As a matter of notation, we distinguish Problem R; as an opti-
mization problem in (z1;, 7, y}), and R;(a1, ;) as the value of its objective function
at optimality. By Hunter [2011], Problem R; is a strictly convex minimization prob-
lem with a unique optimal solution. Further, Problem () is a concave maximization
problem to which the optimal solution exists, and the solution is strictly positive, that
is, a* = (af,a3,...,a5)T > 0, and hence all systems receive a nonzero portion of the
sampling budget at optimality.

Two other problems that are related to Problem () are of particular interest to us.
The first is a reformulation of Problem () obtained by converting the inequality con-
straints associated with R;(,-) to equality constraints.

Reformulated Problem Q : maximize 2z s.t.
ar1Jij(v;) >z, j<s,
Ri(an,a;) =2, i=2,...,m,
Yo =1, ;> 0.
The above Reformulated Problem ( is equivalent to Problem () in the sense that it is
also a concave maximization problem with a solution that exists and coincides with a*.

(We do not go into the details of demonstrating such equivalence, but a proof closely
follows the steps in Hunter and Pasupathy [2013].) Due to this equivalence, for ease of
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exposition, we henceforth refer to the Reformulated Problem @ as Problem ) without
any loss in clarity.

The second related formulation of interest is Problem (), obtained by relaxing the
inequality constraints involving J;.(-) in Problem Q.

Problem Q : maximize =z s.t.
Ri(dlv&i)zzv ’L':27...7T’7
Z::l a; =1, a; > 0.
Problem Q also happens to be a concave maximization problem with a solution &* that

is guaranteed to exist. Furthermore, since Problem Q satisfies Slater’s condition [Boyd
and Vandenberghe 2004], the solution &* is obtained as the solution to the KKT system

R;(a1,a7) = R(a7, &) for all 4,k # 1, (4)
"\ OR; (a},a)) /06,
d =1.
2 DR, (a},a;)/04; )

Much of the analyses that follow will pertain to Problem @, particularly through its
KKT conditions given by (4) and (5). Our focus on Problem @ (as opposed to Problem Q)
will be justified through a result in §5 where we show that Problem @ and Problem @
become equivalent as the number of systems under consideration becomes large in a
certain precise sense.

We now present an explicit expression for the summands in equation (5).

LEMMA 3.1. For a system i, the ith term in the summand of equation (5) is given by
8Ri(d1,&i)/6‘d1 - Il(I’L)

ORi(a1,d,)/00;  Ii(z},y})’ ©

where (z3;, 27, y;7) is the unique optimal solution to Problem R;.

PROOF. For ease of exposition in the body of the paper, we introduce the following
notation required for the proof here. Let \;; < 0 and \;; < 0,j < s, be Lagrange mul-
tipliers associated with the constraints in Problem R;, where A\; = (A\iz, Ai1, ..., Ais) T .
Also define the following sets in terms of the Lagrange multipliers and the optimal
solution to Problem R;:

Ci = {j: Ay = 0and y; <;};

Cr"=1{j: Ay <Oand yj; =}

I = {i: N\, <0,25;, = =] and C;* empty,i # 1};

S; = {i: \iz = 0,2] <}, and Ci* nonempty,i # 1};

S ={i: \iz <0,2};, = 2} and C}* nonempty,i # 1}.
See Appendix A for the remainder of the proof. O

The sets I'*, S, and S, form a partition of the design space {1,2,...,r}, and the
sets C%* and Ci* form a partition of the set of constraints {1,2, ..., s} for each design i.
The rate function corresponding to a system 7 will depend on its classification into
exactly one of the sets I'*, S;, or S}, and the classification of each of its constraints into
exactly one of the sets C% or Ci*. The sets are best understood for the case in which the
objective function and constraint estimators are mutually independent. In this case,
the sets I'*, S;, and S, correspond to the set of truly feasible designs, the set of truly
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Stochastically Constrained Ranking and Selection via SCORE 0:9

infeasible designs that are better than system 1 in objective function value, and the
set of truly infeasible designs that are worse than system 1 in objective function value,
respectively. Under mutual independence, for each system i, the sets Ci and Ci* are
the sets of constraints on which system i is feasible and infeasible, respectively.

The terms of the simplified summand in equation (6) of Lemma 3.1 can be further
simplified, as noted in the following Lemma 3.2.

LEMMA 3.2. The KKT conditions for Problem Q in (4) and (5) may be written as

Ri(a,a7) = Re(a],a}) for all ik # 1, (7)
>, ®)
i€r*Us;, (@590

PROOF. See Appendix B. 0O

Since the rate functions involved in (7) and (8) are unknown and cumbersome to es-
timate, solving this KKT system is usually impractical. However as we demonstrate in
the sections that follow, the KKT conditions for Problem @ become remarkably easier
to solve under certain conditions, most notably when the number of systems r tends to
infinity. Furthermore, as noted earlier, Problem @ and Problem ) become equivalent
in this asymptotic regime.

4. LIMITING APPROXIMATION TO THE OPTIMAL BUDGET ALLOCATION

With a view toward efficiently solving Problem @, this section proposes a “closed-form”
limiting approximation to the solution of the KKT system presented in Lemma 3.2,
obtained as a certain asymptotic limit. Under the same limit, it is shown in §5 that
the inequality constraint set that differentiates Problem @ and Problem ) becomes
redundant, thereby rendering them equivalent.

4.1. Allocations to Suboptimal Systems

Recall that the total number of systems r = |I'™* U S} U S;|. In what follows, we denote
7= |T*USy| and let 7 — oo, that is, we progressively include more systems into the set
I'* U S7 to obtain the closed-form sample allocation results. Our results require that
|T*US? | — oo because our limiting argument requires an increasing number of systems
that compete in objective function value with the best feasible system. Therefore |S;|
may remain fixed or tend to infinity, as long as [T U S| — oc.

To further understand what sending [T U S| — oo means, consider the context
where the objective function and constraint estimators for each system are mutually
independent. In this context, |I'* U S| — oo implies that the collective cardinality of
systems inferior to system 1, as measured by the objective function A(-), tends to infin-
ity. In the more general context, the interpretation becomes slightly more nuanced. A
sufficient condition guaranteeing that # — oo in the general context is that the cardi-
nality of the set of truly feasible systems tends to infinity.

The following regularity assumptions are made about the nature of systems added
as 7 — oo. They are assumed to hold throughout the rest of the paper.

ASSUMPTION 5. The means (h;, g;) satisfy inf{|h;—hi|, |gi;—v;| : 1 <i <r,j <s} >e€
for some € > 0.

ASSUMPTION 6. There exists a compact set C C R**' such that (hi,g;) € C and
(hi,v) € C for all i <r, and such that C C ﬂlef((’HhGi)

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2014.
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(z=hi)?

