
Bi-objective Simulation Optimization on Integer
Lattices using the Epsilon-Constraint Method in a

Retrospective Approximation Framework
Kyle Cooper

School of Industrial Engineering, Purdue University and Tata Consultancy Services, coope149@purdue.edu

Susan R. Hunter
School of Industrial Engineering, Purdue University, susanhunter@purdue.edu

Kalyani Nagaraj
School of Industrial Engineering & Management, Oklahoma State University, kalyanin@gmail.com

We consider multi-objective simulation optimization (MOSO) problems on integer lattices, that is, nonlin-

ear optimization problems in which multiple simultaneous objective functions can only be observed with

stochastic error, e.g., as output from a Monte Carlo simulation model. The solution to a MOSO problem

is the efficient set, which is the set of all feasible decision points that map to non-dominated points in the

objective space. For problems with two objectives, we propose the R-PERLE algorithm, which stands for

Retrospective Partitioned Epsilon-constraint with Relaxed Local Enumeration. R-PERLE is designed for

simulation efficiency and provably converges to a local efficient set under appropriate regularity conditions.

It uses a retrospective approximation (RA) framework and solves each resulting bi-objective sample-path

problem only to an error tolerance commensurate with the sampling error. R-PERLE uses the sub-algorithm

RLE to certify it has found a sample-path approximate local efficient set. We also propose R-MinRLE,

which is a provably-convergent benchmark algorithm for problems with two or more objectives. R-PERLE

performs favorably relative to R-MinRLE and the current state of the art, MO-COMPASS, in our numerical

experiments. This work points to a family of RA algorithms for MOSO on integer lattices that employ RLE

to certify sample-path approximate local efficient sets, and for which we provide the convergence guarantees.
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1. Introduction

Decision-makers increasingly rely on Monte Carlo simulation models to design and optimize

complex stochastic systems (Powers et al. 2012). In this context, designing an “optimal” sys-

tem requires solving an optimization problem in which the objective functions are defined

implicitly through the Monte Carlo simulation model, are assumed to be nonlinear, and can

only be observed with stochastic error. Such problems are called simulation optimization

(SO) problems. Owing to their generality, SO problems arise in a variety of applications
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including epidemic modeling (Nsoesie et al. 2013), healthcare (Bertsimas et al. 2013), plant

breeding (Hunter and McClosky 2016), and transportation (Osorio and Bierlaire 2013). The-

ory, methods, and algorithms for solving single-objective SO problems have been an active

area of research for over thirty years, and mature algorithms exist to solve single-objective

SO problems (see, e.g., Fu 2015, Pasupathy and Ghosh 2013, for overviews).

Far fewer resources exist for solving multi-objective simulation optimization (MOSO) prob-

lems, despite the fact that many practical applications employ the simultaneous consideration

of multiple conflicting objectives in a simulation context (Hunter et al. 2019). We write the

MOSO problem in d simultaneous objectives as

Problem Md: minimizex∈X {g(x) = (g1(x), . . . , gd(x)) := (E[G1(x,ξ)], . . . ,E[Gd(x,ξ)])},

where g : X → Rd is an unknown vector-valued function defined implicitly, e.g. through a

Monte Carlo simulation oracle; the deterministic constraints, if present, specify a nonempty

feasible set X ; and ξ is a random vector. The (global) solution to Problem Md is called the

efficient set, which is the set of feasible decision points for which no other feasible decision

point is at least as good on all objectives and strictly better on at least one objective. The

image of the efficient set is called the Pareto set. We provide more detail on what it means

to “minimize” a vector-valued objective function in §2; we refer the reader to Hunter et al.

(2019) for a more complete introduction to MOSO.

Our interest lies in the version of Problem Md in which the feasible set is a subset of the

integer lattice, X ⊆Zq; henceforth, when we refer to Problem Md, this property is implied.

Usually, the decision variables are natural numbers with physical meaning to the decision-

maker, such as the number of people to employ or units of stock to order. SO problems on

integer lattices are called integer-ordered SO problems by Pasupathy and Henderson (2006,

2011); at the time of writing, approximately half of the problems in the simopt.org library

are integer-ordered single-objective SO problems (Henderson and Pasupathy 2019).

As noted by Hunter et al. (2019), integer-ordered MOSO problems are also common,

arising in a variety of applications including aviation (Li et al. 2015b), healthcare (Chen

and Wang 2016), environment (Singh and Minsker 2008), logistics and supply chain (Chew

et al. 2009), and manufacturing (Andersson et al. 2007). For example, Li et al. (2015b) solve

a bi-objective SO problem to manage aircraft spare parts. The objectives are to maximize

an expected service level metric and to minimize the expected total cost, including holding
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costs. The decision variables include the amount of spare parts inventory to allocate to each

repair site. The solution to this problem is the efficient set, i.e., the set of decision points

representing the number of spare parts to hold in each location that map to Pareto points in

the objective space. Decision-makers then may use the efficient set as input to the decision-

making process, perhaps also taking into account factors external to the simulation model.

1.1. Challenges in Solving MOSO Problems on Integer Lattices

When designing algorithms to solve MOSO problems on an integer lattice, several challenges

arise. In particular, we consider the following challenges:

C.1 The objective functions are unknown and cannot be observed directly. We only have

access to a (possibly computationally intensive) simulation oracle that, at each feasi-

ble point x ∈X ⊆Zq, can generate n simulation replications, or identically distributed

copies of the random objective vector (G1(x,ξi), . . . ,Gd(x,ξi)), i= 1, . . . , n. This infor-

mation is used to construct the consistent estimator Ḡn(x) = (Ḡ1,n(x), . . . , Ḡd,n(x)) =
(

1
n

∑n
i=1G1(x,ξi), . . . ,

1
n

∑n
i=1Gd(x,ξi)

)
of the unknown objective function values g(x).

Further, derivative information is not returned automatically by the oracle, implying

that algorithms used to solve this MOSO problem must be derivative-free.

C.2 Solving an SO problem often becomes increasingly difficult as the number of objectives

increases from one to two, from two to three, and so on.

C.3 MOSO problems are more computationally intensive than their deterministic multi-

objective optimization and single-objective SO counterparts. (This statement follows by

considering challenges C.1 and C.2 together.)

C.4 The constraints that specify the feasible set X may be unknown or hidden (Le Digabel

and Wild 2015). Hence we may only be able to query a constraint-satisfaction oracle to

determine, without error, whether a point x∈Zq is feasible.
We now discuss these challenges, which are related.

