
PyMOSO: Software for Multi-Objective Simulation
Optimization with R-PERLE and R-MinRLE

Kyle Cooper
School of Industrial Engineering, Purdue University and Tata Consultancy Services, coope149@purdue.edu,

Susan R. Hunter
School of Industrial Engineering, Purdue University, susanhunter@purdue.edu,

We present the PyMOSO software package for (1) solving multi-objective simulation optimization (MOSO)

problems on integer lattices, and (2) implementing and testing new simulation optimization (SO) algo-

rithms. First, for solving MOSO problems on integer lattices, PyMOSO implements R-PERLE, a state-

of-the-art algorithm for two objectives, and R-MinRLE, a competitive benchmark algorithm for three or

more objectives. Both algorithms employ pseudo-gradients, are designed for sampling efficiency, and return

solutions that, under appropriate regularity conditions, provably converge to a local efficient set with prob-

ability one as the simulation budget increases. PyMOSO can interface with existing simulation software

and can obtain simulation replications in parallel. Second, for implementing and testing new SO algorithms,

PyMOSO includes pseudo-random number stream management, implements algorithm testing with inde-

pendent pseudo-random number streams run in parallel, and computes the performance of algorithms with

user-defined metrics. For convenience, we also include an implementation of R-SPLINE for problems with

one objective. The PyMOSO source code is available under a permissive open source license.

Key words : multi-objective simulation optimization, software

History : Authors’ preprint compiled Saturday 8th June, 2019.

1. Introduction

We present the PyMOSO software package, written in Python, for using, implementing,

and testing multi-objective simulation optimization (MOSO) algorithms. PyMOSO currently

implements a state-of-the-art algorithm, R-PERLE, for solving MOSO problems on integer

lattices with two objectives, and a competitive benchmark algorithm, R-MinRLE, for solving

MOSO problems on integer lattices with many objectives. Since R-PERLE and R-MinRLE

are both pseudo-gradient-based algorithms that rely on the single-objective SPLINE solver by

Wang et al. (2013), for convenience, we also include an implementation of R-SPLINE (Wang

et al. 2013) for solving single-objective simulation optimization problems on integer lattices.

The initial version of the software, and this paper, serve as companions to Cooper et al.

(2018), the paper that introduces and explains the R-PERLE and R-MinRLE algorithms.

1

2 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

MOSO problems are nonlinear optimization problems with more than one simultaneous

objective function, each of which can only be observed with stochastic error. For example,

at any feasible point, observations of the objective values may be obtained from a Monte

Carlo simulation oracle.

By the nature of the algorithms currently included in PyMOSO, our focus is on MOSO

problems in which the feasible set is a subset of an integer lattice. Such problems take the

form

Problem Md: minimize
x∈X

{g(x) = (g1(x), ..., gd(x)) := (IE[G1(x,ξ)], ..., IE[Gd(x,ξ)])},

where X ⊆ Zq is the feasible set and ξ is a random vector. R-PERLE is designed to solve

Problem M2 to local optimality, and R-MinRLE is designed to solve Problem Md, d ≥ 2,

to local optimality. A local solution to Problem Md is called a local efficient set, which we

formally define in §1.2.

MOSO problems on integer lattices arise in many application domains including aviation,

healthcare, transportation, and manufacturing (Hunter et al. 2019). For example, in aviation,

Li et al. (2015) solve a bi-objective aircraft spare parts management problem, and Lee et al.

(2008) solve a tri-objective inventory control problem for a network of airports. In healthcare,

Chen and Wang (2016) solve a bi-objective capacity allocation problem for a hospital’s

emergency department. In transportation, Zhou et al. (2018) solve a bi-objective problem to

reduce congestion in a lighterage terminal. Finally, in manufacturing, Andersson et al. (2007)

solve a bi-objective problem to increase the throughput and maintain safety stocks for a

camshaft production line. In these applications, the decision variables take on integer values,

the objective functions can only be observed with stochastic error through a Monte Carlo

simulation, and the goal is to retrieve the entire efficient set as input to the multi-criteria

decision-making process.

Though MOSO problems arise in many application areas, few software packages exist

to solve Problem Md for d ≥ 2 objectives. The software packages that do exist, such as

OptQuest (OptTek Systems, Inc. 2018, Thengvall et al. 2016) and PaGMO/PyGMO (Biscani

and Izzo 2018), tend to implement metaheuristics to solve MOSO problems, which do not

provide performance guarantees (Hong et al. 2015). We are not aware of any available MOSO

software that provides the sampling efficiency and convergence guarantees of R-PERLE

and R-MinRLE, moreover, no software implementing these two algorithms currently exists.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE 3

Finally, we remark here that an implementation of an as-yet-unpublished algorithm, Multi-

objective Partitioned Random Search, is available in a source code repository (Weizhi 2017).

1.1. Contributions

As in Schmeiser (2008), we adopt the terms ‘practitioners’ and ‘researchers’ to describe those

who seek a solution to ProblemMd to aid in decision-making, and those who intend to create

and compare MOSO algorithms, respectively. We discuss our contributions to each group.

PyMOSO provides practitioners with off-the-shelf access to the state-of-the-art, prov-

ably convergent, bi-objective solver R-PERLE, and to the competitive, provably convergent,

multi-objective solver R-MinRLE. PyMOSO can accommodate any Monte Carlo simulation

oracle that can be called from Python. Swain (2017) provides a list of proprietary simula-

tion software packages and indicates whether each package can be invoked by an external

program. Most simulation software packages that can be invoked by external programs are,

with programming effort, compatible with PyMOSO. After the oracle has been implemented,

PyMOSO can obtain simulation replications in parallel using common random numbers

(CRN, see Law 2015) by exploiting the stream and substream capabilities of the pseudo-

random number generator mrg32k3a (L’Ecuyer et al. 2002), which may reduce runtime.

Finally, PyMOSO provides off-the-shelf access to R-SPLINE in the same software frame-

work. While PyMOSO currently supports only integer decision variables, practitioners may

wish to solve problems with continuous decision variables. We urge caution when discretizing

continuous problems, as the choice of grid size is non-trivial. We hope that future versions

of PyMOSO will include solvers for problems with continuous decision variables.

For researchers who intend to create and compare MOSO algorithms, PyMOSO offers two

primary benefits, as follows.

1. Researchers designing new algorithms to solve MOSO problems on integer lattices should

compare their algorithms with R-PERLE and R-MinRLE on a variety of test prob-

lems. PyMOSO enables researchers to compare algorithms by providing an interface for

implementing test problems and calculating user-defined metrics. By default, PyMOSO

includes all test problems and associated metrics from Cooper et al. (2018). To cre-

ate additional test problems, we recommend taking inspiration from existing testbeds

for deterministic multi-objective optimization (see, e.g., the references in Hunter et al.

2019, p. 25 – 26). Once the desired test problems are implemented, researchers may use

PyMOSO to run many independent sample paths of the algorithms in parallel. PyMOSO

4 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

provides pseudo-random numbers using mrg32k3a (L’Ecuyer 1999) and random number

stream management consistent with L’Ecuyer et al. (2002).

2. PyMOSO provides a framework that enables researchers to create and implement new

algorithms. Although any new MOSO algorithm can be implemented in PyMOSO, it

is especially easy to implement algorithms that rely on a version of sample average

approximation called retrospective approximation (RA). (We provide a brief explana-

tion of RA in §1.2; see Pasupathy and Ghosh (2013) for a more thorough explanation.)

In particular, researchers can create new RA algorithms for MOSO by writing “accelera-

tor” functions that provide starting points to the naïve search algorithm Relaxed Local

Enumeration (RLE) in each RA iteration, as we describe in §3.3. Under appropriate

regularity conditions, Cooper et al. (2018) prove that such algorithms converge to a

local efficient set almost surely as the sample size increases.

In what follows, we discuss background concepts in §1.2, including optimality definitions,

RA, and accelerators. Then, we provide introductions to the current version of PyMOSO for

practitioners in §2 and for researchers in §3. Since all information provided for practitioners

is relevant to researchers, we encourage researchers to read both sections. In addition to the

online supplement, PyMOSO installation instructions, source code, and the user manual can

be found at https://github.com/pymoso/.

1.2. Background

Before discussing PyMOSO in detail, for completeness, we provide a sense of the sets returned

by R-PERLE and R-MinRLE, which we call estimated local efficient sets. Due to space

constraints, we make this section compact. See Cooper et al. (2018) for a complete treatment.

To define a local efficient set (LES), we first define neighborhoods and dominated points.

Let d(x,x′) := ||x−x′|| denote the Euclidean distance between two points x,x′ ∈Rq.

Definition 1. Given a ∈ R, a ≥ 1, the Na-neighborhood of a point x ∈ Zq is Na(x) :=

{x′ ∈Zq : d(x,x′)≤ a}, and the Na-neighborhood of a set S ⊆Zq is Na(S) :=∪x∈SNa(x).

Definition 2. A vector g(x∗) dominates g(x), written as g(x∗)≤ g(x), if gk(x∗)≤ gk(x)

for all k ∈ {1, . . . , d} and gk∗(x∗)< gk∗(x) for at least one k∗ ∈ {1, . . . , d}.
Definition 3 (Cooper et al. 2018). Given a ∈ R, a≥ 1, a set La ⊆X , |La| ≥ 1 is an

Na-local efficient set (Na-LES) if (a) for each x∗ ∈ La, @x ∈ Na(x∗) ∩ X such that g(x) ≤
g(x∗), (b) for each x∗ ∈La,@x′ ∈La such that g(x′)≤ g(x∗), (c) for each x∈ (Na(La)\La)∩
X ,∃x∗ ∈La such that g(x∗)≤ g(x).

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE 5

Figure 1 In this example, there are two LES’s: the first, L1, is indicated by outlined points with its neighbors indicated

by squares; the second, E , is indicated by black points and is also the global efficient set.

Figure 1 shows two N1-LES’s, L1 and E . The set E is also the global efficient set, which we

define as a local efficient set with a=∞.