ASSUMPTION 7. There exist quadratic forms I (z,y) = “ 22+ 75 (y—g:) 7 (y—g:)
and I*(z,y) = (12:2) + 55 (y — 9)"(y — gi) such that 0 < ¢? < < ocoand 0 <
If(z,y) < L(z,y) < I*z,y) < oo for all {(z,y) € C : (z,y) # (hi,gi)} and for all
i€ {1} UT* U S}, where we emphasize that C is a compact set.

w?

wm

&
o

Assumptions 5 and 6 are regularity assumptions intended to limit the manner in
which systems are introduced into the analysis. For example, Assumption 5 stipulates
that systems that are included in the analysis do not progressively “approach” the best
system or the feasibility threshold. This requirement ensures that the probability of
correctly identifying the better of two systems, or the probability of correctly checking
the feasibility of a given system, can be driven to one by increased sampling. In the
absence of this requirement, it may be impossible to say with certainty as to whether a
system is feasible or whether a system is better than another. Assumption 6 essentially
does the opposite, that is, prevents addition of systems that become irrelevant in the
limit because their performance measures become unbounded. Assumption 7 is essen-
tially a structural assumption imposing limits on the “steepness” and “shallowness” of
the rate functions on the compact set C, expressed using multivariate Gaussian rate
functions as envelopes. We emphasize that Assumption 7 is on the compact set C, and
some algebra reveals that it holds for several common distribution families, e.g., Gaus-
sian and exponential.

As noted, our analysis in this section will involve sending the cardinality 7 = [["* US|
to infinity. To this extent, most quantities of interest, for example, &* and z7,, are
actually functions of » = 7 + |S;| and should be denoted &*(r),zi,(r). However for
notational convenience, we do not explicitly indicate such dependence.

We are now ready to state a result that lists key properties of the solution to Prob-
lem @ under the stated asymptotic regime.

THEOREM 4.1. Suppose Assumptions 5-7 hold, and recall that 7 = |I'"* U S} |. Then
the following statements are true.

(i) There exists k1 > 0 such that &;/&; > k1 forall k e T* U S} and all r.
(it) There exists ko < 0o such that & /&;, < ko for all i,k € T* U S} and all r.
(iii) As 7 — oo, af = O(1/F) forall i e T* U S}.
(iv) As7 — o0, zf =a;, > hiforallie " US.

(v) As T — o0, af/a; — 0forall i e T*U Sy,

PROOF. Proofof part (i). We do not provide a proof for part (i) but note that it follows
from equation (7) and Assumptions 6 and 7.

Proofofpart (ii). Fori e T'* US R; (Oél, ) infxri=3€u7y1,§’)’ (d’{[l(xh) +dj]z(x7,yl))
Using Assumption 7, after some algebra we see that for: e I* U S,

(ar,ar (hs = In)? _ ol —m)?
MO8 2 5@ at v o2/an) — 2o /a) + 77 @

Similarly, we also have for k € " U S},

S

e~ ai(hg — hy)? (gr;j
Ri(af,a;) < k ACLTREFYA 11 10
k(0, ap) < 2(c2(ag/ar) + 02) +a ; {oki > 75} (10
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where I{-} is the indicator function. Using (9) and (10), and since R;(&},a&f) =
Ry (&7, 4a;) by Lemma 3.2, we have that for i,k e T* U S},

&; (hi = h1)? ~ (gkj =)0, (hi = h1)?
<\ e+ 2 e o> ) Gtz o)

Qe

(¢*(az/a) +a2) = o
_ 5: (hi — h)2((ax/ag) + 1) ((&F/a7) +1) 32521 (grs — v I{grj > i}
g? (hi — h1)? (%/041)+1) (hi —h1)?
52 (hy — h)2(k7 4+ 1) (et + 1) 3252 (grs — 75)*Hgws > 5}
=02 (hi — h ) + (hi — hy)? '

Now use part (i) and Assumption 5 to conclude that the assertion in part (i7) holds.
Proof of part (iii). From part (ii), we see that a’r; ' < aj for i,k € IT* U S;. Then for
i € T* U S, we have &t + Fafk, b < 22:1 &; and hence & = O(1/7) as 7 — oc.
Proof of part (iv). Let (zf,9yf) and (2% y!) denote the solutions to
nfyma g @1 (21) + &I (w,y;) and infy ,—y, 4, G711 (21;) + &7 1% (%i,yi), respec-
tively. From the exphc1t forms of I{(-), (- ) If(,-), and I*(.,-), the stationarity

—h ~ % 2 —h ~x <2
conditions imply that = 1 = %% and zi LR Of—*g— Solving for z¢ and z¥
h —zt aj o hi — a; g2

along with the assertion in part (i) and Assumptmns 5 and 6, implies that there exist
constants k, k" € (0,00) such that for all i € T* U S and all r,

~ %k ~ ok ~ %k ~ ok
al h; — hi al al h; — h1 Q)
ff —h = — | =—— ] >=k and 55? —hy = — — 3 < Tl/il- (11
a7 \ &4 a2 aq ay \ % 4 & I
ay ' o? ar T2

We know from Assumption 7 that z}; € (2¢,z%), and hence

) _ hl) _ )
I yy) — Ly, u)) © (e y))

Writing a corresponding inequality for system k, (dividing) and then using the explicit
forms for I{(-) and I}(-), we can write

¢ (ol ~ ) i wi) - D@n)/Dlatoys) _ & (o = mP [atey)) g9

G2 (o — )2 I (el y)) — L)/ Ie(@ip i) — o2 (af, — h)® IH(h,97)
Using (11) and (12), and noting from part (ii) that &} /a; < k2 € (0,00) for all i,k €

hafy) _, D(eg)

Liajy) " Iklagvp)

I'*US? and all r, we see that there exists k3 € (0, c0) such that

forall i,k e I'*U S} and all r.

Let / = arg min L“)* Then from the KKT condition for Problem @ in (8),

ier=usy I (zF, y)

I (z7,) < 1
Io(xy,yp) = 7
Further, from previous arguments, we see that
@h) o Nl@) R e rrust (13)

* ¥ — "3 * *
Ii(xivyi) Ié(xzayz) r
Conclude from (13) that =7, =z} — hy asr — oo foralli e " U S}
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Proof of part (v). Notice from the first-order conditions for stationarity in Problem R;

2 /i — _ ON(@)/0mi
that &7 /81 = =5 e e oo,

The main assertions of Theorem 4.1 are contained in parts (iii), (iv), and (v). In
view of Assumptions 5 and 6, the assertion in part (iii) of Theorem 4.1 should be in-
tuitively clear. Specifically, if the systems being included in the analysis are “similar”
in the sense described by Assumptions 5 and 6, and we increase the number of “con-
tending” systems without bound, the fraction of the budget that should be devoted to
any particular suboptimal system should tend to zero. What is less intuitive is part (v)
of Theorem 4.1, which states that as the number of systems in I'* U S} tends to in-
finity, optimality dictates that the fraction of the budget given to the optimal design 1
far exceed the fraction given to any of the suboptimal designs in I'* U S}. This result
makes sense if one thinks of each of the suboptimal systems as individually attempting
to “beat the best design” by inducing a false selection event. Optimality dictates that
the best design receive far more samples than these competitors in a bid to minimize
the probability of occurrence of the most likely of the numerous false selection events,
made possible by the assumption [T U S| — co. Part (iv) of Theorem 4.1 is algebraic
and notes that the optimal solution to Problem R; tends to the primary performance
measure h; of system 1 as the number of systems in I'* U S tends to infinity.

We are now ready to present Theorem 4.2 — the main result of the paper. Theo-
rem 4.2 asserts that as ¥ — oo, the ratio of the rate R;(&f,a;) to the optimal frac-
tion & for the ith system tends to the minimum value attained by the rate function
I;(z;,y;) in the rectangular region z; < hy,y; < . This result combined with the fact
that the KKT system for Problem @ in (7) dictates equating R, (&}, &) = Rk(a7, &;) for
i,k € {2,3,...,r} will form the basis of our proposed allocation.