First, consider challenge C.1: Why can’t we directly apply a “naïve implementation” of an

existing deterministic derivative-free multi-objective optimization algorithm to solve Prob-

lem Md? By “naïve implementation,” we mean that the algorithm is unchanged except that

at each point x ∈ X it visits, the estimated objective vector Ḡn(x) is used in place of the

true value g(x). Such an implementation implicitly uses an algorithmic framework called

Sample Average Approximation (SAA) (see, e.g., Shapiro et al. 2009, Kim et al. 2015) in



4 Cooper, Hunter, and Nagaraj: Bi-objective SO on Integer Lattices using the ε-Constraint Method in an RA Framework

which we replace the unknown vector-valued function g(·) in Problem Md with its estimator

Ḡn(·), resulting in the sample-path problem

Problem Md,n : minimizex∈X
{
Ḡn(x) =

(
1
n

∑n
i=1G1(x,ξi), . . . ,

1
n

∑n
i=1Gd(x,ξi)

)}
.

In this context, several complications and questions arise. To begin, we must consider the

possibility that for a particular n, the solution to Problem Md,n may not exist — even when

the solution to Problem Md does exist. Such a scenario is possible because the objective

function estimators are random variables. Then, we must answer the question, how large

should the sample size n be? For example, we may wish to determine a value of n that ensures

the solution to ProblemMd,n is within a certain error tolerance of the solution to ProblemMd

with high probability, under certain regularity conditions. Notice that because the solution

estimators are random variables, traditional deterministic guarantees on optimality are not

available; we can make only probabilistic guarantees. Determining the value of n is not a

question of optimization but of stochastic error control. We refer the reader to Fu (2002) for

a discussion of the importance of explicit stochastic error control in the context of single-

objective SO; the same arguments apply to multi-objective SO. Finally, assuming we obtain

a suitable value of n, this method of solving Problem Md is known to be inefficient both in

theory and in practice (Pasupathy 2010, Royset and Szechtman 2013) — the same sample size

n is used at all decision points, regardless of how close to optimal they are or how large the

estimated standard error of each objective vector estimator is. Thus in general, deterministic

derivative-free multi-objective optimization methods (e.g., Ralphs et al. 2006, Custódio et al.

2011, Larson et al. 2019, p. 60–62) cannot directly be applied to solve Problem Md.

Second, while solving a single-objective SO problem is usually considered a computation-

ally intensive task (Fu 2002), challenge C.2 states that solving an SO problem increases in

difficulty as the number of objectives increases. The primary increase in difficulty from one to

two objectives occurs because MOSO methods identify an entire efficient set, as opposed to a

single minimizer. For example, consider one of the primary methods for solving deterministic

multi-objective optimization problems, called scalarization. Scalarization re-formulates the

multiple objectives into a parameterized single-objective problem whose solution is a single

efficient point (Miettinen 1999, p. 62). Then, by varying the scalarization parameters, the

decision-maker solves many single-objective sub-problems to retrieve different points in the
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efficient set. When used in the context of MOSO, scalarization implies the need to solve

many single-objective SO sub-problems.

Third, MOSO algorithms should explicitly address the computational intensity of solving

MOSO problems (challenge C.3). The primary source of computational burden in MOSO

algorithms usually lies in the requirement that the algorithms repeatedly conduct (possibly

expensive) stochastic objective vector evaluations, particularly on the (possibly numerous)

points in and around the current estimated efficient set. These objective vector evaluations

should be conducted so that the algorithm expends the simulation effort as efficiently as pos-

sible while ensuring convergence. Tools that may enhance the efficiency of MOSO algorithms

include using common random numbers (CRN) (see Law 2015, p. 588) and exploiting local

structure and pseudo-gradient information to move toward a local efficient set in the decision

space. (See §2 for a definition of a local efficient set; loosely speaking, a local efficient set is

the global efficient set on a relevant subset of the feasible space, where the relevant subset is

defined by some neighborhood.) Methods that locate a local efficient set can later be embed-

ded within a method that guides restarts to locate the global efficient set. Finally, MOSO

methods should fully exploit the power of modern parallel computing platforms, either by

solving sub-problems in parallel, or obtaining simulation replications in parallel, or both. We

remark that as high-performance computing environments become increasingly hierarchical

(Gropp and Snir 2013), hierarchical algorithms, such as global solvers that coordinate the

efforts of multiple asynchronous local solvers, each of which solves sub-problems in parallel,

may provide scalability.

Fourth, challenge C.4 acknowledges that even though the constraints are deterministic,

they may also be defined implicitly. Thus methods that do not require knowing the feasible

set X in advance, that is, without running the simulation oracle, are useful in practice.

1.2. Existing Methods for Solving MOSO Problems on Integer Lattices

Perhaps owing to the computational complexity of the problem, few algorithms exist to solve

MOSO problems on integer lattices that are both provably convergent to a local efficient

set and explicitly control sampling error (Hunter et al. 2019). The current state-of-the-art

algorithm for identifying a local efficient set as the solution to a MOSO problem on an integer

lattice with d≥ 2 objectives is called MO-COMPASS (Li et al. 2015a); MO-COMPASS is a

multi-objective version of COMPASS (Hong and Nelson 2006, Xu et al. 2010).
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MO-COMPASS has the following properties. First, under appropriate regularity condi-

tions, MO-COMPASS provably converges to a local efficient set with probability one (chal-

lenge C.2). MO-COMPASS explicitly controls sampling error (challenge C.1) by updating

the Most Promising Area, which is a subset of the feasible set that the algorithm has deemed

likely to contain a local efficient set, and by using a Simulation Allocation Rule to effi-

ciently allocate simulation effort (challenge C.3). Because MO-COMPASS constructs the

Most Promising Area from the feasible set in each iteration of the algorithm, the constraints

that specify X must be a priori and known; that is, the constraints must be provided to the

solver explicitly as part of the problem formulation (Le Digabel and Wild 2015). Therefore

MO-COMPASS does not address challenge C.4. Finally, we remark that MO-COMPASS does

not construct pseudo-gradients per se, or conduct line searches, in response to challenge C.3.

There are also MOSO methods that always provide only an estimator of the global efficient

set, and thus do not locate local efficient sets that are not also the global efficient set. These

methods include Multi-Objective Probabilistic Branch and Bound (MOPBnB, Huang and

Zabinsky 2014) and multi-objective ranking and selection (MORS). MORS methods, which

include MOCBA (Lee et al. 2010, Li et al. 2018), multi-objective SCORE (Feldman and

Hunter 2018, Applegate et al. 2019), and M-MOBA (Branke and Zhang 2015, Branke et al.

2016), efficiently allocate simulation replications across a “small,” finite, and known feasible

set. Since they allow the decision variables to be categorical, MORS methods do not exploit

ordering that may exist in the decision space, which makes them unlikely to be competitive

methods for problems on large subsets of an integer lattice.