All algorithms currently implemented in PyMOSO solve ProblemMd using an algorithmic

framework called RA. RA is a version of sample average approximation that is designed

for algorithmic efficiency. Algorithms in an RA framework solve a sequence of sample-path

problems at increasing sample sizes, using the solution from the previous RA iteration as a

warm start for the current RA iteration. The sample-path problem is defined as

minimizex∈X
{
Ḡmν (x) = (Ḡ1,mν (x), . . . , Ḡd,mν (x)) :=

(
1
mν

∑mν

i=1G1(x,ξi), . . . ,
1
mν

∑mν

i=1Gd(x,ξi)
)}
,

where Ḡmν (x) is an estimator of g(x) constucted in RA iteration ν with sample size mν .

The local solution to the sample-path problem is a sample-path Na-LES, which we define

by replacing all quantities in Definition 3 by their respective estimators. Since the estimated

LES found in RA iteration ν−1 is used as a warm start in RA iteration ν and the sequence of

sample sizes {mν , ν = 1,2, . . .} is increasing, RA algorithms are efficient because they reserve

large sample sizes for points that are “close” to the solution.

In the context of R-PERLE and R-MinRLE, the algorithms that solve the sample-path

problems, also called sample-path solvers, consist of two sub-routines: (1) an accelerator

routine which generates a candidate estimated LES, and (2) RLE, which determines whether

a set is an estimated LES and, if not, constructs an estimated LES by crawling through the

feasible space. Thus, given a starting feasible point, the goal of the accelerator is to find

candidate estimated LES members more efficiently than RLE alone would. As ν→∞, the

sequence of estimated LES’s generated by RLE in an RA framework converge to a LES almost

6 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

surely under appropriate regularity conditions. Loosely speaking, the regularity conditions

include that all LES’s are finite, the standard errors of the objective estimators go to zero

fast enough as the sample size increases (e.g., the objective estimators are not heavy-tailed),

and the objective values of all feasible points are separated from each other. (If this last

condition does not hold, the algorithm guarantees a slightly weaker form of convergence.)

Under the additional assumptions that the feasible set is finite, all local efficient points are

global efficient points, and there is exactly one LES that equals the global efficient set, R-

PERLE converges exponentially fast. Given a distance a and a total simulation budget that

limits the number of simulation oracle calls, R-PERLE and R-MinRLE return an approximate

sample-path Na-LES (ALES), which we refer to as an estimated LES. For an exact definition

of an ALES, and for a thorough explanation of the regularity conditions required for each

type of convergence, see Cooper et al. (2018).

2. Practitioners: Using PyMOSO to Solve a Problem

In this section, we discuss using PyMOSO in the practitioner context. Practitioners use

PyMOSO in two steps: first, implement the simulation oracle in PyMOSO, which we discuss

in §2.1, and second, use PyMOSO to solve the problem, which we discuss in §2.2.

2.1. Structuring an Oracle for Use in PyMOSO

To structure an oracle for use in PyMOSO, a practitioner should modify the Python source

code template provided in Figure 2. Figure 2 implements an oracle named MyProblem in a

Python file named myproblem.py. PyMOSO requires that the problem name match the file

name, although the capitalization does not need to match.

A practitioner implements a MOSO problem by first modifying the number of objectives

and the dimension of the feasible points in Lines 8 and 9 of Figure 2, respectively. Setting

1 # import the Oracle base c l a s s
2 from pymoso . chnbase import Oracle
3
4 class MyProblem(Oracle) :
5 ’ ’ ’ Example implementation o f a user−de f ined MOSO problem . ’ ’ ’
6 def __init__(s e l f , rng) :
7 ’ ’ ’ Spec i f y the number o f o b j e c t i v e s and d imens iona l i t y o f po in t s . ’ ’ ’
8 s e l f . num_obj = 2
9 s e l f . dim = 1

10 super () . __init__(rng)
11
12 def g (s e l f , x , rng) :
13 ’ ’ ’ Check f e a s i b i l i t y and s imu la te o b j e c t i v e va lue s . ’ ’ ’
14 #ob j e c t i v e_va lu e s = (obj1 , ob j2) , i s_ f e a s i b l e = True
15 return i s_ f e a s i b l e , ob j e c t i ve_va lue s

Figure 2 The Python file myproblem.py is a template PyMOSO oracle. As shown, g(self, x, rng) is incomplete.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE 7

the correct values for the practitioner’s Problem Md, and changing nothing else, is sufficient

to implement the __init__(self, rng) method correctly. Then, the practitioner should

replace the comment in Line 14 of Figure 2 with valid Python code that, given a Python tuple

x representing a point x ∈ Rq, generates the following to return in Line 15: (a) a boolean

indicator denoting whether x is feasible, and (b) a Python tuple, containing one observation

of every objective function at x if x is feasible, and a Python tuple containing None for every

objective if x is not feasible. In our notation, one observation of every objective function

at x is represented by (G1(x,ξ), . . . ,Gd(x,ξ)); alternatively, the practitioner may think of

this quantity as one observation of Ḡn(x) where n = 1. The function g(self, x, rng)

may contain any number of lines and may be a wrapper for an external simulation oracle.

Returning the feasibility indicator followed by a Python tuple of the objective values is

sufficient to correctly implement the g(self, x, rng) method.

Optionally, a practitioner may use the PyMOSO object rng to generate pseudo-random

numbers with mrg32k3a, or may use the mrg32k3a seed from rng as the seed in an exter-

nal mrg32k3a generator. If MyProblem implements either approach, PyMOSO ensures that

simulation replications obtained in parallel are independent by exploiting the stream and sub-

stream capabilities of mrg32k3a (L’Ecuyer et al. 2002). Further, the implemented PyMOSO

oracle is compatible with PyMOSO’s common random number (CRN) framework. Practi-

tioners who ignore rng should take care when using PyMOSO’s parallel computing and CRN

capabilities. To determine when using CRN is appropriate, we refer the reader to Law (2015).

More detailed information about rng is available in the PyMOSO user manual.

In the remainder of the paper, we assume the practitioner has implemented a PyMOSO

oracle called MyProblem. So the reader can run our examples, we provide a simple example

of MyProblem in Figure 3, where Problem M2 is g1(x) = x2 + z0 and g2(x) = (x− 2)2 + z1,

x ∈ {−100,−99, ...,100}, and z0, z1 are standard normal random variables. The solution is

{0,1,2}. We remark here that Figure 3 contains an example of using rng.

2.2. Solving a MOSO Problem in PyMOSO

Having implemented a PyMOSO oracle called MyProblem in §2.1, we now discuss using

PyMOSO to solve MyProblem. Practitioners may use PyMOSO in two modes: as a stand-

alone solver invoked from the command line, or as a subroutine in a Python program. The

former creates a file containing the output of one run of the selected algorithm, which is

an estimated LES. The latter returns the estimated LES as a Python set. In either case,

8 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

1 def g (s e l f , x , rng) :
2 ’ ’ ’ Check f e a s i b i l i t y and s imu la te o b j e c t i v e va lue s f o r MyProblem . ’ ’ ’
3 feas_range = range(−100 , 101)
4 obj = []
5 i s_ f ea s = False
6 # check t ha t dimensions o f x match s e l f . dim
7 i f len (x) == s e l f . dim :
8 i s_ f ea s = True
9 for i in x :

10 i f not i in feas_range :
11 i s_ f ea s = False
12 i f i s_ f ea s :
13 z_vec = [rng . normalvar iate (0 , 1) for i in [0 , 1]]
14 obj1 = x [0]∗∗2 + z_vec [0]
15 obj2 = (x [0] − 2)∗∗2 + z_vec [1]
16 return i s_feas , (obj1 , obj2)

Figure 3 This figure provides an example g function, which we use in MyProblem.

PyMOSO requires the practitioner to specify, using a method we describe, at least the

following information: the problem, the algorithm, and an initial feasible point. The method

is slightly different depending on the chosen mode. In this section, we only consider the

command line mode to solve MyProblem. See the user manual for the subroutine mode.

The simplest viable command to solve a problem in command line mode follows the struc-

ture program command problem solver x0, where x0 denotes the initial feasible point.

The solve command takes options, including the total simulation budget and the number

of parallel processors. Practitioners may view the full set of available options by entering

pymoso --help and the full list of PyMOSO solver names by entering pymoso listitems.

As an example, the command to solve MyProblem using R-PERLE, starting from the feasible

point 97, with a total simulation budget of 10,000 and 4 processors, is below.

pymoso solve --budget=10000 --simpar=4 myproblem.py RPERLE 97

This invocation requires that myproblem.py is in the working directory. Since the feasible

points of MyProblem are one-dimensional, x0 is a scalar. For feasible points in higher dimen-

sions, separate each component with a space, e.g., a three-dimensional point (97,23,18) is

written as 97 23 18. After issuing the above command, PyMOSO creates a new subdirec-

tory named testrun in the working directory. This subdirectory typically contains two files:

one file containing the metadata and one file containing the estimated LES. We exhibit the

file containing the estimated LES in Figure 4. If PyMOSO detects an error, it may also write

an error file.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE 9

1 (2 ,)
2 (0 ,)
3 (1 ,)

Figure 4 The output of the solve invocation given in §2.2 gives the correct answer to MyProblem as a list of points.

The unusual syntax is because the feasible points have only one dimension and are each represented as a

Python tuple of length one.

3. Researchers: Testing and Comparing MOSO Algorithms with PyMOSO

In this section, we discuss using PyMOSO in the researcher context. Researchers can use

PyMOSO to compare algorithms and to create new algorithms. To compare algorithms,

researchers first implement a PyMOSO oracle as in §2.1. Then, they create a PyMOSO

tester, which we discuss in §3.1, and run the tester, which we discuss in §3.2. We briefly

discuss creating new algorithms in §3.3.

3.1. Structuring a Test Problem for Use in PyMOSO

After implementing a PyMOSO oracle called MyProblem in §2.1, researchers must implement

a PyMOSO tester for MyProblem. We provide an example tester called MyTester in Figure 5,

where the oracle to be tested in Line 27 is specified as MyProblem.