, and then use the assertion in part (iv). DO

THEOREM 4.2. Suppose Assumptions 5-7 hold. As 7 = |I'"* US| — oo,
Ri(af, a7) _ Ri(af)

i %

= inf  Li(x;,y;) foralli=2,...,r.

~ % - ~ %

Qa; Qa; z;<hi,y; <y
PROOF. We know that
Ri(a1,67) . o
Q; N mémﬁ?fmﬁ"/ 5:11 (@15) + L@, o). 1D

Since I;(z7;) = 0 and z7; = h; for all i € S, equation (14) implies that the result
immediately holds for i € S;. Consider i € I'* U S;;. Recall that the KKT conditions for
Problem R, imply

ay 73]1-(:1:2‘,1/;*)/8%
d’; - all(x’{z)/&vh ’
Therefore
~ % I *4
Mg U)o (at, yt) 0.

& (1’11) - _811(.23){2)/81‘11
Since I (-) is a smooth function attaining its minimum at h,, we see that
I (=7;)
811 (x’{l)/(’)xh

Using this along with the facts that from part (iv) of Theorem 4.1, =3, = =} — hy, and
OI;(xF,yr)/0x; is bounded away from infinity, we obtain the result. O

= O(z3; — ).
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To see why Theorem 4.2 has important consequences, define the score S; for any
sub-optimal system 7 as

S; = m‘<}gl.£h<7]}(xi,yi) foralli=2,...,r
Then, we notice from Theorem 4.2 that the ratio R;(&;)/a; tends to the score S; in

the limit ¥ — oo. Since the KKT conditions of Problem Q dictate that R;(&},a) =
Ri(a7,a;) for all 4, this suggests that the optimal budget fraction for the ith system is

inversely proportional to its score. This result is formally stated in Theorem 4.3.

THEOREM 4.3. As7 = | US| — oo, the optimal allocation vector &* satisfies

. inf  Tp(zk, Yr)
a7 Sk ap<hiye<y ’

~*% o . .
a S; inf Ii(z;, y;

b ' z; <hy,y; <y L( “y7)

Theorem 4.3 is important in that it provides a potentially simple budget allocation
rule when the number of systems in contention is “large.” Computing the optimal al-
location vector through an exact calculation as provided through convex optimization
of Problem @ is comparatively burdensome. Optimal allocation using Theorem 4.3 be-
comes especially tractable in contexts where the score S; is easily estimated. Table I
presents expressions for the score in a number of such contexts. Notice that the score
expression in the fifth row of Table I (independent normal context) is particularly intu-
itive — it involves a penalty term for suboptimality and a penalty term for infeasibility,
each measured in standard deviation units.

4.2. Allocation to the Best Feasible System

The following Theorem 4.4 provides a sense of the fraction of the budget allocated to
the best feasible system when optimally apportioning the simulation budget.

THEOREM 4.4. Suppose Assumptions 5-7 hold. Then the following statements are
true.

, [ 1 3 -
(i) ( 8M> % Z ar? < ap < 2— Z ar?, where M = diam(C) and
i+==) 0 i€l USy, i€l USy,

€ are constants implicit in Assumptions 6 and 5, respectively.
(ii) As 7 — oo, & = O(1/V7F).
PROOF. Proof of assertion (i). We first prove the upper bound. We see that

hi) ) _ (@ = h)?/20° | a5

Liap,y;) — Il yl) o (af = ha)? L L
252 262
(Recall that (z¢,yf) and (2%, y*) are the solutions to inf,,,—, 4, &1 1% (21;) + & IE (i, yi)
and inf,,,—, 4, &7 15 (v1:) + &;‘Iﬁ(a:i, y;), respectively.) Also,

(v —9)" (¥ — 91)

1
u £ _
l’i —hl 1+ (h —hl) hi—xi = 1—|—C/(hi_h1) (16)
F* 52 ~x 2
where ¢ = Of—i%, d = Ofi 2 Plugging (16) in (15), we have
[O2Y, a7 0

Lay,) _ a7 56(1 +c

2
—(——)~. 17
Tahy) = el i1c) 17
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Table I. Score expressions for some special contexts. “Optimal” convergence dictates that the fraction of the sim-
ulation budget to a system be inversely proportional to its score.

Context Corre- | Score Expression
lation
General NA Si = Li(h1), Vi # 1.
unconstrained’
L 2
objective, 9;
unconstrained?®
Fixed objective, v Si = yivn<f7 Ii(yi)l{i € Sp} +ool{i € 'USw} + Tjn<1§ Jig(v;)I{i = 1},
general for all i < r. )
constraints
Bernoulli(h;) X Si = B(h1,hi)l{hi > ha} + > B(gij; i) Hgis >} Vi# 1,
objective, . g=1 e
Bernoulli(g;;) where B(a,b) = alog ¢ + (1 — a)log =%.
constraints*
hi — h1)? s i —gij)? .
N(hz,af) X Si: %E{hz >h1}+ Z %H{gzj >"y]'}, Vl#l.
objective, i J=1 ij
N(gija 0'1'23')
constraints®
1 /AR .,
Si_§< = I{i € I*}
N([g:],%0) v +Agi(C) SGi(Cl) T [Agiein)] 1i € i)
objective and -
i ta’ Ah; H; 1 Ah; . . .
constraints + [Agi(c}* ] Ei([ciw}*)]) [Agi(cj;*)] I{i € Sw}), Vi#1,

where Ag; = v — gi, Ah; = h1 — h;. (See §2.2 for notation.)

Related Settings: 1Glynn and Juneja [2004]; 2Chen et al. [2000]; 3Szechtman and Yiicesan [2008]; *Hunter
and Pasupathy [2013]; Hunter [2011].

Notice that ¢,¢’ — 0 as 7 — 0 from part (v) of Theorem 4.1. Using this in (17), and since
(6) holds, we obtain the upper bound in assertion (7).
To obtain the lower bound in assertion (i), we use

0 C/ u 1
; —h = i—hi), hi—xi =——(hi— 1
T; hl 1+ ¢ (h hl) h Z; 1+ C(h h]) ( 8)
to write
hGt) o @b (el — n)*/26”
Li(ay,yp) ~— It yy)  (ef —h)® 1, u
oo sl - 9) (U - gi)
1+c ,a:2g" 1
- (1 /)2 ~*2 =6 u T (nu (19)
+ct oo 14 (yi' —9:)" (y _gi)(l n c’)2
(hi — h1)?

Again noticing that ¢,/ — 0 as 7 — 0, and using Assumptions 5 and 6 to bound the
quadratic form appearing in the denominator of the last term on the right-hand side
of (19), we have that

Li(z7;) ar?g® 1

Lizf,yy) = A o0 1+ 2L
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Using this in (17), we obtain the lower bound in assertion (7).
Proof of assertion (ii). The proof of assertion (ii) follows trivially from the definition
of ©(-) and from assertion (7). D

We emphasize that Theorem 4.4 provides only a sense of the optimal allocation to
the best system as 7 — oo. Theorem 4.4 asserts that, like the suboptimal systems, the
allocation to the best system also tends to zero, albeit at a much slower rate. Given that
Theorem 4.4 only determines the optimal allocation to the best system to within a con-
stant, implementation usually involves choosing this constant heuristically, or making
distributional assumptions on the observations obtained from the various systems and
then using the KKT condition in equation (8).