Finally, we know of no existing algorithms for solving MOSO problems on integer lattices

that address challenges C.1–C.4 by doing all of the following: explicitly controlling sampling

error, provably converging to a local efficient set, moving through the decision space using

line searches that exploit pseudo-gradients, and allowing the constraint set to be hidden. The

closest algorithm is by Cooper et al. (2017), who also present an algorithm for identifying

a local efficient set as the solution to Problem Md with d= 2 objectives. However, Cooper

et al. (2017) is an early version of the present paper; our work subsumes theirs.

1.3. Overview of Contributions and Solution Approach

We propose a new family of algorithms for solving MOSO problems on integer lattices. Algo-

rithms in our proposed family address challenges C.1–C.4 because they provably converge

to a local efficient set under appropriate regularity conditions, explicitly control sampling
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error, enable the use of CRN and are easily parallelizable, and allow hidden constraints,

respectively. We provide a detailed explanation of our approach in the sections that follow.

In brief, our family of algorithms is characterized by its use of a retrospective approxima-

tion (RA) framework, together with a sample-path solver that certifies the solution to each

sample-path problem is a sample-path approximate local efficient set, to within an error

tolerance commensurate with the sampling error.

We propose two pseudo-gradient-based algorithms in the family: R-PERLE and R-

MinRLE. Our primary contribution is R-PERLE, which is a tailored algorithm for d = 2

objectives that uses strategically-conducted line searches that exploit pseudo-gradients. We

also propose R-MinRLE, which is a pseudo-gradient-based benchmark algorithm for d≥ 2

objectives. R-PERLE shows promising numerical performance relative to R-MinRLE and

to the current state-of-the-art, MO-COMPASS, on our test problems. Finally, code for our

algorithms is available publicly in the PyMOSO software package (Cooper and Hunter 2019).

1.3.1. Retrospective Approximation First, RA is version of SAA that is designed for

sampling efficiency (Pasupathy and Ghosh 2013). Recall that SAA is an algorithmic frame-

work that replaces the unknown vector-valued function g(·) in ProblemMd with its estimator

Ḡn(·), resulting in the sample-path problem, Problem Md,n. The local and global solutions

to Problem Md,n are called sample-path local and global efficient sets, respectively. (These

sets are often constructed by locating sample-path local efficient points. Every point in a

sample-path local efficient set is a sample-path local efficient point; see §2.1.1 for definitions.)

As discussed in §1.1, using an algorithm to obtain an estimated solution to Problem Md

by solving Problem Md,n at a pre-determined sample size, say n = 100, is not necessarily

efficient: the same large sample size is used for all feasible points visited by the algorithm. RA

corrects this issue. Instead of solving Problem Md,n for a single, pre-determined, sample size

n, an RA framework prescribes solving a sequence of sample-path problems, characterized by

the increasing sample size sequence {mν , ν = 1,2, . . .}, where ν is the RA iteration number.

The solution to Problem Md,mν−1 obtained in RA iteration ν− 1 is used as a warm start to

solving ProblemMd,mν in RA iteration ν. Thus as the sample size increases, the warm starts

are likely to improve, ensuring that large sample sizes are not wasted on severely suboptimal

points. Using an RA framework also ensures that simulation replications can be obtained

in parallel with CRN (challenge C.3). This algorithmic efficiency arises because within each

RA iteration, we use the same sample size at every point visited by the algorithm.
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1.3.2. Sample-Path Solver Within each RA iteration ν, we require an algorithm to

“solve” the sample-path ProblemMd,mν , which is a deterministic multi-objective optimization

problem for fixed values of the random variables ξi, i = 1, . . . , n; we call this algorithm

the sample-path solver. We put quotes around “solve” because it would be inefficient to

locate a complete sample-path local efficient set as the solution to Problem Md,mν in every

RA iteration ν = 1,2, . . . . Instead, we require a sample-path solver that is sensitive to the

standard errors of the estimated objective function values at the current sample size (challenge

C.1). When standard errors of the objective vectors are “high,” perhaps because the sample

size in the current RA iteration is “low,” we explicitly control sampling error by obtaining

only a sample-path approximate local efficient set to use as a warm start in the next RA

iteration. The amount of error allowed in this set is a function of the standard errors of the

objective vector estimators at the current sample size; Pasupathy (2010) employs similar

concepts in the context of stochastic root finding. As the standard errors become smaller with

larger sample sizes in later RA iterations, the sample-path solver returns an increasingly-

complete sample-path approximate local efficient set. (In case the sample-path approximate

local efficient set does not exist at the current sample size mν , a bound bν limits the total

number of simulation replications obtained within RA iteration ν and ensures the solver

stops in finite time. Regularity conditions in §8 ensure that as ν increases, a sample-path

local efficient set exists and bν is non-binding.)

Assuming we have an appropriate definition of a sample-path approximate local efficient

set (formally defined in §3.2), we create sample-path solvers with two key properties: (a) a

way to “quickly” identify a subset of points in a sample-path local efficient set using pseudo-

gradient information — call this the accelerator ; and (b) a way to certify that the set of

points obtained is in fact a sample-path approximate local efficient set, and if not, create

such a set from any set of starting points — call this the crawler. We discuss two sample-path

solvers with these properties, MinRLE and PERLE. Then, we briefly discuss the SPLINE

algorithm (Wang et al. 2013), which enables our accelerators to exploit pseudo-gradients.

The Simple Sample-Path Solver, MinRLE. Our benchmark algorithm, R-MinRLE for d≥ 2

objectives, results from creating a simple sample-path solver, called MinRLE, that satisfies

the two key properties: the Min algorithm is the accelerator, and the RLE (Relaxed Local

Enumeration) algorithm is the crawler. First, Min obtains one sample-path local minimizer

for each objective using pseudo-gradient-based search. Then, the set of local minimizers is
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sent to the crawler, RLE, which enumerates the neighborhoods of the points in the set it

receives. If RLE cannot certify that the set is a sample-path approximate local efficient set,

it crawls through the decision space adding and removing points until it can certify the set.

The R-MinRLE algorithm is naïve because using Min to locate minimizers on each objective

tends to find the decision vectors that map to “extreme” points of a local Pareto set, resulting

in inefficient crawling work for RLE to complete the “center” of the set.