Technically, a valid PyMOSO tester may consist of only Lines 24–27 in Figure 5. How-

ever, Figure 5 illustrates two optional features that researchers may find useful. First,

researchers can implement a PyMOSO function that generates feasible starting points by

setting self.get_ranx0 to an appropriate function in Line 30. We provide an example func-

tion, called get_ranx0, that randomly generates a feasible point for MyProblem in Lines 9–12

of Figure 5. The function must take rng as a parameter and return a Python tuple repre-

senting a feasible point. The second feature enables researchers to implement a metric for

comparing an estimated solution to the known, true solution.

We provide an example metric that calculates the Hausdorff distance from the expected

objective values of the points in the estimated LES, eles, to the image of the known solution,

self.answer, in Lines 32–36. To calculate the expected objective values of the points in

eles, we implement the function true_g in Lines 15-19. We also specify myanswer in Line 22

and set self.answer and self.true_g as members of MyTester in Lines 28–29. Researchers

may replace Lines 34–36 with a metric of their choosing.

3.2. Testing a MOSO Algorithm in PyMOSO

Having implemented both MyProblem, in §2.1, and its tester, MyTester in §3.1, in PyMOSO,

we now discuss using PyMOSO to test algorithms on MyProblem. As with practitioners

10 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

1 import sys , os
2 sys . path . i n s e r t (0 , os . path . dirname (__file__))
3 # use hausdor f f d i s t ance (dh) as an example metric
4 from pymoso . c hnu t i l s import dh
5 # import the MyProblem orac l e
6 from myproblem import MyProblem
7
8 # op t i ona l l y , d e f i n e a func t i on to randomly choose a MyProblem f e a s i b l e x0
9 def get_ranx0 (rng) :

10 va l = rng . cho i c e (range(−100 , 101))
11 x0 = (val ,)
12 return x0
13
14 # compute the t rue va lue s o f x , f o r computing the metric
15 def true_g (x) :
16 ’ ’ ’ Compute the o b j e c t i v e va lue s . ’ ’ ’
17 obj1 = x [0]∗∗2
18 obj2 = (x [0] − 2)∗∗2
19 return obj1 , obj2
20
21 # de f ine an answer as appropr ia t e f o r the metric
22 myanswer = {(0 , 4) , (4 , 0) , (1 , 1)}
23
24 class MyTester (object) :
25 ’ ’ ’ Example t e s t e r implementation fo r MyProblem . ’ ’ ’
26 def __init__(s e l f) :
27 s e l f . ranorc = MyProblem
28 s e l f . answer = myanswer
29 s e l f . true_g = true_g
30 s e l f . get_ranx0 = get_ranx0
31
32 def metr ic (s e l f , e l e s) :
33 ’ ’ ’ Metric to be computed per r e t r o s p e c t i v e i t e r a t i o n . ’ ’ ’
34 epareto = [s e l f . true_g (po int) for point in e l e s]
35 haus = dh(epareto , s e l f . answer)
36 return haus

Figure 5 The file mytester.py implements MyTester, a tester for MyProblem.

solving MOSO problems, researchers can use PyMOSO in two modes for testing algorithms

on problems: as a stand-alone solver invoked from the command line, or as a subroutine in a

Python program. In this section, we only consider the command line mode to test PyMOSO

algorithms. See the user manual for the subroutine mode.

The simplest viable command to test an algorithm in command line mode follows the

structure program command tester solver. (Researchers may also specify a feasible start-

ing point if the tester is not programmed to generate them.) The testsolve command takes

options, including the number of independent sample paths of the test problem, the number

of processors to use, and whether to compute a metric. As an example, the command to

test R-PERLE by running 16 independent sample paths of MyProblem using MyTester, on

4 processors and computing a metric, is below.

pymoso --isp=16 --proc=4 --metric testsolve mytester.py RPERLE

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE 11

This invocation requires that myproblem.py and mytester.py are in the working directory.

After issuing the above command, PyMOSO creates a new subdirectory named testrun in

the working directory. This subdirectory contains (a) one metadata file; (b) 16 data files,

each containing a list of estimated LES’s, one for every algorithm iteration; and (c) 16 files

containing metric calculations, which are included only when using the --metric option.

The files containing metric calculations each have data of the form (ν, wν , hν), where ν is

the RA algorithm iteration number; wν is the cumulative work done, measured as the total

number of simulations used at the end of iteration ν; and hν is the metric computed on the

estimated LES at iteration ν. We exhibit sample data and metric files in Figures 6 and 7. If

PyMOSO detects an error, it may also write an error file.

1 {(3 ,)}
2 { (2 ,) , (1 ,) }
3 { (0 ,) , (1 ,) }
4 { (2 ,) , (0 ,) , (1 ,) }
5 { (2 ,) , (0 ,) , (1 ,) }
6 { (2 ,) , (1 ,) }
7 { (0 ,) , (1 ,) }
8 { (2 ,) , (0 ,) , (1 ,) }
9 { (2 ,) , (0 ,) , (1 ,) }

10 { (2 ,) , (0 ,) , (1 ,) }

Figure 6 One of the 16 solution output files from the testsolve invocation given in §3.2. Each line contains a set,

which is the solution of the iteration corresponding to the line number.

1 (0 , 0 , 9 .486832980505138)
2 (1 , 15 , 3 .1622776601683795)
3 (2 , 33 , 3 .1622776601683795)
4 (3 , 51 , 0 . 0)
5 (4 , 69 , 0 . 0)
6 (5 , 93 , 3 .1622776601683795)
7 (6 , 117 , 3 .1622776601683795)
8 (7 , 141 , 0 . 0)
9 (8 , 171 , 0 . 0)

10 (9 , 201 , 0 . 0)

Figure 7 One of 16 metric output files from the testsolve invocation given in §3.2. Each line contains indicates the

iteration number, the number of simulations used at the end of the iteration, and the performance metric

of the iteration solution. In this example, the best possible performance is zero.

12 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

1 from pymoso . chnbase import RLESolver
2
3 # crea te a su b c l a s s o f RLESolver
4 class MyAccel (RLESolver) :
5 ’ ’ ’ Example implementation o f an RLE acc e l e r a t o r . ’ ’ ’
6
7 def a c c e l (s e l f , warm_start) :
8 ’ ’ ’ Return a c o l l e c t i o n o f po in t s to send to RLE. ’ ’ ’
9 # implement a lgor i thm l o g i c here and return a s e t

10 return warm_start

Figure 8 The file myaccel.py implements a provably convergent MOSO algorithm by relying on RLE in a RA frame-

work. We encourage MOSO researchers to improve it.

3.3. Creating New Accelerators in PyMOSO

Though researchers may implement any simulation optimization algorithm in PyMOSO, we

discuss how to implement RA algorithms that invoke an “accelerator” followed by RLE in

every RA iteration (see Cooper et al. 2018). For example, in R-PERLE, “Pε” is the accel-

erator, and in R-MinRLE, “Min” is the accelerator. Users can create new accelerators. We

provide an accelerator template in Figure 8. Researchers should replace the comment in Line 9

of Figure 8 with their own code. The function signature must be accel(self, warm_start)

and the function must return a Python set. After implementing a PyMOSO algorithm,

researchers can test it as in §3.2.

pymoso --isp=20 --proc=4 --metric testsolve mytester.py myaccel.py

For implementing algorithm logic, PyMOSO also provides support for, e.g., obtaining

simulation replications from the oracle, computing all points in a set that are non-dominated,

and generating neighborhoods of points and sets. For detailed descriptions of the support

functions, including working examples, we refer the reader to the user manual.

4. Conclusion

The PyMOSO software package provides open-source, off-the-shelf access to state-of-the-art

solvers for simulation optimization on integer lattices in an accessible and popular program-

ming language. PyMOSO also provides a framework and useful tools for researchers who

wish to compare and create new algorithms.

Acknowledgments
S. R. Hunter was supported by the National Science Foundation through grant CMMI-1554144. We thank

Kalyani Nagaraj for her work on R-PERLE and Devadatta Kulkarni for reviewing draft versions of this paper.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE 13

References
Andersson M, Grimm H, Persson A, Ng A (2007) A web-based simulation optimization system for industrial

scheduling. Henderson SG, Biller B, Hsieh MH, Shortle J, Tew JD, Barton RR, eds., Proceedings of the

2007 Winter Simulation Conference, 1844–1852 (Piscataway, NJ: IEEE).

Biscani F, Izzo D (2018) esa/pagmo2: pagmo 2.9. URL http://dx.doi.org/10.5281/zenodo.1406840.

Chen T, Wang C (2016) Multi-objective simulation optimization for medical capacity allocation in emergency

department. Journal of Simulation 10(1):50–68, URL http://dx.doi.org/10.1057/jos.2014.39.

Cooper K, Hunter SR, Nagaraj K (2018) Bi-objective simulation optimization on integer lattices using

the epsilon-constraint method in a retrospective approximation framework. Optimization Online URL

http://www.optimization-online.org/DB_HTML/2018/06/6649.html.

Hong LJ, Nelson BL, Xu J (2015) Discrete optimization via simulation. Fu MC, ed., Handbook of Simulation

Optimization, volume 216 of International Series in Operations Research & Management Science, 9–44

(New York: Springer), URL http://dx.doi.org/10.1007/978-1-4939-1384-8_1.

Hunter SR, Applegate EA, Arora V, Chong B, Cooper K, Rincón-Guevara O, Vivas-Valencia C (2019) An

introduction to multi-objective simulation optimization. ACM Transactions on Modeling and Computer

Simulation 29(1):7:1–7:36, URL http://dx.doi.org/10.1145/3299872.

Law AM (2015) Simulation Modeling and Analysis (New York: McGraw Hill Education), 5 edition.

L’Ecuyer P (1999) Good parameters and implementations for combined multiple recursive random number

generators. Operations Research 47(1):159 – 164, URL http://dx.doi.org/https://doi.org/10.

1287/opre.47.1.159.

L’Ecuyer P, Simard R, Chen EJ, Kelton WD (2002) An object-oriented random-number package with many

long streams and substreams. Operations Research 50(6):1073–1075, URL http://dx.doi.org/10.

1287/opre.50.6.1073.358.

Lee LH, Chew EP, Teng S, Chen Y (2008) Multi-objective simulation-based evolutionary algorithm for an

aircraft spare parts allocation problem. European Journal of Operational Research 189(2):476–491.