5. THE SCORE ALLOCATIONS

We now remind the reader that all the results in the previous section, Theo-
rems 4.1, 4.2, and 4.3, pertain not to the real problem of interest, Problem Q, but
to its relaxation, Problem (). A natural question that follows is how the insight derived
from Theorems 4.1, 4.2, and 4.3 applies to Problem . To address this question, we
demonstrate through the following result that Problem @ and Problem @ are equiva-
lent as # — oo. The implication is that all insight we have derived thus far about the
solution &* transfers over to the solution a* as 7 — co.

THEOREM 5.1. For large enough 7, &* = o*.

PROOF. Since the only difference between Problem ) and Problem Q is the con-
straint set a1J1;(y;) > z for all j < s, the assertion will follow if we show that &*
satisfies the inequality &} .J;;(v;) > 2* for large enough 7 for all j < s, where z* is the
optimal value of Problem Q).

To see this, consider any i € [T U S} |. Notice from part (v) of Theorem 4.1 that
a5 /a; — oo as 7 — oo. This implies that for j < s, lims_, oo (a5 /a5 )Jlj ('yj) oo. However,
we know from Theorem 4.2 that lim;_,o 2* /& = lim;_, o R; (a7, &F)/a&; < co. Conclude
that &5 Jy;(v;) > 2* for large enough 7 for all j <s. O

We now outline what we call the SCORE (Sampling Criteria for Optimization us-
ing Rate Estimators) allocations. Specifically, we outline two versions of SCORE al-
locations, called SCORE and SCORE-c (SCORE - correlated). In both allocations, we
allocate to the suboptimal systems using the result in Theorem 4.3 and the scores pro-
vided in Table I, which are optimal solutions to Problem @ in the sense described by
Theorem 5.1. In the SCORE-c allocation, we implement the KKT condition in equa-
tion (8) to determine the allocation to the best feasible system, system 1. To imple-
ment the KKT condition, we calculate the scores for the suboptimal systems and set
ci =S /(X h_s Sy ). We then solve

L(27i(0f, ci(1 — af)))
=1 20)
Z Iz alvcl(l_al))7y;k(a>{’ci(1_af))) (

i€l*USy

for ;. Then the SCORE-c allocation for the suboptimal systems is o} = ¢;(1 — of) for
alli=2,...,r.

The SCORE allocation is identical to the SCORE-c allocation, except that when solv-
ing the root-finding problem in equation (20), the sets I'* and S;; and the rate functions
are evaluated under the assumption of independence. That is, we instead solve

Ii(x *(ozl,cl Z (041,61(1—041)))
Ii(z

=1
= Li(x} (o, ¢i(1 — o)) P, e 1 — 1))+ 2 jeci Jii ()

(21

9
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where 2z} (a1, ¢;(1 — aq)) is the solution to inf,, (o111 (x;) + ¢;(1 — a1)Ii(z;)), T is the set
of truly feasible systems, S,, is the set of truly infeasible and worse systems, and C?
is the set of constraints on which system i is truly infeasible (see also Hunter and
Pasupathy [2013]). While there are many ways to choose an allocation to system 1, we
propose these two allocations. As shown in the numerical section, at least under the
multivariate normal assumption, the SCORE allocation is fast and performs well for
large numbers of systems.

Example 5.2. Since our implementation focus is on the Gaussian case, we now
present the SCORE allocation for the case of multivariate normal random variables
with correlation, assuming all distribution parameters are known. Suppose the ran-
dom observations of the objective and constraints from system i have a normal distri-
bution with mean (h;, g;)” and covariance matrix ¥; for all i < r. From Table I, letting
Ag; = — gi, Ah; = hy — h; (see §2.2 for notation), we first calculate

1[a—h 1" z—h
J— 3 A ) — : - — I -1 — Iy
SZ x; <ig1£1<'y IZ(:L.“ yl) wigfgl,fz./iﬁ’y 2 |:y —g; :| El |: Y —gi :| (22)
Ah2 %\\—1 i% . *
= 2 > (C) T Ei(Ga(CT) T [Agi(Cr)] i € Sy}

Ah; T H; -1 %
+[Agfn<0}'*)} Z”({Gm*)}) {Ag € }H{’es }

for all suboptimal systems i # 1, where we note that (22) is a quadratic program with
box constraints. Foralli e TUS,, setc; =S; /(301 _, Si ).

Now we are ready to compute the allocation to system 1 using equation (21). Since
all rate functions are normal, x} (a1, ¢;(1 — 1)) from equation (21) can be written in
closed form as
(a1 /of)hi + (ci(1 — a1)/oF)hi

ar/of +ci(l —an) /o7

which implies equation (21) is equivalent to

zi(ar,ci(l —a)) =

(Ul/al)(hl hi )

oi/od o2/ar+o2/(ci(1—an))]?
> e p +
2 /les(1 — (02/[ei (1 a) 2)(h1—hi) (i—9i1)°
= /el —aa)] (07 /a1+02/1(c1(1 1‘11))]2 +ZJ€C? : Uz'gj

This one-dimensional root finding problem can be solved numerically to find o. Setting
af = (S (1 —a}))/(Ch_y Sy ) for all i # 1 yields the proposed SCORE allocation.

We note here that the steps to compute the SCORE-c allocation under the multi-
variate normal assumption are identical to the steps for the SCORE allocation, except
that at each step in solving the root-finding problem in equation (20), » — 1 quadratic
programs must be solved to obtain the values of the rate functions.

6. A SEQUENTIAL ALGORITHM FOR IMPLEMENTATION

To implement the proposed optimal allocation sequentially, we use the following Al-
gorithm 1. Algorithm 1 evolves in stages by collecting a fixed number of simulation
observations from systems chosen strategically at the beginning of each stage, updat-
ing the relevant estimators, and then proceeding to the next stage to begin the process
over again. Specifically, at the beginning of each stage, 6 > 0 observations are obtained
from systems chosen with probabilities in accordance with the prevailing estimated
optimal fractions &;, = {47 ,,,45 ,,,. .., 4, ,}, where n represents the expended number

of simulation calls. The observations are then used to update the estimated scores Sm

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2014.



Stochastically Constrained Ranking and Selection via SCORE 0:17

Algorithm 1 A Sequential Algorithm

Require: Number of pilot samples dy > 0; number of samples between allocation vector updates
0 > 0; and a minimum proportional allocation vector € > 0.
1: Initialize: collect dy samples from each system ¢ <r.
2: Initialize: total simulation effort n =rd,, effort for each system n; = d,.