The Tailored Sample-Path Solver, PERLE. To design a more tailored algorithm, we would

like the accelerator to help the crawler by performing more pseudo-gradient-based searches

in strategic locations. Ideally, the crawler should not crawl at all — it should only certify

that the set of points returned by the accelerator is indeed a sample-path approximate local

efficient set. To create such an accelerator in d= 2 objectives, we first obtain one sample-

path local minimizer on each objective; the estimated local minima bound our search in

the objective space. Then, we use a scalarization technique from the deterministic multi-

objective optimization literature called the ε-constraint method (see, e.g., Miettinen 1999,

p. 85) to search strategically for new sample-path local efficient points within these bounds.

The ε-constraint method consists of selecting one objective to minimize and posing all others

as constraints, where the constraint values are defined by “ε’s.”

The ε-constraint method has desirable properties for solving problems in two objectives.

First, it can retrieve any point in an efficient set, unlike the linear weighted sum method. Sec-

ond, as we will see, it allows easy control over which parts of the objective space are explored,

as a function of the standard errors of the objective vector estimators. For a strategically-

chosen objective k∗ ∈ {1,2}, our accelerator solves several sample-path ε-constraint problems,

Problem S̄2,mν (k
∗, ε) : minimize

x∈X
Ḡk∗,mν (x) s.t. Ḡkcon,mν (x)≤ ε for kcon ∈ {1,2}, kcon 6= k∗,

at ε values that are a function of the standard errors of the objective vectors corresponding to

already-found sample-path local (weakly) efficient points (see §2.1.1 for a definition); already-

found points include the sample-path local minima and warm starts from the previous RA

iteration. Our accelerator is called PE, which stands for partitioned ε-constraint, because it

partitions the objective vector space to search; these searches can be conducted in parallel.

Loosely speaking, for each known sample-path local (weakly) efficient point Xw
mν in RA

iteration ν at sample sizemν , the PE algorithm places ε values to search for new sample-path

local (weakly) efficient points inside the bounds specified by the sample-path local minima
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and outside the interval specified by Ḡkcon,mν (X
w
mν )± ŝ.e.(Ḡkcon,mν (X

w
mν ))(m

1/2−βε
ν ), where

ŝ.e.(Ḡkcon,mν (X
w
mν )) is the estimated standard error of the constrained objective function

estimator at Xw
mν , and βε ∈ (0,∞) is a parameter. By default, we set βε = 1/2, although

convergence is guaranteed for a wide range of values. Justification for our default choice and

sensitivity of the algorithm to this parameter appear in the numerical section.

To demonstrate that PE usually provides good starting points to RLE, we consider the

convergence properties of the R-PE algorithm, which consists of placing the PE algorithm

in an RA framework. We prove that R-PE converges when special structure is present in

the objective functions; such structure is not required for the convergence of our main algo-

rithm, R-PERLE. We make two additional remarks here: First, R-PE is useful primarily

for analysis. R-PERLE should always be chosen over R-PE in practice. When the required

special structure is present, PE and RLE are designed so that RLE is mostly inactive under

the default parameter settings. Second, directly employing the ε-constraint method becomes

more complicated in d≥ 3 objectives, due in part to difficulties locating the nadir point to

bound the Pareto set in the objective space (see, e.g., Miettinen 1999, p. 17). A version of

R-PERLE in which the sample-path solver invokes the PE algorithm on any two objectives,

followed by the RLE algorithm on all objectives, will provably converge to a local efficient

set due to the invocation of RLE. However, it is not clear that such an algorithm applied in

d≥ 3 objectives is a good idea. We leave the development of non-naïve accelerators for d≥ 3

objectives to future work.

The SPLINE algorithm. Finally, to locate sample-path local minimizers and to solve the

sample-path ε-constrained problems, we employ an established single-objective, pseudo-

gradient-based sample-path solver called SPLINE (Wang et al. 2013). SPLINE conducts

repeated line searches followed by a neighborhood enumeration step to certify that a sample-

path local minimizer has been found. We select the SPLINE algorithm because it is the

primary engine underlying the state-of-the-art single-objective SO algorithm R-SPLINE,

which, like our algorithm, operates within an RA framework. Thus the SPLINE solver is

especially well-suited for our solution context and demonstrates impressive performance on

single-objective SO problems in Wang et al. (2013). Conceivably, other algorithms could be

modified for use in this context. For example, other line search algorithms include Liuzzi et al.

(2018) and the references therein; other derivative-free algorithms are available in Conn et al.

(2009), Audet and Hare (2017). Given that our goal is presenting new MOSO algorithms,

we do not comment further on other possible single-objective sample-path solvers.
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1.4. Organization

The sections that follow contain many details required to make our algorithms efficient and

convergent. To help the reader, we provide notation and terminology in §1.5. Then, §2 con-

tains formal definitions of optimality concepts for MOSO, followed by our problem statement.

In §3, we provide details of our solution context, including the definition of a sample-path

approximate local efficient set. Listings of our algorithms appear in §4–§6. Convergence and

efficiency results appear in §8, and numerical results appear in §9. All proofs and some

additional numerical results appear in the Online Appendix.

1.5. Notation and Terminology

With few exceptions, constants are denoted by lower-case letters (a), random variables by

capital letters (X), sets by script capital letters (A), vectors by bold (x), random vectors

by capital bold (X), families of sets by Fraktur (A∈A), and operators by blackboard bold

(E[X]). The set of all q-dimensional integer-valued vectors is Zq ⊂ Rq. The set of all d-

dimensional extended real-valued vectors isRd. The d-dimensional vector (0, . . . ,0) is denoted

0d. The complement of the set A is Ac. The sum of two sets A ⊆ Rd and B ⊆ Rd is the

Minkowski sum, A+B := {a+b : a∈A,b∈B}. For a sequence of events {An} defined in a

probability space, we sayAn i.o. if infinitely many ofAn occur, whereAn i.o.= lim supnAn =

∩∞i=1∪∞j=iAj. Finally, let A⊂Rq and B ⊂Rq be nonempty, bounded sets. Then (a) d(x,x′) =

||x−x′|| is the Euclidean distance between two points x,x′ ∈Rq; (b) d(x,B) = infx′∈B ||x−
x′|| is the distance from the point x ∈Rq to the set B; (c) d(A,B) = supx∈A d(x,B) is the

distance from set A to set B; and (d) dH(A,B) := max{d(A,B), d(B,A)} is the Hausdorff

distance between sets A and B.

2. Problem Context: Preliminaries for MOSO on Integer Lattices

In what follows, we define optimality concepts for ProblemMd and provide a formal problem

statement. Although R-PERLE is a bi-objective SO algorithm, we retain the generality of d

objectives since our benchmark algorithm, R-MinRLE, is defined for d≥ 2 objectives.

2.1. Optimality Concepts

Our presentation of optimality concepts follows Hunter et al. (2019), Li et al. (2015a), Wang

et al. (2013). To begin, we define a flexible neighborhood structure and notions of dominance.