Li H, Zhu Y, Chen Y, Pedrielli G, Pujowidianto NA, Chen Y (2015) The object-oriented discrete event

simulation modeling: a case study on aircraft spare part management. Yilmaz L, Chan WKV, Roeder

TMK, Macal C, Rosetti M, eds., Proceedings of the 2015 Winter Simulation Conference, 3514–3525

(Piscataway, NJ: IEEE).

OptTek Systems, Inc (2018) OptQuest. URL http://www.opttek.com/products/optquest/.

Pasupathy R, Ghosh S (2013) Simulation optimization: a concise overview and implementation guide.

Topaloglu H, ed., TutORials in Operations Research, chapter 7, 122–150 (Catonsville, MD: INFORMS),

URL http://dx.doi.org/10.1287/educ.2013.0118.

Schmeiser B (2008) A practitioner, a vender, and a researcher walk into a bar: trying to explain what

researchers do. Mason SJ, Hill RR, Mönch L, Rose O, Jefferson T, Fowler JW, eds., Proceedings of

14 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

the 2008 Winter Simulation Conference, 2–9 (Piscataway, NJ: IEEE), URL http://dx.doi.org/10.

1109/WSC.2008.4736049.

Swain J (2017) Simulation software survey - simulation: new and improved reality show. OR/MS Today

44(5):38–49.

Thengvall B, Glover F, Davino D (2016) Coupling optimization and statistical analysis with simulation

models. Roeder TMK, Frazier PI, Szechtman R, Zhou E, Huschka T, Chick SE, eds., Proceedings of

the 2016 Winter Simulation Conference (Piscataway, NJ: IEEE), URL http://dx.doi.org/10.1109/

WSC.2016.7822120.

Wang H, Pasupathy R, Schmeiser BW (2013) Integer-ordered simulation optimization using R-SPLINE: Ret-

rospective Search using Piecewise-Linear Interpolation and Neighborhood Enumeration. ACM Trans-

actions on Modeling and Computer Simulation 23(3), URL http://dx.doi.org/10.1145/2499913.

2499916.

Weizhi L (2017) PyPRS. GitHub repository, URL https://github.com/Greenwicher/PyPRS.

Zhou C, Li H, Lee BK, Qiu Z (2018) A simulation-based vessel-truck coordination strategy for lighterage

terminals. Transportation Research Part C: Emerging Technologies 95:149–164, URL http://dx.doi.

org/10.1016/j.trc.2018.07.015.

Online Supplement for
PyMOSO: Software for Multi-Objective Simulation Optimization

with R-PERLE and R-MinRLE

Kyle Cooper
School of Industrial Engineering, Purdue University and Tata Consultancy Services, coope149@purdue.edu

Susan R. Hunter
School of Industrial Engineering, Purdue University, susanhunter@purdue.edu

Contents

A PyMOSO User Manual A-1

A.1 Additional Reading . A-2

A.2 Installation . A-2

A.2.1 Install PyMOSO from the Python Packaging Index using pip . . . A-2

A.2.2 Install PyMOSO from git using pip A-3

A.2.3 Install PyMOSO Manually from Source Code A-3

A.3 Command Line Interface (CLI) . A-3

A.3.1 CLI Help . A-3

A.3.2 The listitems Command for Viewing Solvers, Testers, and Oracles

Included in PyMOSO . A-3

A.3.3 The solve Command . A-4

A.3.4 The testsolve Command . A-7

A.4 Implementing Oracles, Testers, and Solvers in PyMOSO A-9

A.4.1 Implementing PyMOSO Oracles . A-9

A.4.2 Implementing PyMOSO Testers . A-12

A.4.3 Implementing PyMOSO Algorithms A-14

A.5 Using solve and testsolve in Python Programs A-18

B PyMOSO Programming Object List A-19

A. PyMOSO User Manual

We provide this user manual to accompany the initial release of PyMOSO.

A-2 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

A.1. Additional Reading

The initial release of PyMOSO contains solvers that implement four total algorithms,

in alphabetical order: R-MinRLE, R-PE, R-PERLE, and R-SPLINE. The algorithms R-

MinRLE, R-PE, and R-PERLE were introduced in the following paper:

Cooper, K., Hunter, S. R., and Nagaraj, K. 2018. Bi-objective simulation optimization on

integer lattices using the epsilon-constraint method in a retrospective approximation

framework. Optimization Online, http://www.optimization-online.org/DB_HTML/

2018/06/6649.html.

The algorithm R-SPLINE was introduced in the following paper:

Wang, H., Pasupathy, R., and Schmeiser, B. W. 2013. Integer-ordered simulation optimiza-

tion using R-SPLINE: Retrospective Search with Piecewise-Linear Interpolation and

Neighborhood Enumeration. ACM Transactions on Modeling and Computer Simula-

tion, Vol. 23, No. 3, Article 17 (July 2013), 24 pages. http://dx.doi.org/10.1145/

2499913.2499916

We recommend reading these papers to understand the algorithms, what they return, and

the algorithm parameter options that we describe in the user manual.

A.2. Installation

Since PyMOSO is programmed in Python, every PyMOSO user must first install Python,

which can be downloaded from https://www.python.org/downloads/. PyMOSO is com-

patible with Python versions 3.6 and higher. In the remainder of this section, we assume

an appropriate Python version is installed. We discuss three different methods to install

PyMOSO: first, from the Python Packaging Index; second, directly from our source code

using git; and third, manually installing PyMOSO from our source code.

A.2.1. Install PyMOSO from the Python Packaging Index using pip For ease of

distribution, we keep stable, recent releases of PyMOSO on the Python Packaging Index

(PyPI). Since the program pip is included in Python versions 3.6 and higher, we recommend

using pip to install PyMOSO. To do so, open a terminal, type the following command, and

press enter.

pip install pymoso

Depending on how users configure their Python installation and how many versions of Python

they install, they may need to replace pip with pip3, or other variants of pip.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-3

A.2.2. Install PyMOSO from git using pip Users with git installed can use pip to

install the most current version of PyMOSO directly from our source code:

pip install git+https://github.com/pymoso/PyMOSO.git

We consider the latest source to be less stable than the fixed releases we upload to PyPI,

and thus we recommend most users install PyMOSO as in §A.2.1.

A.2.3. Install PyMOSO Manually from Source Code Users may follow the steps below

to manually install PyMOSO from any version of the source code.

1. Acquire the PyMOSO source code, for example, by downloading it from the repository

https://github.com/pymoso/PyMOSO.

2. Install the wheel package, e.g. using the pip install wheel command.

3. Open a terminal and navigate into the main project directory which contains the file

setup.py

4. Build the installable PyMOSO package, called a wheel, using the command

python setup.py bdist_wheel. As with pip, some users may need to replace python

with python3 or something similar. The command should create a directory named dist

containing the PyMOSO wheel.

5. Install the PyMOSO wheel using pip install dist/pymoso-x.x.x-py3-none-any.whl,

where users replace x.x.x with the appropriate PyMOSO version.

A.3. Command Line Interface (CLI)

PyMOSO users solving MOSO problems and testing MOSO algorithms may do so using

the command line interface. First, we show how to access the included help file. Then, we

show how to view the lists of solvers, testers, and oracles installed by default with PyMOSO.

Finally, we discuss the solve and testsolve commands.

A.3.1. CLI Help PyMOSO includes a command line help file. The help file shows syntax

templates for every PyMOSO command, the available options, and a selection of example

invocations. The pymoso --help invocation prints the file to the terminal. The file is also

printed when PyMOSO cannot parse an invocation that begins with pymoso. We show the

current help file in Figure 9.

A.3.2. The listitems Command for Viewing Solvers, Testers, and Oracles Included

in PyMOSO The default installation of PyMOSO includes a selection of solvers, testers,

and oracles. Users can view the complete lists of included solvers, testers, and oracles using

A-4 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

Usage :
pymoso l i s t i t e m s
pymoso s o l v e [−−budget=B] [−−od i r=D] [−−crn] [−−simpar=P]

[(−− seed <s> <s> <s> <s> <s> <s >)] [(−−param <param> <val >)] . . .
<problem> <so lve r > <x > . . .

pymoso t e s t s o l v e [−−budget=B] [−−od i r=D] [−−crn] [−− i s p=T] [−−proc=Q]
[−−metr ic] [(−− seed <s> <s> <s> <s> <s> <s >)] [(−−param <param> <val >)] . . .
<t e s t e r > <so lve r > [<x > . . .]

pymoso −h | −−help
pymoso −v | −−ve r s i on

Options :
−−budget=B Set the s imu la t i on budget [d e f au l t : 200]
−−od i r=D Set the output f i l e d i r e c t o r y name . [d e f au l t : t e s t run]
−−crn Set i f common random numbers are d e s i r ed .
−−simpar=P Set number o f p a r a l l e l p r o c e s s e s f o r s imu la t i on r e p l i c a t i o n s . [d e f au l t : 1]
−−i s p=T Set number o f a lgor i thm in s t an c e s to s o l v e . [d e f au l t : 1]
−−proc=Q Set number o f p a r a l l e l p r o c e s s e s f o r the a lgor i thm in s t an c e s . [d e f au l t : 1]
−−metr ic Set i f metr ic computation i s d e s i r ed .
−−seed Set the random number seed with 6 spaced i n t e g e r s .
−−param Spec i f y a so lve r−s p e c i f i c parameter <param> <val >.
−h −−help Show th i s s c r e en .
−v −−ve r s i on Show ve r s i on .

Examples :
pymoso l i s t i t e m s
pymoso s o l v e ProbTPA RPERLE 4 14
pymoso s o l v e −−budget=100000 −−od i r=t e s t 1 ProbTPB RMINRLE 3 12
pymoso s o l v e −−seed 12345 32123 5322 2 9543 666666666 ProbTPC RPERLE 31 21 11
pymoso s o l v e −−simpar=4 −−param betaeps 0 .4 ProbTPA RPERLE 30 30
pymoso s o l v e −−param rad iu s 3 ProbTPA RPERLE 45 45
pymoso t e s t s o l v e −−i s p=16 −−proc=4 TPATester RPERLE
pymoso t e s t s o l v e −−i s p=20 −−proc=10 −−metr ic −−crn TPBTester RMINRLE 9 9

Figure 9 PyMOSO displays help when users enter the pymoso --help invocation.

the pymoso listitems command. We show the current listing in Figure 10. Test problems

A, B, and C refer to those in Cooper et al. (2018).