Update the objective and constraint estimators (H;(n;), G;(n;)), the rate function estimator

I; ,(z:,y;:), and the score estimator Sm for all 4 <r.

w

4: if no systems are estimated feasible then

5. Set ar=(1/r,1/r,...,1/7).

6: else

7. Update 1(n), the estimated system 1, and its allocation &7 ,.

8  Set i, = () ,Si') T xSt x (1—a7,) for all systems i > 2.

9: end if

10: Collect one sample at each system X, k=1,2,...,0, where the X}’s are iid random variates

with probability mass function &, and support {1,2,...,r}. Update ny, =nx, +1.
11: Set n=n+ ¢ and update &, = {n;/n,na/n,...,n,./n}.
12: if &, > € then
13:  Set 6t =0.
14: else
15:  Collect one sample from each system in the set of systems receiving insufficient sample Z,.
16:  Update n; =mn;+1 for all i € Z,,. Let 6t =|Z,|, the cardinality of Z,.
17: end if
18: Set n=n+0" and go to step 3.

for systems i > 2, and the estimated best solution 1(n). The iterative process continues
by using the updated scores to modify the estimated optimal fractions &, which will
in turn be used as the system choice probabilities in the subsequent stage. In the event
that the score involves inverting an estimated covariance matrix, we suggest that an
independent model be used until the matrix can reliably be inverted numerically.

7. NUMERICAL EXAMPLES

In this section, we conduct numerical experiments to evaluate the performance of the
proposed SCORE allocations. The SCORE allocations are extremely general; therefore
we make simplifying assumptions for implementation in this section. Consistent with
the vast majority of the current ranking and selection literature, we provide insights
in the context of SO problems with multivariate-normal simulation observations. Our
hope is that the sense conveyed by these experiments will hold in a broader context.
To evaluate the SCORE and SCORE-c allocations in the multivariate normal con-
text, we consider a number of competing allocations. The first competitor is the “MVN
True” allocation, which is the asymptotically optimal allocation in the multivariate
normal context, provided by Hunter [2011]. The MVN True allocation results from
solving a bi-level optimization problem — the outer concave maximization problem
corresponds to solving Problem (), and at each step in solving Problem (), Prob-
lems R;(a1, «;) must be solved for i = 2,...,r. In the multivariate normal case, each
Problem R;(«1, ;) is a quadratic program. The MVN True allocation becomes compu-
tationally burdensome for large numbers of systems, but it allows us to evaluate the
optimality gap of the SCORE allocations when the number of systems is finite. The
second competing allocation is the “MVN Independent” allocation, provided by Hunter
and Pasupathy [2013]. This allocation assumes mutual independence between the ob-
jective and constraint estimators, and requires solving a single convex optimization
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problem, corresponding to Problem @, to find the optimal allocation (the solution to
each Problem R;(«;, «;) is known in this case). Finally, we compare the SCORE alloca-
tions to equal allocation. An extensive comparison of OCBA-CO [Lee et al. 2012] with
the MVN Independent allocation proposed by Hunter and Pasupathy [2013] appears
in Hunter and Pasupathy [2013]; hence we omit comparisons here.

In what follows, we evaluate the performance of each competing allocation as the
number of systems grows across a variety of different problems. To create a flexible
testbed, we fix the number of constraints at s = 5 and randomly generate instances of
Problem P (see §2.1) as follows. To ensure system 1 and “worse”-but-feasible systems
exist, we set h; = 0 and generate approximately one-third of the systems with objec-
tive and constraint values uniformly distributed in [0, 3] and [—3, 0], respectively. The
remaining systems were created by independently generating uniformly distributed
objective and constraint values in [—3, 3]. The covariance matrices were also randomly
generated and scaled so that all variances equal one. Further, for any given instance
of Problem P, the covariance matrices are equal to each other across all systems. For
numerical distinction, we ensured |h; — h;| > 0.05 and |g;; — ;| > 0.05 for ¢ <r,j <5.
We require this numerical distinction since otherwise, calculating the MVN True and
MVN Independent allocations would be computationally burdensome due to shallow
rate functions. Generating the systems this way ensures that, as the total number of
systems increases, the systems become increasingly “dense” in the considered region.

In the following sections, we evaluate the competitors on three key metrics: (i) the
time to solve for the allocation during one update of the sequential allocation, (ii) the
optimality gap of the allocation from the MVN True allocation (when it can be com-
puted), and (iii) the achieved probability of correct selection when the allocation
scheme is implemented sequentially. Metrics (i) and (i), the time to solve and the op-
timality gap, are evaluated in §7.1, and metric (i), the achieved probability of correct
selection upon sequential implementation, is evaluated in §7.2. In §7.3, we numeri-
cally evaluate the effect of estimating the parameters of the assumed distributional
family on the performance of the sequential SCORE algorithm, and in §7.4, we numer-
ically evaluate the robustness of the SCORE allocation to violation of our assumptions.
Due to the similar performance of the SCORE and SCORE-c allocations, and given the
speed of the SCORE allocation, we evaluate only SCORE in §7.3 and §7.4.

7.1. Time to Solve versus Optimality Gap

In Table II, we evaluate the proposed allocations and all competing allocations in terms
of their computation time and optimality gap from the “MVN True” allocation. In Ta-
ble II, all parameters of the distributional family are assumed to be known; that is,
no quantities are estimated. Since some computations are intense and our goal is only
to show the order of magnitude of the time required to solve for each allocation, we
present results averaged over ten randomly-generated Problems P for each r in the
table. The reported times in Table II give a sense of the computing effort required to
perform a single update of each allocation scheme.

The primary message we wish to convey in Table II is that, with relatively negli-
gible computing effort, when the number of systems is large, the proposed allocations
exhibit performance on par with the truly optimal allocation. Further, with the SCORE
allocation, we are able to solve for the nearly-optimal allocation in under a minute (on
average) when the number of systems is 10,000. The time to solve for the SCORE
allocation increases linearly as the number of systems increases.

In the final rows of Table II, we are unable to compute the true allocation and there-
fore unable to assess the optimality gap of the proposed allocations. However the dif-
ferences in the rate of decay of P{FS} between the proposed allocations and equal
allocation give some sense of the improvement the SCORE allocations achieve.
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Table Il. For ten randomly-generated constrained SO problems with r systems and s = 5 constraints
under the multivariate normal assumption with correlation, the table reports the average wall-clock time
to solve for the optimal allocation under each specified allocation model, as well as the average rate of
decay of the probability of false selection (P{FS}) and the average optimality gap from the “True” optimal
allocation.

Number of Metric of Interest MVN MVN
Systems (r) (all rates x10~%) True Indep. SCORE-c SCORE Equal
Ave. Time to Solve 2.31 sec 0.05 sec 1.89 sec 0.12 sec 0 sec
20 Ave. Rate 2 222.99 218.86 154.82 155.17 25.42
Ave. Opt. Gap of z (s 4.13 68.17 67.82 | 197.57
Ave. Time to Solve 17.45 sec 0.34 sec 8.77 sec 0.57 sec 0 sec
100 Ave. Rate 2 11.75 11.72 9.53 10.17 0.37
Ave. Opt. Gap of z 0 0.03 2.23 1.58 11.39
Ave. Time to Solve 3.71 min 1.50 min 40.04 sec 2.72 sec 0 sec
500 Ave. Rate 2 1.85 1.84 1.53 1.53 0.02
Ave. Opt. Gap of z 0 0.01 0.32 0.32 1.83
Ave. Time to Solve 53.87 min | 34.76 min 1.54 min 5.39 sec 0 sec
1,000 Ave. Rate 2 1.37 1.36 0.98 1.10 0.01
Ave. Opt. Gap of 2 0 0.01 0.39 0.27 1.37
Ave. Time to Solve > 6 hr > 6 hr 3.10 min | 11.33 sec 0 sec
2,000 Ave. Rate 2 b — 0.52 0.58 0.003
Ave. Opt. Gap of z 0 — — — —
Ave. Time to Solve > 6 hr > 6 hr 7.97 min | 27.65 sec 0 sec
5,000 Ave. Rate z — — 0.26 0.29 0.002
Ave. Opt. Gap of =z 0 — — — —
Ave. Time to Solve > 6 hr >6hr | 16.37 min | 54.43 sec 0 sec
10,000 Ave. Rate 2 — — 0.14 0.16 | 0.0008
Ave. Opt. Gap of =z 0 — — — —

Note: All computing performed in MATLAB R2011a on a 1.8 GHz Intel Core i7 processor with 4GB
1333 MHz DDR3 memory.