First, for a decision point x∈X ⊆Zq and neighborhood size parameter a∈R, a≥ 1, define

the Na-neighborhood of the point x as Na(x) := {x′ ∈Zq : d(x,x′)≤ a}. Further, define the
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Na-neighborhood of a set as the union of the Na-neighborhoods of all the points belonging to

the set. That is, for S ⊂X ⊆Zq, the Na-neighborhood of S is Na(S) :=∪x∈SNa(x). Then for

any set A, define N ′a(A) :=Na(A)\A as the deleted neighborhood of A. Second, to compare

vectors in the objective function space, we define the following.

Definition 1. Let x1,x2 ∈X and d≥ 2. We say the vector g(x1)

1. weakly dominates g(x2), written as g(x1)5 g(x2), if gk(x1)≤ gk(x2) for all k= 1, . . . , d;

2. dominates g(x2), written as g(x1)≤ g(x2), if g(x1)5 g(x2) and g(x1) 6= g(x2);

3. strictly dominates g(x2), written as g(x1)< g(x2), if gk(x1)< gk(x2) for all k= 1, . . . , d.

Using these definitions, we define concepts related to optimal points and optimal sets, which

are illustrated in Figure 1 for an N1-neighborhood structure.

2.1.1. Minimizers and Efficient Points Following Wang et al. (2013), for each objective

k ∈ {1, . . . , d}, we define local minimizers of the kth objective function as follows.

Definition 2 (Wang et al. 2013). Given an objective function gk : X → R, a point

xmin
k ∈X is an Na-local minimizer of gk if gk(xmin

k )≤ gk(x) for all x∈Na(xmin
k )∩X .

We further define local weakly efficient points and local efficient points as follows.

Definition 3. A point xw ∈X is an Na-local weakly efficient point (LWEP) if

1. @x∈Na(xw)∩X such that g(x)< g(xw); or equivalently, if

2. ∀x∈Na(xw)∩X , g(x) 6< g(xw); that is, ∃k ∈ {1, . . . , d} such that gk(xw)≤ gk(x).

Definition 4. A point x∗ ∈X is an Na-local efficient point (LEP) if

1. @x∈Na(x∗)∩X such that g(x)≤ g(x∗); or, equivalently, if

2. ∀x ∈Na(x∗)∩X , g(x)� g(x∗); that is, one of the following holds: (a) ∃k ∈ {1, . . . , d}
such that gk(x∗)< gk(x), or (b) g(x) = g(x∗).

Notice that every Na-local minimizer of some objective gk, k ∈ {1, . . . , d}, is an Na-LWEP,

and if the Na-local minimizer is the unique minimum in its neighborhood, then it is also

an Na-LEP. Further, all Na-LEP’s are Na-LWEP’s. We define a global minimizer, a global

weakly efficient point, and a global efficient point as an Na-local minimizer, Na-LWEP, and

Na-LEP, respectively, in which we set the neighborhood size parameter a=∞.

2.1.2. Efficient and Pareto Sets As in Hunter et al. (2019), we collect the various types

of efficient points defined in the previous section into various types of efficient sets, as follows.

Definition 5. A set Wa ⊆ X , |Wa| ≥ 1, is an Na-local weakly efficient set if (a) each

xw ∈ Wa is an Na-LWEP, and (b) no points in g(Wa) strictly dominate other points in

g(Wa), and (c) for each x∈N ′a(Wa)∩X , ∃xw ∈Wa such that g(xw)5 g(x).
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Figure 1 The figure shows a feasible set on the left, and its image appears on the right. On the left, solid black

dots represent global efficient points, open black dots represent global weakly efficient points, and solid

gray dots represent N1-LEP’s. N1-local minimizers are denoted by the superscript min. The set L1 =

{xmin
1,a ,x

∗
b,x
∗
c ,x

min
2,d } is an N1-local efficient set. The set E = {xmin

1,a ,x
∗
b,x
∗
c ,x

min
2,d ,x

min
2,e } is the global efficient

set. The set Ew = E ∪ {xmin
2,h } is the global weakly efficient set. The point x∗g is an N1-LEP that does not

belong to an N1-local efficient set or an N1-local weakly efficient set.

Definition 6. A set La ⊆ X , |La| ≥ 1, is an Na-local efficient set if (a) each x∗ ∈ La is

an Na-LEP, and (b) no points in g(La) dominate other points in g(La), and (c) for each

x∈N ′a(La)∩X , ∃x∗ ∈La such that g(x∗)≤ g(x).

Notice that every Na-local efficient set is also an Na-local weakly efficient set. Finally, we

define the global weakly efficient set, denoted Ew, and the global efficient set, denoted E , as an
Na-local weakly efficient set andNa-local efficient set, respectively, in which the neighborhood

size is a=∞. Although our definitions exist primarily in the decision space so far, we also

define a Na-local Pareto set as the image of an Na-local efficient set, g(La).
We remark here that under our definitions, there may exist Na-LWEP’s that do not belong

to an Na-local weakly efficient set. To see an example of such a case, consider Figure 1, and

notice that g(x∗g) is not dominated by the image of any points in the N1-neighborhood of

x∗g, which are the points g(xmin
1,a ),g(xmin

2,e ), and g(xmin
1,f ). Therefore, x∗g is an N1-LWEP. (It is

also an N1-LEP.) However, {x∗g} is not an N1-local weakly efficient set because g(x∗g) does

not dominate g(xmin
1,a ),g(xmin

2,e ), or g(xmin
1,f ). In this example, it is not possible to construct an

N1-local weakly efficient set using only the points xmin
1,f ,x

∗
g, and xmin

2,h because the images of

these points do not dominate the images of any other feasible points, and therefore cannot

dominate the images of the points in their deleted N1-neighborhood. Thus any N1-local

weakly efficient set including x∗g must also include a member of the global efficient set whose

image does not dominate g(x∗g), such as xmin
1,a ,x

∗
b, or xmin

2,e . But, including any of these points

in the candidate N1-local weakly efficient set with x∗g implies that there exist neighborhood
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points that violate the definition of an N1-local weakly efficient set. Thus x∗g does not belong

to an N1-local weakly efficient set.

2.2. Problem Statement

Using the optimality concepts defined in the previous section, we consider the following

problem statement: Given a neighborhood size a and an oracle capable of producing estima-

tors Ḡn(x) of g(x) such that Ḡn(x)→ g(x) w.p.1 as the sampling effort n→∞ for each

x∈X ⊆Zq, find a local solution to Problem Md, which is an Na-local efficient set.