A.3.3. The solve Command The PyMOSO solve command is for solving MOSO prob-

lems. Users can solve the built-in problems (use the listitems command to view the built-in

problems), however, PyMOSO solve users typically will have their own MOSO problem they

wish to solve. Thus, we assume users have implemented a PyMOSO oracle named MyProblem

So lve r Desc r ip t i on
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
RMINRLE A so l v e r us ing R−MinRLE f o r in t ege r−ordered MOSO.
RPE A so l v e r us ing R−Pe f o r in t ege r−ordered bi−ob j e c t i v e MOSO.
RPERLE A so l v e r us ing R−PERLE f o r in t ege r−ordered bi−ob j e c t i v e MOSO.
RSPLINE A so l v e r us ing R−SPLINE f o r s i n g l e ob j e c t i v e SO.

Problems Desc r ip t i on Test Name (i f a v a i l a b l e)
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
ProbSimpleSO x^2 + no i s e . SimpleSOTester
ProbTPA Test Problem A TPATester
ProbTPB Test Problem B TPBTester
ProbTPC Test Problem C TPCTester
BSProb Bus Schedul ing problem BSTester

Figure 10 The pymoso listitems invocation shows the lists of built-in solvers, testers, and oracles.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-5

in myproblem.py. In the examples that follow, we assume the MyProblem implementation in

Figure 11, which is a bi-objective oracle with one-dimensional feasible points. See §A.4.1 for

instructions on implementing a MOSO problem as a PyMOSO oracle.

The template solve command is pymoso solve oracle solver x0, where oracle is a

built-in or user-defined oracle, solver is a built-in or user-defined algorithm, and x0 is

a feasible starting point for the solver, with a space between each component. As a first

example, we solve the user-defined MyProblem using the built-in R-PERLE starting at the

feasible point 97.

pymoso solve myproblem.py RPERLE 97

Similarly, we can solve built-in problems, such as ProbTPA which has two-dimensional feasible

points.

pymoso solve ProbTPA RPERLE 40 40

1 # import the Oracle base c l a s s
2 from pymoso . chnbase import Oracle
3
4 class MyProblem(Oracle) :
5 ’ ’ ’ Example implementation o f a user−de f ined MOSO problem . ’ ’ ’
6 def __init__(s e l f , rng) :
7 ’ ’ ’ Spec i f y the number o f o b j e c t i v e s and d imens iona l i t y o f po in t s . ’ ’ ’
8 s e l f . num_obj = 2
9 s e l f . dim = 1

10 super () . __init__(rng)
11
12 def g (s e l f , x , rng) :
13 ’ ’ ’ Check f e a s i b i l i t y and s imu la te o b j e c t i v e va lue s . ’ ’ ’
14 # f e a s i b l e va lue s f o r x in t h i s example
15 feas_range = range(−100 , 101)
16 # i n i t i a l i z e ob j to empty and is_feas to False
17 obj = []
18 i s_ f ea s = Fal se
19 # check t ha t dimensions o f x match s e l f . dim
20 i f len (x) == s e l f . dim :
21 i s_ f ea s = True
22 # then check t ha t each component o f x i s in the range above
23 for i in x :
24 i f not i in feas_range :
25 i s_ f ea s = False
26 # i f x i s f e a s i b l e , s imu la te the o b j e c t i v e s
27 i f i s_ f ea s :
28 #use rng to generate random numbers
29 z0 = rng . normalvar iate (0 , 1)
30 z1 = rng . normalvar iate (0 , 1)
31 obj1 = x [0]∗∗2 + z0
32 obj2 = (x [0] − 2)∗∗2 + z1
33 obj = (obj1 , obj2)
34 return i s_feas , obj

Figure 11 The file myproblem.py implements the example MyProblem.

A-6 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

Henceforth, we present solve examples only for solving MyProblem. Since MyProblem is bi-

objective, we recommend using the R-PERLE solver. However, for two or more objectives,

PyMOSO has R-MinRLE.

pymoso solve myproblem.py RMINRLE 97

For a single objective problem, PyMOSO has R-SPLINE. We remark that if given a multi-

objective problem, R-SPLINE will simply minimize the first objective. We do not necessarily

prohibit such use, but urge that users take care when using R-SPLINE to minimize one

objective of a many-objective problem.

pymoso solve myproblem.py RSPLNE 97

Regardless of the chosen solver, PyMOSO creates a new sub-directory of the working

directory containing output. There will be a metadata file, indicating the date, time, solver,

problem, and any other specified options. In addition, PyMOSO creates a file containing

the solver-generated solution. PyMOSO provides additional options for users solving MOSO

problems. We present examples of each option below. First, users can specify the name of

the output directory.

pymoso solve --odir=OutDirectory myproblem.py RPERLE 45

Users can specify the simulation budget, which is currently set to a default of 200.

pymoso solve --budget=100000 myproblem.py RPERLE 12

Users may specify to take simulation replications in parallel. We only recommend doing so if

the user has thought through appropriate pseudo-random number stream control issues (see

§A.4.1). Furthermore, due to the overhead of parallelization, we only recommend using the

parallel simulation replications feature if observations are sufficiently “expensive” to compute,

e.g. the simulation takes a half second or more to generate a single observation. We remark

that the run-time complexity of the simulation oracle may not perfectly indicate when it is

appropriate to use parallelization; other factors include, e.g., the total simulation budget.

pymoso solve --simpar=4 myproblem.py RPERLE 44

Currently, all PyMOSO solvers support using common random numbers. Users may enable

the functionality using the crn option.

pymoso solve --crn myproblem.py RMINRLE 62

We do not recommend this option unless the oracle is implemented to be compatible, that

is, the oracle uses PyMOSO’s pseudo-random number generator to generate pseudo-random

numbers or to provide a seed to an external mrg32k3a generator (see §A.4.1).

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-7

Users may specify an initial seed to PyMOSO’s mrg32k3a pseudo-random number gener-

ator. Seeds must be 6 positive integers with spaces. The default is 12345 for each of the 6

components.

pymoso solve --seed 1111 2222 3333 4444 5555 6666 myproblem.py RPERLE 23

Users may specify algorithm-specific parameters (see the papers in which the algorithms were

introduced for detailed explanations of the parameters). All parameters are specified in the

form --param name value. For example, the RLE relaxation parameter can be specified and

set as betadel to a real number. We refer the reader to Table 1 for the full list of currently

available algorithm-specific parameters.

pymoso solve --param betadel 0.2 myproblem.py RPERLE 34

Table 1 The table contains the current list of algorithm-specific parameters.

Parameter
Name

Default
Value

Affected Solvers Description

mconst 2 R-PERLE, R-MinRLE,
R-PE, R-SPLINE

Initialize the sample size and subsequent sched-
ule of sample sizes.

bconst 8 R-PERLE, R-MinRLE,
R-PE, R-SPLINE

Initialize the search sampling limit and subse-
quent schedule of limits.

radius 1 R-PERLE, R-MinRLE,
R-PE, R-SPLINE

Set the radius a that determines a point’s neigh-
borhood, Na (Wang et al. 2013).

betadel 0.5 R-PERLE, R-MinRLE An error tolerance parameter for RLE. See
Cooper et al. (2018).

betaeps 0.5 R-PERLE, R-PE An error tolerance parameter for Pε. See
Cooper et al. (2018).

Finally, users may specify any number of options in one invocation. However, all options must

be specified after the solve command and before the myproblem.py argument. Furthermore,

any --param options must be last. (Note that the \ at the end of the first line continues the

command to the second line.)

pymoso solve --crn --simpar=4 --budget=10000 --seed 1 2 3 4 5 6 \

--odir=Exp1 --param mconst 4 --param betadel 0.7 myproblem.py RPERLE 97

A.3.4. The testsolve Command The PyMOSO testsolve command tests algorithms

on problems using a PyMOSO tester. Users can test built-in or user-defined solvers with built-

in or user-defined testers. In the examples that follow, we assume users have implemented

MyProblem as in Figure 11 and the corresponding tester named MyTester in mytester.py,

shown in Figure 12. See §A.4.2 for instructions on implementing a user-defined tester, includ-

ing a metric for comparing algorithms, in PyMOSO.

A-8 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

1 import sys , os
2 sys . path . i n s e r t (0 , os . path . dirname (__file__))
3 # use hausdor f f d i s t ance (dh) as an example metric
4 from pymoso . c hnu t i l s import dh
5 # import the MyProblem orac l e
6 from myproblem import MyProblem
7
8 # op t i ona l l y , d e f i n e a func t i on to randomly choose a MyProblem f e a s i b l e x0
9 def get_ranx0 (rng) :

10 va l = rng . cho i c e (range(−100 , 101))
11 x0 = (val ,)
12 return x0
13
14 # compute the t rue va lue s o f x , f o r computing the metric
15 def true_g (x) :
16 ’ ’ ’ Compute the o b j e c t i v e va lue s . ’ ’ ’
17 obj1 = x [0]∗∗2
18 obj2 = (x [0] − 2)∗∗2
19 return obj1 , obj2
20
21 # de f ine an answer as appropr ia t e f o r the metric
22 myanswer = {(0 , 4) , (4 , 0) , (1 , 1)}
23
24 class MyTester (object) :
25 ’ ’ ’ Example t e s t e r implementation fo r MyProblem . ’ ’ ’
26 def __init__(s e l f) :
27 s e l f . ranorc = MyProblem
28 s e l f . answer = myanswer
29 s e l f . true_g = true_g
30 s e l f . get_ranx0 = get_ranx0
31
32 def metr ic (s e l f , e l e s) :
33 ’ ’ ’ Metric to be computed per r e t r o s p e c t i v e i t e r a t i o n . ’ ’ ’
34 epareto = [s e l f . true_g (po int) for point in e l e s]
35 haus = dh(epareto , s e l f . answer)
36 return haus

Figure 12 The file mytester.py implements the example MyTester.