2The optimality gap of the true allocation is to the precision of the solver.

bThe symbol ‘— indicates that the data is unavailable due to the large computational time.

7.2. Finite-time Performance of the Sequential Algorithm

To assess the finite-time performance of the SCORE allocation in the context of the
sequential Algorithm 1, we implemented sequential versions of each of the five com-
peting allocations in two different scenarios: »r = 20 systems, s = 5 constraints, and
r = 100 systems, s = 5 constraints. For each sequential algorithm and number of sys-
tems, ten thousand randomly-generated Problems P were created and solved.

Figure 1 shows the resulting estimated probability of correct selection P{CS} for
each algorithm, where we note that the estimated P{CS} values are correlated across
the simulation budget values. The parameters for Algorithm 1 in Figure 1 are 6y = 8,
§d =50,e; =1 x 1078 for all i < r, and an eigenvalue tolerance of ¢ = 1 x 107°. The
parameter 0y was chosen as 8 since the covariance matrix is 6-by-6. For each esti-
mated covariance matrix, the largest eigenvalue was required to be larger than ¢ for
the sampling model to account for correlation. Otherwise, the corresponding indepen-
dent model was used. The percent of systems requiring an independent model was less
than one percent. The sequential algorithms for the MVN True and MVN Independent
allocations used the same parameters as those used in Algorithm 1 for the SCORE allo-
cations. The computation times of the sequential versions of MVN True and SCORE-c
were prohibitively long for estimating P{CS} in the case of r = 100, s = 5, and therefore
these allocations are omitted from Figure 1(b).

In Figure 1, all allocations perform well relative to equal allocation. Among the non-
equal allocations, the estimated P{CS} values are close to each other; however it ap-
pears that the SCORE allocations do not perform as well as the MVN Independent
and MVN True allocations. For a lower number of systems (r = 20), this result is
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Fig. 1. The P{CS} for each allocation was calculated across 10,000 runs of the sequential algorithm on
different randomly-generated Problems P, each with five constraints and (a) » = 20 or (b) » = 100. Due to
large computational time, (b) excludes the MVN True and SCORE-c algorithms.

expected since the approximations in the SCORE allocations rely on the existence of
a large number of systems. It also appears that the independent versions of the MVN
and SCORE allocations slightly outperform the corresponding allocations that account
for correlation. When the number of systems is increased to » = 100 in Figure 1(b),
the SCORE allocations outperform the MVN Independent allocations in finite time.
Further research is needed to determine the problem-related boundary conditions to
indicate when each allocation should be used.

7.3. Effect of Parameter Estimation and Robustness to Violation of Assumption 5

In the unconstrained R&S context, the effect of estimation of the distributional param-
eters on the achieved P{CS} of OCBA was explored by Chen et al. [2006]. The results
of Chen et al. [2006] seem to suggest that allocations that adapt to the sample path
outperform static-but-optimal allocations. In this section, we explore similar experi-
ments in the constrained R&S context — that is, we compare the SCORE allocation
using estimated values for the optimal allocation, as outlined in Algorithm 1, with the
performance of the SCORE allocation assuming that the optimal SCORE allocation
a* is magically known in advance. Since we implement only the SCORE allocation in
this section, we also remove the “numerical distinction” constraint in the generation
of random Problems P. That is, we allow Problems P to be generated with systems
arbitrarily close to system 1 and to the constraints. All parameters of Algorithm 1 are
identical to the implementation from §7.2, which renders Figure 2 directly comparable
with Figure 1(b).

Figure 2 shows that, consistent with the results of Chen et al. [2006], SCORE with
estimated distributional parameters outperforms SCORE with known distributional
parameters in terms of the achieved P{CS}. Therefore the estimation of distributional
parameters is actually helpful toward increasing the P{CS}. Toward understanding
this effect, we make two observations. First, the SCORE allocation with ¢rue distribu-
tional parameters is asymptotically optimal. Consequently, there is no reason to expect
that at any specific finite simulation budget in Figure 2, the SCORE allocation with
the true distributional parameters should provide the highest probability of correct
selection. Second, it is indeed surprising that the SCORE allocation implemented with
estimated distributional parameters seems to systematically outperform the SCORE
allocation with true distributional parameters across finite simulation budgets. The
reasons behind such behavior are still unclear to us; specifically, we are unsure as to
whether this observation is the result of a systematic advantage provided by estima-
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Fig. 2. The P{CS} for each allocation was calculated across 10,000 runs of the sequential algorithm on
different randomly-generated Problems P, each with five constraints and » = 100. This figure shows the
effect of estimating distributional parameters on the achieved P{CS}.

tion or simply an artifact of the way we calculate the probability of correct selection.
Given that the SCORE allocations using estimated parameters are essentially loca-
tions of sample-path maxima, we speculate that this seemingly counterintutitive effect
may have connections to a well-known phenomenon in the context of sample-average
approximation. Namely, under quite general conditions, the expected maximum value
of sample-path functions is larger than the maximum value attained by the expected
sample-path function [Mak et al. 1999].

We also note that the gap in performance between the SCORE allocation and equal
allocation in Figure 2 is similar to the gap shown by Figure 1(b), which implies that
the relative performance of the SCORE allocation is not affected by allowing systems
to be arbitrarily close to system 1 and to the constraints, despite our mathematical
requirement of Assumption 5. We note that the overall P{CS} estimates in Figure 2
are lower than those in Figure 1(b), which is intuitive because the problems solved
in Figure 2 are in some sense “harder.” The SCORE allocation overcomes a severe
limitation of the MVN True allocation when the number of systems is large — the need
to solve a bi-level optimization problem that is increasingly difficult when systems are
close to each other — without reduction in performance.

7.4. Robustness to Violation of Assumptions 5 and 7

We now evaluate the SCORE allocation in terms of its robustness to violation of As-
sumption 7 and the assumption that, when implementing the SCORE allocation, one
might know the distributional family in advance. In this section we assume the true
distribution is a multivariate ¢ distribution, so that the distributional family is mis-
specified and the true distribution is heavy-tailed. Further, since we implement only
the SCORE allocation in this section, we retain the removal of the “numerical distinc-
tion” constraint in the generation of random Problems P. Therefore we allow systems
to be generated arbitrarily close to system 1 and to the constraints, so that the figures
in this section are comparable with Figure 2.