3. Solution Context: Preliminaries for the RA Framework

Recall from §1.3.1 that we employ an RA framework to address our problem statement.

First, we briefly revisit the sample-path problem and its solution. Then, we formally define a

sample-path approximate local weakly efficient set, which we design for sampling efficiency.

3.1. The Sample-Path Problem and Solution

Given the definitions of optimality concepts in §2.1, we are now able to define optimality

concepts as they relate to the sample-path Problem Md,n. We define sample-path versions

of all optimality concepts in §2.1 by replacing the objective function values g(x) and gk(x)

with Ḡn(x) and Ḡk,n(x), respectively, for all k ∈ {1, . . . , d}. We denote sample-path Na-
local minimizers, sample-pathNa-LWEP’s, and sample-pathNa-LEP’s asXmin

k,n ,X
w
n , andX∗n,

respectively. A local solution to ProblemMd,n is a sample-path Na-local efficient set. Finally,

recall that we solve a sequence of sample-path problems characterized by the increasing

sample size sequence {mν , ν = 1,2, . . .}, where ν is the RA iteration number. Henceforth for

simplicity, within an RA iteration ν we usually denote the sample size as n=mν .

3.2. A Sample-Path Approximate Local Weakly Efficient Set

As discussed in §1.3.2, we prefer not to locate a complete sample-path Na-local efficient

set in every RA iteration, since doing so may be inefficient. Instead, we wish to solve the

sample-path problem only to within a certain error tolerance that is commensurate with the

sampling error. To employ such a concept, we require a relaxed definition of a sample-path

Na-local efficient set that will enable us to stop our search within an RA iteration early.

Thus we define an approximate version of local optimality for Problem Md,n, as follows.

Definition 7. A set A ⊆ X is a sample-path approximate Na-local weakly efficient set

(ALES) for Problem Md,n if no points in Ḡn(A) dominate other points in Ḡn(A) and, given

a vector-valued completeness function δ : X →Rd such that 0d 5 δ(x) for all x∈X ,
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(a) each xw ∈A is a sample-path Na-LWEP, and

(b) for each x ∈N ′a(A)∩X , (i) ∃xw ∈A such that Ḡn(xw)5 Ḡn(x), or (ii) ∃xw ∈A such

that (Ḡn(x)≤ Ḡn(xw) and Ḡn(xw)−δ(xw)5 Ḡn(x)+δ(x)), or (iii) ∀xw ∈A, Ḡn(x)�
Ḡn(xw), and ∃x̃w ∈ A such that Ḡn(x̃w)− δ(x̃w) 5 Ḡn(x) + δ(x) or Ḡn(x)− δ(x) 5

Ḡn(x̃w) + δ(x̃w).

Definition 7 is similar to the definition of a sample-pathNa-local weakly efficient set, except

for Part (b). Definition 7(b) requires that all feasible points in the deleted neighborhood of

the ALES are either (i) weakly dominated by a point in the set, or (ii) dominate a point

in the set by less than a certain amount, or (iii) do not weakly dominate any points in

the set, and would either weakly dominate or be weakly dominated by a point in the set

if both were moved by a certain amount. The “certain amount” is specified by the function

δ. We call δ(·) = (δ1(·), . . . , δd(·)) the completeness function because it allows the ALES

to have neighborhood points that violate the definition of a sample-path Na-local weakly
efficient set, and bigger values of δ result in a “less-complete” ALES. If δk(x) =∞ for all

x∈X , k ∈ {1, . . . , d}, the ALES is a collection of sample-path Na-LWEP’s that may or may

not belong to a sample-path Na-local weakly efficient set. If δ(x) = 0d for all x ∈ X , the
ALES is a sample-path Na-local weakly efficient set.

We set the completeness function using the estimated standard errors of the objective

function values Ḡk,n(x) for all k ∈ {1, . . . , d}, x∈X . Thus we require the following definitions.
For all x∈X , k ∈ {1, . . . , d}, define the variance σ2

k(x) :=V(Gk(x, ξ))<∞. (The assumption

of finite variances is made formal in §8.) Then, let the estimated standard deviation of the kth

objective value at x ∈ X be σ̂k,n(x) :=
√

(n− 1)−1
∑n

i=1(Gk(x, ξi)− Ḡk,n(x))2, and let the

standard error of the kth estimated objective value be ŝ.e.(Ḡk,n(x)) := σ̂k,n(x)/n1/2. Further,

for each objective k ∈ {1, . . . , d} and for all x∈X , β ∈ (0,∞], define the function f̂k(x, β) :=

ŝ.e.(Ḡk,n(x))(n1/2−β) if β ∈ (0,∞) and f̂k(x,∞) := 0. Let f̂(x, β) := (f̂1(x, β), . . . , f̂d(x, β)).

For the remainder of the paper, we consider the ALES completeness function specified

by f̂ . Since the value of this function is random for each x ∈ X , henceforth, we denote the

completeness function as δ̂(x) := f̂(x, βδ) for all x∈X , where βδ ∈ (0,∞] is the completeness

parameter. Smaller values of βδ correspond to larger values of δ̂(x), thus specifying a less-

complete, or “smaller,” ALES. The value βδ =∞ implies that the ALES is a sample-path

Na-local weakly efficient set. Since the completeness function is a function of the standard

error, under the regularity conditions in §8, the value δ̂(x)→ 0 w.p.1 for each x∈X as the

sampling effort increases.
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4. The Main Algorithm: R-PERLE for Two Objectives

We now provide an overview of our main RA algorithm, R-PERLE, which is listed in Algo-

rithm 1. R-PERLE employs an RA framework that solves the sequence of sample-path

Problems M 2,mν at increasing sample sizes {mν , ν = 1,2, . . .}, where ν is the RA iteration

number. Within an RA iteration, the PERLE algorithm is the sample-path solver. We implic-

itly define the PERLE algorithm as calling PE followed by RLE within one RA iteration ν

(Algorithm 1 Steps 3 and 4). The solution to Problem M 2,mν found by PERLE on the νth

RA iteration, denoted Âν in Algorithm 1, is guaranteed by RLE to be an ALES under mild

regularity conditions. For efficiency, R-PERLE uses the sample-path solution from the pre-

ceding RA iteration, Âν−1 which is an ALES for Problem M 2,mν−1, as an initial set of points

for finding an ALES that solves Problem M 2,mν . Given the amount of detail inherent in the

algorithms PE and RLE, we address these algorithms separately in §5 and §6, respectively.