The template testsolve command is pymoso testsolve tester solver where tester

is a built-in or user-defined tester, and solver is a built-in or user-defined solver. Users

may also specify an x0, as in the solve command, if the tester does not implement the

function to generate feasible points. As a first example, we test R-PERLE on MyProblem

using MyTester. Since some options are compatible with both solve and testsolve, we

include those options in this example.

pymoso testsolve --budget=999 --odir=exp1 \

--crn --seed 1 2 3 4 5 6 mytester.py RPERLE

Users may want to compute some metric on the algorithm-generated solutions. If

a metric is defined as part of the tester, such as in MyTester, the testsolve com-

mand can compute the metric on every algorithm iteration using the --metric option.

pymoso testsolve --metric mytester.py RPERLE

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-9

The testsolve command cannot perform simulation replications in parallel. However, testers

can apply the solvers to independent sample paths of the problems. For example, to test R-

PERLE on 100 independent sample paths of MyProblem, compute the metrics for each sample

path, and use common random numbers in each sample path, use the following command.

pymoso testsolve --crn --metric --isp=100 mytester.py RPERLE

PyMOSO can perform independent algorithm runs in parallel. Use the proc option to specify

the number of processes available to PyMOSO.

pymoso testsolve --crn --metric --isp=100 --proc=20 mytester.py RPERLE

We remark here that, to ensure the algorithm runs remain independent using PyMOSO’s

pseudo-random number generator (see §A.4.1), researchers should set the total simulation

budget so that the included algorithms do not surpass 200 retrospective approximation (RA)

iterations. For reference, using the default settings, the sample size at every point in the

200th RA iteration is almost 380 million.

The testsolve command creates a results file for each independent sample path. The

file contains the solutions generated at every algorithm iteration, such that the solution of

iteration 2 is on line 2, iteration 10 on line 10, and so forth. If --metric is specified, PyMOSO

generates a second file for each independent sample path containing the collection of triples

(iteration number, simulations used at end of iteration, metric).

A.4. Implementing Oracles, Testers, and Solvers in PyMOSO

To use PyMOSO, users solving MOSO problems must implement a PyMOSO oracle, and

users testing MOSO algorithms should implement, at least, a PyMOSO oracle and tester.

In this section, we provide template Python code to help users quickly implement oracles,

testers, and perhaps solvers in PyMOSO.

A.4.1. Implementing PyMOSO Oracles Usually, implementing a PyMOSO oracle

implies implementing a Monte Carlo simulation oracle as a black box function while following

the PyMOSO rules put forth in this section. For reference, we discuss the example PyMOSO

oracle MyProblem in Figure 11. Users may copy the code in Figure 11 and re-implement the

function g as needed. We now list the basic requirements of every g implementation.

1. The function g must be an instance method of an Oracle sub-class, and thus take self

as its first parameter.

A-10 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

2. The function g must take an arbitrarily-named second parameter which is a tuple of

length self.dim and represents a point. Stylistically, PyMOSO consistently names this

parameter x.

3. The function g must take an arbitrarily-named third parameter which is a modified

Python random.Random object. Stylistically, PyMOSO consistently names this parame-

ter rng.

4. The function g must return a boolean first and a tuple of length self.num_obj second.

• The boolean is True if x is feasible, and False otherwise.

• If x is feasible, the tuple contains a single observation of every objective. If x is not

feasible, each element in the tuple is None.

If users already have an implemented simulation oracle, they may find it convenient to

implement g as wrapper which calls that simulation from Python. As an example, suppose

a user has implemented a simulation in C which is compiled to a C library called mysim.so

and placed in the working directory. Suppose further that the simulation function takes the

following as parameters: an array of integers representing a point x ∈ R and an unsigned

integer representing the number of observations to take at x. The function output is defined

as struct Simout with members feas set to 0 or 1, obj a double array set to the mean

of the observed objective values, and var a double array set to the sample variance of the

observed objective values. Then users can modify the template to wrap the C function

struct Simout c_func(int x, int n) as in Figure 13.

Figure 13 is a valid PyMOSO oracle which wraps a C function. However, PyMOSO algo-

rithms cannot enable common random numbers on this oracle. Furthermore, PyMOSO can-

not guarantee that observations are independent when taken in parallel. To enable these

properties, the external simulation must use mrg32k3a as the generator and must accept a

user-specified seed.

Suppose the library mysim.so also implements the function set_simseed which accepts a

long array representing an mrg32k3a seed. We modify the wrapper in Figure 14 for compati-

bility with common random numbers and to guarantee independence of parallel observations.

Figure 14 demonstrates using rng.get_seed() to return the current mrg32k3a seed.

Alternatively, if the number of required pseudo-random numbers is known, users can use

rng.random() to generate pseudo-random numbers and then pass them to an external sim-

ulation if such functionality is supported.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-11

1 from ctypes import CDLL, c_double , c_uint , c_int , S t ruc ture
2 import os . path
3 libname = ’mysim . so ’
4 l ibabspath = os . path . dirname (os . path . abspath (__file__)) + os . path . sep + dll_name
5 l i b o b j = CDLL(l ibabspath)
6
7 class Simout (St ruc ture) :
8 _f ie lds_ = [(" f e a s " , c_int) , (" obj " , c_double ∗2) , (" var " , c_double ∗2)]
9 csimout = l i b o b j . c_func

10 csimout . r e s type = Simout
11
12 from pymoso . chnbase import Oracle
13
14 class MyProblem(Oracle) :
15 ’ ’ ’ Example implementation o f a user−de f ined MOSO problem . ’ ’ ’
16 def __init__(s e l f , rng) :
17 ’ ’ ’ Spec i f y the number o f o b j e c t i v e s and d imens iona l i t y o f po in t s . ’ ’ ’
18 s e l f . num_obj = 2
19 s e l f . dim = 1
20 super () . __init__(rng)
21
22 def g (s e l f , x , rng) :
23 ’ ’ ’ Check f e a s i b i l i t y and s imu la te o b j e c t i v e va lue s . ’ ’ ’
24 i s_ f e a s i b l e = True
25 ob j e c t ive_va lue s = (None , None)
26 # g take s only one obse rva t i on so s e t the c_func parameter to 1
27 c_n = c_uint (1)
28 # c_func r e qu i r e s i s an in t e g e r so conver t i t −− t h i s i s a 1D example
29 c_x = c_int (x [0])
30 # c a l l the C func t ion
31 mysimout = csimout (c_x , c_n)
32 i f not mysimout . f e a s :
33 i s_ f e a s i b l e = False
34 else :
35 i s_ f e a s i b l e = True
36 i f i s_ f e a s i b l e :
37 ob j e c t i ve_va lue s = tuple (mysimout . obj)
38 return i s_ f e a s i b l e , ob j e c t i ve_va lue s

Figure 13 The g function wraps an external simulation written in C.

The rng object is implemented as a sub-class of Python’s random.Random class, thus

the official Python documentation for random applies to rng and is found at https:

//docs.python.org/3/library/random.html. In addition to rng using mrg32k3a as its

generator, we also implement rng.normalvariate such that it uses the Beasley-Springer-

Moro algorithm (Law 2015, p. 458) to approximate the inverse of the standard normal

cumulative distribution function.

When using rng, to ensure independent sampling of observations, PyMOSO “jumps” for-

ward in the pseudo-random number stream after obtaining every simulation replication.

Each jump is of fixed size 276 pseudo-random numbers. Thus, we require that every simula-

tion replication use fewer than 276 pseudo-random numbers. We ensure independence among

parallel replications by “giving” each processor a stream (an rng), each of which is 2127

pseudo-random numbers apart. When using the current PyMOSO algorithms that rely on

A-12 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

1 from ctypes import CDLL, c_double , c_uint , c_int , Structure , c_long
2 import os . path
3 libname = ’mysim . so ’
4 l ibabspath = os . path . dirname (os . path . abspath (__file__)) + os . path . sep + dll_name
5 l i b o b j = CDLL(l ibabspath)
6
7 class Simout (St ruc ture) :
8 _f ie lds_ = [(" f e a s " , c_int) , (" obj " , c_double ∗2) , (" var " , c_double ∗2)]
9 csimout = l i b o b j . c_func

10 c s e t s e ed = l i b o b j . set_simseed
11 csimout . r e s type = Simout
12
13 from pymoso . chnbase import Oracle
14
15 class MyProblem(Oracle) :
16 ’ ’ ’ Example implementation o f a user−de f ined MOSO problem . ’ ’ ’
17 def __init__(s e l f , rng) :
18 ’ ’ ’ Spec i f y the number o f o b j e c t i v e s and d imens iona l i t y o f po in t s . ’ ’ ’
19 s e l f . num_obj = 2
20 s e l f . dim = 1
21 super () . __init__(rng)
22
23 def g (s e l f , x , rng) :
24 ’ ’ ’ Check f e a s i b i l i t y and s imu la te o b j e c t i v e va lue s . ’ ’ ’
25 i s_ f e a s i b l e = True
26 ob j e c t ive_va lue s = (None , None)
27 # ge t the PyMOSO seed from rng
28 seed = rng . get_seed ()
29 # conver t the seed to c_long array
30 c_longarr = c_long∗6
31 c_seed = c_longarr (seed [0] , seed [1] , seed [2] , seed [3] , seed [4] , seed [5])
32 # use the l i b r a r y func t i on to s e t the sim seed
33 c s e t s e ed (c_seed)
34 # g take s only one obse rva t i on so s e t the c_func parameter to 1
35 c_n = c_uint (1)
36 # c_func r e qu i r e s i s an in t e g e r so conver t i t −− t h i s i s a 1D example
37 c_x = c_int (x [0])
38 # c a l l the C func t ion
39 mysimout = csimout (c_x , c_n)
40 i f not mysimout . f e a s :
41 i s_ f e a s i b l e = False
42 else :
43 i s_ f e a s i b l e = True
44 i f i s_ f e a s i b l e :
45 ob j e c t i ve_va lue s = tuple (mysimout . obj)
46 return i s_ f e a s i b l e , ob j e c t i ve_va lue s

Figure 14 The g function wraps an external simulation written in C, and maintains compatibility with common random

numbers and taking simulation replications in parallel.