In the stochastically constrained case, we do not know the optimal allocation for
the multivariate ¢ distribution. Therefore we compare the performance of the SCORE
allocation with equal allocation. (In the unconstrained case, optimal allocation in the
case of heavy-tailed distributions was explored in Broadie et al. [2007] and Blanchet
et al. [2008].) As in §7.3, we retain all parameters of Algorithm 1 used in previous
numerical examples. Figure 3 shows that SCORE is competitive when the true distri-
bution is multivariate ¢. After 2,000 samples per sample path for 10,000 sample paths
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(20 samples per system per sample path), SCORE selects the best system at nearly
double the rate of equal allocation, as shown in Table III. These experiments indicate
that SCORE is robust to violations of normality, even when systems may be arbitrarily
close to system 1 and the constraints.

0.9 0.9 0.9 0.9 0.9 SCORE
E;:‘0.8 0.8 0.8| 0.8| 0.8 Equal Alloc.
d 0.7, 0.7, 0.7 0.7 0.7
2,06 0.6 0.6 0.6 0.6
g 0.5 0.5 0.5 0.5 0.5
=04 0.4 0.4 0.4 0.4
'g 0.3] 0.3] 0.3/ 0.3 0.3
902 0.2 0.2 0.2 0.2

[ S ——— O | 0.1 0.1 0.1

0 1000 1500 2000 0 1000 1500 2000 0 1000 1500 2000 0 1000 1500 2000 0 1000 1500 2000
Simulation Budget Simulation Budget Simulation Budget Simulation Budget Simulation Budget
(a) r =100,df =1 (b) r =100,df =2 (¢) r=100,df =3 (d) r =100,df =5 (e) r =100, df =10

Fig. 3. The P{CS} for each allocation was calculated across 10,000 runs of the sequential algorithm on
different randomly-generated Problems P, each with five constraints and » = 100. This figure shows the
achieved P{CS} when the true distributional family is a multivariate ¢, but the SCORE allocation is based
on a multivariate normal family.

Table Ill. The table reports the estimated percent of the time that system 1
was correctly selected as the best after 2,000 samples in Figure 3.

\ Tdf=1 ][ df=2]df=3 | df=5] df =10 |
Equal Allocation || 6.6% | 20.0% | 26.2% | 32.2% | 36.2%
SCORE || 11.1% | 41.8% | 54.2% | 62.2% | 65.4%

Note: All standard errors less than 0.5%.

8. CONCLUDING REMARKS

As we have demonstrated, the asymptotic theory in the context of stochastically con-
strained SO on large finite sets points to a remarkably simple “closed-form” alloca-
tion scheme that is asymptotically optimal and based on a single intuitive measure
that we have called the score. During implementation, the score can be estimated pro-
gressively as simulation observations become available, leading to a scheme that is
consistent with respect to the optimal allocation. Furthermore, under distributional
assumptions on the random variables comprising the simulation, the proposed scheme
becomes highly tractable and opens avenues for solving large-scale stochastically con-
strained SO problems efficiently. This is borne out by our numerical experiments where
the optimal budget allocation for constrained SO problems involving thousands of sys-
tems has been approximated remarkably well by the closed-form allocation, and with
computing effort that is a few orders of magnitude less than what would be required
to identify the true allocation.

Do we expect our proposed scheme to perform as well in broader practical contexts?
More generally, are iterative schemes based on estimated rate functions useful in prac-
tice, particularly in light of recent work by Glynn and Juneja [2011] arguing that large-
deviation rate function estimators tend to be heavy-tailed in many settings, thereby in-
creasing the possibility of large errors during implementation? We do not as yet have
a conclusive response to this question, but two comments are relevant. First, we em-
phasize that we do not recommend estimating the rate functions directly. Instead, we
recommend making distribution-family assumptions on the random variables under-
lying the simulation. Specifically, assume that the simulation observations fall within
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a convenient but flexible distributional family, thereby circumventing a difficult non-
parametric analysis and allowing the parametric estimation of the rate function, akin
to the limited examples discussed through Table I. This is also consistent with our
broader view of only looking for a model that forms a rigorous basis for optimal budget
allocation within an SO context, while expending little effort on model estimation it-
self. Second, we are aware of pathological examples where the heavy tails of rate func-
tion estimators have deleterious effects during implementation. We are also aware that
in cases where the underlying random variables have bounded support, e.g., Bernoulli,
beta, this problem does not arise. What is unclear is the extent to which heavy tails
become relevant during implementation. This is a topic of ongoing research, but our
numerical experience has been overwhelmingly in favor of the usefulness of the pro-
posed scheme.

APPENDIX
A. PROOF OF LEMMA 3.1

Before we proceed with the proof of Lemma 3.1, we first solve for the KKT conditions
of Problem R;.

A.1. The KKT conditions for Problem R;

Since Problem R; is strictly convex and its unique solution exists [Hunter 2011], and
Slater’s condition holds, the KKT conditions for Problem R; are necessary and suffi-
cient for optimality. Recall that \;; < 0and \;; <0, j < s are the Lagrange multipliers
associated with the constraints, where A\; = (\iz, \i1, ..., \is)”. In addition to the pri-
mal feasibility conditions (z} — z3;,) < 0 and (y; — v) < 0, we have complementary
slackness conditions \;;(z] — z7;) = 0 and \i;(y;; —7;) = Oforall j < s, and the sta-

tionarity conditions

o ) 3, (23)
0xy;

Case: i € I'*. Then z}, = z} and \;; = 0 for all j < s, which implies

o Ol (z3;) T oy oI (7}, y7) —0 and a; oli(x}, y;)
83317; (9.131' 8:%]
Case: i € S;. Then )\, = 0, y;; = v; for all j € Cf*, and \;; = 0 for all j € C¥ which
implies
I (z* I (2% y* JAC R T
ala 1('1:12) :aial(xz7yz) =0 and Oéial(xl?yl)
({91’11' Bxl ayij
Case: i € S;,. Then z7}; = x7, yi; = v; for all j € Ci*, and \;; = 0 for all j € Ci* which
implies

=0forall j <s. (25)

=0 forall j € C. (26)

oI (23;) +a,51z'($?,yf) “ 0 and o250l

i i =0 for all j € Ci. 2
Fr o, e e 0forall j € C @27

aq

A.2. Proof of Lemma 3.1
Suppose we are given the optimal value (z3,, z},y;7) to Problem R;, which was derived
in §A.1. Then Ri(dl, dz) = dlll(xﬁ) + dlll(x;",yl*) For k € {1,2}, let
07 yp) _ (Owi(a1,6i) Oyi(Gn,d)  Oyil(an,@)\" _ (0x; dyn  oyn )"
Oday, day, Oday, B Oday, Oay’ day’ T day )
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Then from equations (23) and (24), we find that

OR; (a7, &) oy, ~ ON(a1;) 027, 70(z, y;)
R\, Q) gk i i I T\ Y )
66&1 1(‘,1:12) + « axl aOél + alv ( ’L ) y’L ) 3&1
ory a(x},
= L(z}) — Aia 82112 L ard 5 17’1), (28)
aRi(dlv &7«) T (R % oL (xlz) 8%11 Ta( i Yi )
8641’ - Il(x'L?y'L) +Oél 81‘17‘ a~ +a VI ( ) 80(1
0 oz},
- I ( L, yz) - )‘ME 8:211 AT (5ayl ) . (29)

We now use equations (25)—(29) to complete the proof of Lemma 3.1. First, note that
for systems i € T*, X\ =0forall j <s,sothat A] =22 a( y =\ aw‘ and )\TM

1T a v
)\m o . However this result also holds for all i € S U S * since in both cases, \;; = 0 for
all j € C% while y;; = forall j € Ci*, which implies ?fi: = ay“ =0 for all j € C¥*
Therefore it generally holds that
OR;(ay, &)

* *
oxy, ox;

=1 1) — Aiw po Azm%
8&1 1(%‘11) 8@1 + 80[1
and
8Ri(d1, dl) 813’{ ox?
—Qa~_ - I )\m = t )\zwif
65&1‘ ( TirYi ) 80&1‘ + (9041'
Then for all « € I'* U S, since z}; = z}, then 0””“ = gz and %fg: = g%, and the result

follows. For all i € S}/, the result follows 1mmed1ately upon notihg that \;, = 0.