R-PERLE requires a few input parameters in addition to a sequence of sample sizes

{mν , ν = 1,2, . . .} and an initial feasible point x0 ∈ X , which is declared as a global vari-

able in Algorithm 1 Step 1. First, R-PERLE requires a sequence of limits on oracle calls

during search, {bν , ν = 1,2, . . .}, that prevents chase-offs in the case of “bad” sample-path

realizations of Problem M 2,mν , e.g., when the solution does not exist. We set this sequence

so that for large enough RA iteration numbers ν, under the assumptions in §8, search “time

outs” due to binding bν do not occur w.p.1. R-PERLE requires parameters β = (βε, βδ),

which control the completeness of the ALES and are discussed in the sections that follow.

We suppress the choice of neighborhood size, which is a = 1 by default. The convergence

properties of R-PERLE under different parameter values are discussed in §8, and we specify

the default settings used in our numerical examples in §9.1. Under the default settings, the

initial feasible point x0 ∈X is the only required user-specified input.

Finally, for algorithmic efficiency, everywhere the oracle is called at a point x with sample

size n=mν within an RA iteration, we assume the triple (x, Ḡn(x), ŝ.e.(Ḡn(x))) is stored

Algorithm 1: The R-PERLE Algorithm for d= 2

Input: initial point x0 ∈X ; sequence of sample sizes to expend at each visited point, {mν}; sequence
of limits on oracle calls during search, {bν}; ε-placement and ALES parameters, β = (βε, βδ)

1 Initialize: Â0 = {x0} and set x0 as a global variable
2 for ν = 1,2, . . . with CRN do
3 Âν = PE(Âν−1,mν , bν , βε) /partition and solve ε-constraint problems
4 Âν = RLE(Âν ,mν , bν , βδ) /guarantee the returned set is an ALES
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and made available to all relevant subroutines within an RA iteration. Thus everywhere a

candidate ALES is passed between functions, we assume the estimated objective function

values of the neighborhood points are made available to all relevant subroutines, especially

to RLE. This practice enhances efficiency by removing the need to re-sample neighborhood

points when checking whether a candidate ALES is truly an ALES. All stored points visited

and simulation replications obtained is cleared between RA iterations. For readability, we

usually suppress the passing of this information between algorithms.

5. The PE Algorithm for Two Objectives

The PE algorithm is the first algorithm in the PERLE solver. In RA iteration ν, the PE

algorithm chooses an objective k∗ to minimize and uses the ε-constraint method to solve

Problem S̄2,n(k∗, ε) at carefully-chosen ε values; recall that n = mν is the current sample

size in RA iteration ν. On an integer lattice, the sample-path Na-local minimizer for Prob-

lem S̄2,n(k∗, ε) is guaranteed to be an Na-LWEP for the original sample-path Problem M 2,n

(see, e.g., Miettinen 1999, for the continuous context). Except in pathological cases, varying

the ε values and solving each resulting sample-path ε-constraint problem results in locating

multiple sample-path Na-LWEP’s for Problem M 2,n. Thus PE yields a collection of sample-

path Na-LWEP’s that includes a local minimizer on each objective and the sample-path

Na-LWEP’s that result from solving Problem S̄2,n(k∗, ε) for each chosen ε.

5.1. PE Algorithm Listing

We now discuss PE (Algorithm 2) in detail. First, to ensure that all sample-path ε-constraint

problems have a non-empty feasible set, in Step 1, PE obtains updated sample-path Na-local
minimizers on each objective, stored in the set Â0

n. (The Min algorithm called in Step 1 is

listed in Algorithm 3 and discussed in §5.2.) The sample-path Na-local minimizers at current

sample size n ensure that for the constrained objective kcon, no ε values are placed outside

of the interval (Ḡkcon,n(Xmin
kcon,n), Ḡkcon,n(Xmin

k∗,n)] for kcon 6= k∗. Thus for every ε-constraint

problem posed, there exists a sample-path feasible point in the set Â0
n.

To select an objective k∗ ∈ {1,2} to minimize, in Steps 2 through 14, PE places constraints

a function of the standard error away from the images of known sample-path Na-LWEP’s on

both objectives, and ultimately selects the objective that results in solving the least number

of ε-constraint problems. This strategy ensures that we do not constrain an objective with

relatively small standard errors, thus wasting simulation effort attempting to order many
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Algorithm 2: Ânew = PE(Âold, n, b, βε)

Input: estimated efficient set from the last RA iteration, Âold ⊆X ; sample size, n; limit on oracle
calls during search, b; epsilon placement parameter, βε

Output: Ânew ⊆X , a collection of sample-path Na-LWEP’s
1 Â0

n = Min(Âold ∪{x0}, n, b) /search: update sample-path Na-local minimizers
2 [∼, Âw

n ,∼] = RemoveNonLWEP(Â0
n) /get the set of sample-path Na-LWEP’s in Â0

n

3 if Âw
n = ∅ then Âw

n ←Â0
n /Min update timed out, no other sample-path Na-LWEP’s exist

4 Initialize: c0← |Âw
n | /set ε’s using sample-path Na-LWEP’s

5 for k∗ = 1,2 do /determine objective to minimize, k∗

6 Initialize: kcon← k for k ∈ {1,2} such that k 6= k∗

7 Sort Ḡn(Âw
n) on kcon to get (Xw

(1), . . . ,X
w
(c0)) where Ḡkcon,n(Xw

(1))≤ . . .≤ Ḡkcon,n(Xw
(c0))

8 Set constraint lower bound Lk∗← Ḡkcon,n(Xw
(1)) + f̂kcon(Xw

(1), βε)

9 for i= 2, . . . , c0 do
10 εLk∗(i)← Ḡkcon,n(Xw

(i))− f̂kcon(Xw
(i), βε) and εUk∗(i)← Ḡkcon,n(Xw

(i)) + f̂kcon(Xw
(i), βε)

11 Ck∗←{εLk∗(i) : i∈ {2, . . . , c0}, Lk∗ < εLk∗(i), εLk∗(i) /∈ (εLk∗(i′), εUk∗(i′)] for all i′ ∈ {2, . . . , c0}}
12 Ck∗← |Ck∗ |
13 K∗← arg min{Ck∗ : k∗ ∈ {1,2}} /choose least ε-constraints; break ties randomly
14 C←CK∗ and Kcon← k for k ∈ {1,2} such that k 6=K∗