RA, each RA iteration begins the next available independent stream 2127, where PyMOSO

accounts for the possibility of parallel computation within an RA iteration. Thus, in a given

RA iteration, a user may simulate 100 million points at a sample size of 1 million, without

common random numbers, and easily not reach the limit.

A.4.2. Implementing PyMOSO Testers Consider again the example tester in Figure 12.

As a minimal valid PyMOSO tester, users may do nothing but assign the MyTester member

self.ranorc to a PyMOSO oracle, such as MyProblem, in Line 27. However, we expect most

users to leverage PyMOSO features by implementing metrics and feasible point generators.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-13

The function get_ranx0 allows the tester to generate feasible points to MyProblem and

metric allows the tester to compute a metric on sets returned by a solver. Researchers may

implement any number of additional supporting functions, including members and methods

of the tester class. The true_g function is an example of such a supporting function, which

is used to compute the example metric.

First, we list the rules for implementing a feasible point generator.

1. The function is arbitrarily named but must be set to the self.get_ranx0 member of a

tester.

2. The function must take a single parameter, an arbitrarily named random.Random object

we suggest naming rng.

3. The function must return a tuple with length corresponding to the self.dim member

of the self.ranorc member of the tester.

Since a researcher’s desired metric depends on the algorithm capabilities and problem

complexity, PyMOSO allows researchers to implement any metric they choose. We provide

three example metrics, but first, we list the implementation rules of the metric function.

1. The metric function must be an instance method of a tester, and thus take self as its

first parameter.

2. The second parameter of metric is arbitrarily named and is a Python set of tuples.

3. PyMOSO does not enforce the return value of metric, but we recommend a scalar real

number.

The metric implemented in Figure 12 is the Hausdorff distance from (a) the true image

of an estimated solution returned by an algorithm, to (b) the true solution hard-coded as

myanswer.

For an example of a different metric, consider a MOSO problem that has more than one

local efficient set (LES) and such that each LES contains no members of another LES. Since

an algorithm that converges to a LES is may find only one LES, we may define the metric

to compute the Hausdorff distance between the true image of the estimated solution and the

“closest” true LES, as follows. Let self.answer be implemented as a list of sets, and assume

a self.true_g implementation. Then Figure 15 implements the described metric.

For single-objective problems with one correct solution x∗, a simple metric that takes

an estimated solution X is |g(X)− g(x∗)|, which we implement in Figure 16 assuming an

appropriate implementation of self.answer and self.true_g.

A-14 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

1 def metr ic (s e l f , e l e s) :
2 # use the d i s t ance to the c l o s e s t s e t .
3 epareto = [s e l f . true_g (po int) for point in e l e s]
4 # s e l f . so ln i s a l i s t o f s e t s
5 d i s t_ l i s t = [dh(epareto , l e s) for l e s in s e l f . answer]
6 return min(d i s t_ l i s t)

Figure 15 We provide a potentially useful metric for testing MOSO algorithms that converge to a LES on problems

with more than one LES, such that none of the LES’s have members in common.

1 def metr ic (s e l f , s i ng l e t on_se t) :
2 # s i n g l e o b j e c t i v e a l gor i thms s t i l l re turn a s e t
3 point , = s ing l e t on_se t
4 # l e t s e l f . so ln be a r e a l number
5 d i s t = abs (s e l f . true_g (po int) − s e l f . answer)
6 return d i s t

Figure 16 We provide a potentially useful metric for testing single objective algorithms.

A.4.3. Implementing PyMOSO Algorithms Researchers can implement simulation

optimization algorithms in the PyMOSO framework. PyMOSO provides support for algo-

rithms in three categories:

1. PyMOSO provides strong support for implementing new MOSO algorithms that rely

on RLE in an RA framework.

2. PyMOSO provides strong support for implementing general RA algorithms.

3. PyMOSO provides basic support, such as pseudo-random number control, for imple-

menting other simulation optimization algorithms.

We provide templates of algorithms implemented in each of these three categories, along

with example code snippets.

In the first category, programmers can use PyMOSO to create new RA algorithms that

use RLE for convergence. The novel part of these algorithms, created by the user, will be

the accel function which should collect points to send to RLE for certification. Here, we list

the rules for accel.

1. The accel function must be an instance method of an RLESolver object, and thus its

first parameter must be self.

2. The second parameter is arbitrarily named and is a set of tuples. We recommend naming

the parameter warm_start, as it represents the sample-path solution of the previous

RA iteration.

3. The return value must be a set of tuples representing feasible points; we do not recom-

mend any particular name.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-15

1 from pymoso . chnbase import RLESolver
2
3 # crea te a su b c l a s s o f RLESolver
4 class MyAccel (RLESolver) :
5 ’ ’ ’ Template implementation o f an RLE acc e l e r a t o r . ’ ’ ’
6
7 def a c c e l (s e l f , warm_start) :
8 ’ ’ ’ Return a c o l l e c t i o n o f po in t s to send to RLE. ’ ’ ’
9 # implement a lgor i thm l o g i c here and return a s e t

10 return warm_start

Figure 17 We provide a template for implementing MOSO algorithms that use RLE for convergence.

In every RA iteration, PyMOSO will first call accel(self, warm_start) and send the

returned set to rle(self, candidate_les). The return value must be a set of tuples. The

implementer does not need to implement or call RLE, as in Figure 17.

In the second category, algorithm designers can quickly implement any RA algorithm by

sub-classing RASolver and implementing the spsolve function, as shown in Figure 18. The

algorithm can be a single-objective algorithm. PyMOSO cannot guarantee the convergence

of such algorithms. Figure 18 is technically valid in PyMOSO but is probably not effective.

Though analogous to those of an RLESolver.accel method, for completeness, we list the

requirements for an RASolver.spsolve method.

1. The spsolve function must be an instance method of an RASolver object, and thus its

first parameter must be self.

2. The second parameter is arbitrarily named and is a set of tuples. We recommend naming

the parameter warm_start as it represents the sample-path solution of the previous RA

iteration.

3. The return value must be a set of tuples representing feasible points; we do not recom-

mend any particular name.

In the third category, PyMOSO can accommodate any simulation optimization algorithm

by implementing the solve function of a MOSOSolver sub-class as shown in Figure 19. It

does not have to be a multi-objective algorithm. PyMOSO will require users to send an

1 from pymoso . chnbase import RASolver
2
3 class MyRAAlg(RASolver) :
4 ’ ’ ’ Template implementation o f an RA so l v e r . ’ ’ ’
5
6 def sp so l v e (s e l f , warm_start) :
7 ’ ’ ’ Return the sample path s o l u t i on . ’ ’ ’
8 # implement a lgor i thm l o g i c here and return a s e t
9 return warm_start

Figure 18 We provide a template for implementing RA algorithms.

A-16 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

1 from pymoso . chnbase import MOSOSolver
2
3 class MyMOSOAlg(MOSOSolver) :
4 ’ ’ ’ Template implementation o f a MOSO so l v e r . ’ ’ ’
5
6 def s o l v e (s e l f , budget) :
7 while s e l f . num_calls <= budget :
8 # implement a lgor i thm l o g i c and return the r e s u l t s
9 return r e s u l t s

Figure 19 We provide a template to implement a simulation optimization algorithm.

initial feasible point x0 whether or not the algorithm needs it. The initial feasible point x0

is accessed through self.x0 which is a tuple. We now list the rules for implementing any

MOSOSolver.solve function.

1. The solve function must be an instance method of MOSOSolver, and thus take self as

its first parameter.

2. The second parameter is the simulation budget, a natural number.

3. The solve function must return a dictionary (we name it results in our example) with

at least 3 keys: ’itersoln’, ’simcalls’, ’endseed’. Researchers may track additional

data and add it to results as desired.

• The ’itersoln’ key itself corresponds to a dictionary with a key for each algo-

rithm iteration labeled {0,1, . . .}. The value at each iteration is a set containing the

estimated solution at the end of the iteration.

• The ’simcalls’ key itself corresponds to a dictionary with a key for each algo-

rithm iteration labeled {0,1, . . .}. The value at each iteration is a natural number

containing the cumulative number of simulation replications taken at the end of the

iteration.

• The ’endseed’ key corresponds to a tuple of length 6, representing an

mrg32k3a seed. The algorithm programmer should ensure the stream generated by

results[’endseed’] is independent of all streams used by the algorithm.

Researchers may use Figure 19 to implement new simulation optimization algorithms.

For convenience, in the list below, we also provide some example code snippets that we find

useful when implementing algorithms in PyMOSO. They work without modification when

using the templates above that inherit RLESolver or RASolver, but some functions may

require implementation or modification for use in a MOSOSolver. For reference, §B contains

a list of most objects accessible to PyMOSO programmers.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-17

• Example code to take simulation replications of a point at some sample size:

1 # pretend x has not ye t been v i s i t e d in t h i s RA i t e r a t i o n and i s f e a s i b l e
2 x = (1 , 1 , 1)
3
4 # s e l f .m i s the sample s i z e o f the current RA i t e r a t i o n
5 m = s e l f .m
6 # s e l f . num_calls i s the cumulat ive number o f s imu la t i ons used t i l l now
7 start_num_calls = s e l f . num_calls
8 # use es t imate to sample x and put r e s u l t s in s e l f . gbar and s e l f . s eha t
9 i s f e a s , fx , se = s e l f . e s t imate (x)

10 ca l l s_used = s e l f . num_calls − start_num_calls
11 print (m == ca l l s_used) # True
12 print (fx == s e l f . gbar [x]) # True
13 print (se == s e l f . sehat [x]) # True
14
15 # est imate w i l l not s imu la te again in subsequent v i s i t s to a po in t
16 start_num_calls = s e l f . num_calls
17 i s f e a s , fx , se = s e l f . e s t imate (x)
18 ca l l s_used = s e l f . num_calls − start_num_calls
19 print (ca l l s_used == 0) # True

• Example code to retrieve a point’s neighbors and take simulation replications:

1 from pymoso . c hnu t i l s import get_nbors
2 r = s e l f . nbor_rad
3 nbors = get_nbors (x0 , r)
4 s e l f . upsample (nbors)
5 for n in nbors :
6 print (n in s e l f . gbar) # True i f n f e a s i b l e e l s e False
7 # upsample a l s o re turns the f e a s i b l e sub s e t
8 nbors = s e l f . upsample (nbors)

• Example code to sort points by their observed objective values:

1 # 0 index fo r f i r s t o b j e c t i v e
2 sor ted_feas = sorted (nbors | {x} , key=lambda t : s e l f . gbar [t] [0])
3 xmin = sorted_feas [0]
4 fxmin = s e l f . gbar [x]

• Example code to use the built-in SPLINE implementation:

1 # unconstrained minimize the 2nd o b j e c t i v e
2 x0 = (2 , 2 , 2)
3 i s f e a s , fx , sex = s e l f . e s t imate (x0)
4 # the suppressed va lue i s the s e t v i s i t e d a long SPLINE ’ s t r a j e c t o r y
5 _, xmin , fxmin , sexmin = s e l f . s p l i n e (x0 , f loat (’ i n f ’) , 1 , 0)
6 print (s e l f . gbar [xmin] == fxmin) # True

• Example code to find the non-dominated points in a dictionary:

1 from pymoso . c hnu t i l s import get_nondom
2 nondom = get_nondom(s e l f . gbar)

• Example code to randomly choose points from a set:

1 so lver_rng = s e l f . sprn
2 # pick 5 po in t s −− re turns a l i s t , not a s e t .
3 ran_pts = solver_rng . sample (l i s t (nondom) , 5)
4 one_in_five = solver_rng . cho i c e (ran_pts)

A-18 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

A.5. Using solve and testsolve in Python Programs

Users may invoke the solve and testsolve functions within a Python program.

• Using solve in a Python program is similar to using the CLI solve. We provide the

minimal example here.

1 # import the s o l v e func t i on
2 from pymoso . c hnu t i l s import s o l v e
3 # import the module conta in ing the RPERLE implementation
4 import pymoso . s o l v e r s . r p e r l e as rp
5 # import MyProblem − myproblem . py shou ld u sua l l y be in the s c r i p t d i r e c t o r y
6 import myproblem as mp
7
8 # spe c i f y an x0 . In MyProblem , i t i s a t up l e o f l en g t h 1
9 x0 = (97 ,)

10 so ln = so l v e (mp. MyProblem , rp .RPERLE, x0)
11 print (s o ln)

• Users can specify options, including algorithm-specific parameters, as shown below.

1 # example f o r s p e c i f y i n g budget and seed
2 budget=10000
3 seed = (111 , 222 , 333 , 444 , 555 , 666)
4 so ln1 = so l v e (mp. MyProblem , rp .RPERLE, x0 , budget=budget , seed=seed)
5
6 # spe c i f y crn and simpar
7 so ln2 = so l v e (mp. MyProblem , rp .RPERLE, x0 , crn=True , simpar=4)
8
9 # spe c i f y a lgor i thm s p e c i f i c parameters

10 so ln3 = so l v e (mp. MyProblem , rp .RPERLE, x0 , rad iu s =2, betaeps =0.3 , be tade l =0.4)
11
12 # mix them
13 so ln4 = so l v e (mp. MyProblem , rp .RPERLE, x0 , crn=True , seed=seed , rad iu s=5)

• Using testsolve in a Python program is also similar to using the CLI testsolve.

Here, we provide an example with options.

1 # import the t e s t s o l v e f unc t i ons
2 from pymoso . c hnu t i l s import t e s t s o l v e
3 # import the module conta in ing RPERLE
4 import pymoso . s o l v e r s . r p e r l e as rp
5 # import the MyTester c l a s s
6 from mytester import MyTester
7
8 # t e s t s o l v e needs a "dummy" x0 even i f MyTester w i l l generate them
9 x0 = (1 ,)

10 run_data = t e s t s o l v e (MyTester , rp .RPERLE, x0 , i s p =100 , crn=True , rad iu s=2)

• When using testsolve in a Python program, users must compute their metric. Here,

run_data is a dictionary of the form described in §A.4.3, in the description of Figure 19.

In the snippet below, we compute the metric on the 5th algorithm iteration of the 12th

independent sample path.

1 i t e r 5_so ln = run_data [1 1] [’ i t e r s o l n ’] [4]
2 i sp12_iter5_metr ic = MyTester . metr ic (i t e r 5_so ln)

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-19

B. PyMOSO Programming Object List

We describe the object names inside each of the following pymoso modules.

prng.mrg32k3a The module exposes the pseudo-random number generator and functions to

manipulate it.

MRG32k3a Sub-class of random.Random, defines all rng objects.

get_next_prnstream(seed) Return an rng object seeded 2127 steps from the input

seed.

jump_substream(rng) Seed the input rng object 276 steps forward.

chnbase The module implements the base classes for programming oracles and solvers.

Oracle Base class for implementing oracles.

RLESolver Base class for implementing solvers using RLE.

RASolver Base class for implementing RA solvers.

MOSOSolver Base class for all solvers.

chnutils The module contains generally useful functions for programming or testing algo-

rithms.

solve(oracle, solver, x0, **kwargs) See §A.5.

testsolve(tester, solver, x0, **kwargs) See §A.5.

does_weak_dominate(g, h, relg, relh) All inputs are tuples of equal length.

Returns True if g weakly dominates h with relaxations.

does_dominate(g, h, relg, relh) Returns True if g dominates h with relaxations.

does_strict_dominate(g, h, relg, relh) Returns True if g strictly dominates h

with relaxations.

get_nondom(obj_dict) Input: a dictionary with tuples for keys and values. The keys

are feasible points; the values are their objective values. Return: a set of tuples

representing non-dominated points.

get_nbors(x, r) Input: a tuple x, a positive real scalar r indicating the neighborhood

radius. Return: Set of tuples, the neighbors.

get_setnbors(S, r) Input: a set of tuples, and the neighborhood radius. Return:

∪x∈S get_nbors(x, r).

dh(A, B) Returns the Hausdorff distance between set A and set B.

edist(x1, x2) Returns the Euclidean distance between x1 and x2.

A-20 Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE

gen_metric(results, tester) Input: results is a dictionary, the output of each sam-

ple path of testsolve. tester must implement metric. Returns: The set of triples

(iteration, simulation count, metric) for an algorithm run.

Oracle When implementing RAsolver algorithms, programmers may not need to access

Oracle objects directly at all. When implementing MOSOSolver algorithms, program-

mers will use (or wrap) hit and crn_advance().

Oracle.num_obj A positive integer, the number of objectives.

Oracle.dim A positive integer, the dimensionality of feasible points.

Oracle.rng An instance of MRG32k3a internal to the oracle.

Oracle.hit(x, n) Take n observations of x. Return: True, and a tuple containing the

mean of the observations for each objective se, and a tuple containing the standard

error for each objective if x is feasible. The function handles CRN internally.

Oracle.set_crnflag(bool) Turn CRN on (True) or off.

Oracle.set_crnold(state) Save the rng state as the CRN baseline, e.g. for an algo-

rithm iteration.

Oracle.crn_reset() Back the oracle rng to the CRN baseline.

Oracle.crn_advance() If CRN is on, reset, and then jump to the next independent

pseudo-random stream and save the new baseline, e.g. before starting a new algo-

rithm iteration.

Oracle.crn_setobs() Set an intermediate CRN for individual oracle observations.

Oracle.crn_nextobs() Jump the rng forward, e.g. after taking an observation, and

set_obs the seed.

Oracle.crn_check() If CRN is on, return to the baseline. Otherwise, use nextobs

before taking the next observation.

MOSOSolver The base class provides a basic structure for implementing new MOSO algo-

rithms in PyMOSO.

MOSOSolver.orc The oracle object for the solver to solve.

MOSOSolver.dim Number of dimensions of points in the self.orc’s feasible points.

MOSOSolver.num_obj Similarly, the number of objectives in self.orc.

MOSOSolver.num_calls A running count of the number of observations taken of

self.orc.

Cooper and Hunter: PyMOSO: Software for MOSO with R-PERLE and R-MinRLE A-21

MOSOSolver.x0 A feasible starting point. This point is additionally supplied to algo-

rithms that don’t need one.

RASolver Implements a common structure for all RA algorithms, including: caching of sim-

ulation replications, scheduling and updating of sample sizes and limits, and a wrapper

to Oracle.hit.

RASolver.sprn An instance of MRG32k3a for the solver to use.

RASolver.nbor_rad The neighborhood radius used by solvers seeking local optimality.

RASolver.gbar A dictionary where every key and value is a tuple. The keys are feasible

points, values are their objective values. gbar is “wiped” every retrospective iteration.

RASolver.sehat Exactly like gbar except the values are standard errors.

RASolver.m The sample size of the current iteration.

RASolver.calc_m(nu) Compute the sample size of the current iteration. RA algorithms

automatically do this every iteration and assign the value to self.m.

RASolver.b The searching sample limit of the current iteration.

RASolver.calc_b(nu) Exactly as calc_m but for the searching sample limit.

RASolver.estimate(x, c, obj) The estimate function is essentially a smart wrapper

for self.orc.hit. Inputs: tuple x to sample, c a feasibility constraint, obj the

objective to constrain. Return: same as Oracle.hit. Retrieves or saves the results

from/to gbar and sehat as appropriate. Returns not feasible if the otherwise feasible

result is not less than the constraint.

RASolver.upsample(mcS) A version of estimate for sets. Returns the feasible subset

of mcS.

RASolver.spline(x, c, obmin, obcon) Return a sample path local minimizer. Input:

a feasible start, constraint, objective to minimize, objective to constrain. Return: a

set of tuples of the trajectory, the minimizer tuple, the minimum tuple, the standard

error tuple.

RLESolver Builds on RASolver to add RLE and its relaxation.

RLESolver.betadel Affects the relaxation values computed in RLE.

RLESolver.calc_delta(se) Computes the RLE relaxation given a standard error,

using self.m and self.betadel

RLESolver.rle(candidate_les) Input: set of tuples, Returns: set of tuples. Finds the

LES at sample size self.m.