B. PROOF OF LEMMA 3.2

The result follows by noting that all terms in the sum in equation (5) corresponding
to the set S; are equal to zero, shown as follows. From equation (26) in the proof of

Lemma 3.1, for all systems i € S;, it holds that &, 811(“‘)

follows that ml(l“) = 0 which implies z};, = h;. Therefore Ii(z3;) = Ii(h1) = 0. Under

Assumptions 3 and 4, I;(xf,yF) < oo, and it remains only to show that I;(z},y}) > 0
for all i € S;. Consider that for systems i € S, we have

= 0. Since we know &} > 0, it

i(a7,a7) = inf  &iLi(zi, i)

R (a15a1) $’<fgl,yi§’ya@ ($ Y )

Since &} > 0, if R;(a5,a)) = 0, then I;(z}, y;) = I;(h;, g;), which is a contradiction since
g: # 7 and y} = 7.

REFERENCES

S. Andradéttir. 2006. Simulation Optimization. Wiley, 307-333.

S. Andradottir and S.-H. Kim. 2010. Fully Sequential Procedures for Comparing Constrained Systems via
Simulation. Naval Research Logistics 57, 5 (2010), 403—421.

d. April, J. Glover, J. Kelly, and M. Laguna. 2001. Simulation optimization using “real-world” applications.
In Proceedings of the 2001 Winter Simulation Conference, B. A. Peters, J. S. Smith, D. J. Medeiros, and
M. W. Rohrer (Eds.). Institute of Electrical and Electronics Engineers: Piscataway, New Jersey, 134-138.

R. R. Barton and M. Meckesheimer. 2006. Metamodel-based simulation optimization. In Simulation, S. G.
Henderson and B. L. Nelson (Eds.). Elsevier, 535-574.

D. Batur and S.-H. Kim. 2010. Finding Feasible Systems in the Presence of Constraints on Multiple Perfor-
mance Measures. ACM Transactions on Modeling and Computer Simulation 20, 3, Article 13 (2010), 26

pages.

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2014.



Stochastically Constrained Ranking and Selection via SCORE 0:25

dJ. Blanchet, J. Liu, and B. Zwart. 2008. Large Deviations Perspective on Ordinal Optimization of Heavy-
Tailed Systems. In Proc. of the 2008 Winter Simulation Conference, S. J. Mason, R. R. Hill, L. Monch,
O. Rose, T. Jefferson, and J. W. Fowler (Eds.). Institute of Electrical and Electronics Engineers, Inc.,
Piscataway, NJ, 489-494.

S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press, New York.

dJ. Branke, S. E. Chick, and C. Schmidt. 2007. Selecting a Selection Procedure. Management Science 53, 12
(2007), 1916-1932.

M. Broadie, M. Han, and A. Zeevi. 2007. Implications of heavy tails on simulation-based ordinal opti-
mization. In Proc. of the 2007 Winter Simulation Conference, S. G. Henderson, B. Biller, M.-H. Hsieh,
dJ. Shortle, J. D. Tew, and R. R. Barton (Eds.). Institute of Electrical and Electronics Engineers, Inc.,
Piscataway, NJ, 439-447.

C.-H. Chen, D. He, and M. Fu. 2006. Efficient Dynamic Simulation Allocation in Ordinal Optimization. IEEE
Trans. Automat. Control 51, 12 (2006), 2005-2009.

C.-H. Chen, J. Lin, E. Yiicesan, and S. E. Chick. 2000. Simulation Budget Allocation for Further Enhancing
the Efficiency of Ordinal Optimization. Discrete Event Dynamic Systems 10, 3 (2000), 251-270.

A. Dembo and O. Zeitouni. 1998. Large Deviations Techniques and Applications (2nd ed.). Springer, New
York.

M. C. Fu, F. W. Glover, and J. April. 2005. Simulation optimization: a review, new developments, and appli-
cations. In Proc. of the 2005 Winter Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B. Armstrong,
and J. A. Joines (Eds.). Institute of Electrical and Electronics Engineers, Inc., Piscataway, NdJ, 83-95.

P. W. Glynn and S. Juneja. 2004. A large deviations perspective on ordinal optimization. In Proc. of the
2004 Winter Simulation Conference, R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters (Eds.).
Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ, 577-585.

P. W. Glynn and S. Juneja. 2011. Ordinal Optimization: A Nonparametric Framework. In Proc. of the 2011
Winter Simulation Conference, S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu (Eds.).
Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ.

S. R. Hunter. 2011. Sampling laws for stochastically constrained simulation optimization on finite sets. Ph.D.
Dissertation. Virginia Polytechnic Institute and State University.

S. R. Hunter and R. Pasupathy. 2013. Optimal sampling laws for stochastically constrained sim-
ulation optimization on finite sets. INFORMS dJournal on Computing 25, 3 (2013), 527-542.
DOI:http://dx.doi.org/10.1287/ijoc.1120.0519

S.-H. Kim and B. L. Nelson. 2006. Selecting the best system. In Simulation, S. G. Henderson and B. L.
Nelson (Eds.). Elsevier, 501-534.

L. H. Lee, N. A. Pujowidianto, L.-W. Li, C.-H. Chen, and C. M. Yap. 2012. Approximate Simulation Budget Al-
location for Selecting the Best Design in the Presence of Stochastic Constraints. IEEE Trans. Automat.
Control 57,11 (2012), 2940-2945.

W.-K. Mak, D. P. Morton, and R. K. Wood. 1999. Monte Carlo bounding techniques for determining solution
quality in stochastic programs. Operations Research Letters 24 (1999), 47-56.

R. Pasupathy and S. G. Henderson. 2006. A Testbed of Simulation-Optimization Problems. In Proc. of the
2006 Winter Simulation Conference, L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and
R. M. Fyjimoto (Eds.). Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ.

R. Pasupathy and S. G. Henderson. 2011. SimOpt: A Library of Simulation Optimization Problems. In Proc.
of the 2011 Winter Simulation Conference, S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and
M. Fu (Eds.). Institute of Electrical and Electronics Engineers, Inc., Piscataway, Nd.

dJ. C. Spall. 2003. Introduction to Stochastic Search and Optimization. John Wiley & Sons, Inc., Hoboken,
NJ.

R. Szechtman and E. Yiicesan. 2008. A New Perspective on Feasibility Determination. In Proc. of the 2008
Winter Simulation Conference, S. J. Mason, R. R. Hill, L. Monch, O. Rose, T. Jefferson, and J. W. Fowler
(Eds.). Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ, 273-280.

Received July 2013; revised January 2014; accepted May 2014

ACM Transactions on Modeling and Computer Simulation, Vol. 0, No. 0, Article 0, Publication date: 2014.