15 if C > 0 then
16 Sort CK∗ in ascending order to get the ordered list (ε1, . . . , εC)
17 for j = 1,2, . . . ,C do /partition space
18 εLj ←max(LK∗ ,max{εUK∗(i) : εUK∗(i)< εj , i∈ {2, . . . , c0}}) /get traceback lower bound
19 Initialize: εnew← εj , Âj←∅, T ← ∅
20 while εLj < εnew do /find new sample-path Na-LWEP’s
21 X0← arg min{ḠK∗,n(X) : X∈ T ∪ Â0

n, ḠKcon,n(X)≤ εnew}
22 [Xw

n ,T ′,N (Xw
n)] = SPLINE(K∗,X0, n, b, εnew) /search: solve ε-constrained

23 Âj←Âj ∪{Xw
n} and T ←T ∪T ′

24 εnew← ḠKcon,n(Xw
n)− fKcon(Xw

n , βε) /traceback: set new ε to disqualify

25 ÂLWEP =∪Cj=1Âj /collect new sample-path Na-LWEP’s
26 Ânew = RemoveDominated(Ḡn(Âw

n ∪ ÂLWEP ∪{x0})) /remove dominated, do no harm

points on a high standard error objective. To determine the set of ε-constraint values for

each objective, first, in Step 2, PE creates an initial set of known sample-path Na-LWEP’s,

Âw
n , from the points in Â0

n using the RemoveNonLWEP function (discussed in §6.2). If there

are no such points in Â0
n in Step 3, the search budget value b must have been binding in the

Min algorithm. Then PE sets ε values based on Â0
n. Since b is non-binding in the limit, for

large enough RA iteration number ν, all ε values will be set based on known sample-path Na-
LWEP’s. In Steps 5 through 12, PE sorts the initial points and partitions the objective space

by placing ε values in each part of the objective space where the standard error intervals

of the initial points do not overlap. The standard error intervals in Steps 5 through 12 are

defined using the function f̂ from §3.2. For all known sample-path Na-LWEP’s, denoted Xw
n ,

the PE algorithm does not place any new ε values in the interval Ḡkcon,n(Xw
n )± f̂kcon(Xw

n , βε),
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Figure 2 The figure shows part of a “traceback” from PE Steps 20–24, assuming objective 1 is constrained and that in

PE Step 4, Âw
n has exactly two sample-path local minimizers: one on each objective, represented by outlined

solid black dots. The traceback places the first ε-constraint at εnew,1, thus retrieving the outlined black star

point. Then, it places εnew,2 and retrieves the black star point, and so on, until a value of εnew < ε
L
1 .

where βε ∈ (0,∞) is a parameter. The βε parameter controls how large the standard error

intervals are; a smaller βε value results in wider intervals. Once both sets of ε-constraint

values have been determined, Steps 13 and 14 select the objective with the least ε’s to

minimize, where ties are broken randomly.

If the objective chosen to minimize results in one or more ε-constraint problems, Steps 15

through 25 solve these problems. First, PE partitions the objective space based on the ε

values. Then, each ε-constraint problem is solved using the SPLINE algorithm (see §5.3).

Within a partition, once a new sample-path Na-LWEP is found, PE performs what we call

a traceback in Step 24 by attempting to place a new ε value that is both within the current

partition and that sets as infeasible the newly-found sample-path Na-LWEP, as shown in

Figure 2. If the new ε value is outside the partition, the search ends; otherwise, the new

ε-constraint problem is solved, and this process repeats until no more ε values can be placed

in the current partition. The new sample-path Na-LWEP’s found across all partitions are

collected into a set of sample-path Na-LWEP’s for Problem M 2,n and returned by PE in

Step 26. We remark here that as the RA iteration number ν →∞ in R-PERLE, under

appropriate regularity conditions, the PE algorithm solves as many ε-constraint problems as

there are points in the Na-local efficient set to which the algorithm converges (see §8).

5.2. The Min Algorithm for Many Objectives

The Min algorithm for d≥ 2 objectives, called in PE Step 1 and listed in Algorithm 3, is a

relatively simple algorithm that takes in any set of feasible points, brings up the sample sizes,

updates the sample-path Na-local minimizers on each objective, and removes any points
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Algorithm 3: Â∗n = Min(Âold, n, b)

Input: a set of feasible points Âold ⊂X ; sample size, n; limit on SPLINE calls, b
Output: Â∗n, a candidate ALES with updated sample-path local minimizers at sample size n

1 for k= 1,2, . . . , d do
2 Xmin

k,old← arg min{Ḡk,n(X) : X∈ Âold}
3 [Xmin

k,n ,∼,N (Xmin
k,n )] = SPLINE(k,Xmin

k,old, n, b,∼) /search: sample-path Na-local minimizer

4 Mn←∪dk=1{Xmin
k,n } /points in Ḡn(Mn) may dominate other points in Ḡn(Mn)

5 Â∗n = RemoveDominated(Ḡn(Âold ∪Mn ∪{x0}))

whose images are sample-path dominated. The resulting set of sample-path non-dominated

points and sample-path Na-local minimizers are returned as the set Â∗n.

5.3. The SPLINE Algorithm for One Objective

The SPLINE algorithm (Wang et al. 2013) is the engine underlying all of our single-objective

searches, that is, solving the ε-constraint problems in PE Step 22 and finding sample-path

Na-local minimizers in Min Step 3. SPLINE (Algorithm 4) finds a sample-path Na-local
minimizer of objective k on a feasible set X̃ ⊆ X using sample size n. Our version of SPLINE

contains minor modifications that allow us to input an objective to minimize and additional

bound constraints on the search space, specified by G, that define X̃ . Our ability to pass

additional bound constraints to SPLINE enables us to restrict the search space when solving

ε-constrained problems in PE. We also output the search trajectory for later use.

The SPLINE algorithm consists of two primary steps: SPLI and NE, which are called

iteratively until a sample-path Na-local minimizer is found, or the search times out. The

SPLI algorithm conducts a pseudogradient-based line search with piecewise linear interpo-

lation. The NE algorithm performs neighborhood enumeration to either move to a better

Algorithm 4: [X∗,T ,N (X∗)] = SPLINE(k,X0, n, b,G)

Input: objective k; initial point X0 ∈ X̃ ⊆X ; sample size n; limit on search oracle calls, b; optional
bound constraint values G that define X̃ ⊆ X

Output: local solution X∗ on X̃ ⊆ X ; sample-path search set, T ; neighborhood points, N (X∗)
1 Initialize: search oracle calls spent so far b∗← 0, XNE←X0, and T ← {X0}
2 repeat
3 [b′,XSPLI, Ḡn(XSPLI)] = SPLI(k,XNE, n, b,G) /search: line search with interpolation
4 if Ḡk,n(XSPLI)> Ḡk,n(XNE) then XSPLI←XNE /SPLI cannot cause harm
5 [b′′,XNE, Ḡn(XNE),N (XNE)] = NE(k,XSPLI, n,G) /neighborhood enumeration
6 T ←T ∪{XSPLI,XNE} /update trajectory
7 b∗← b∗+ b′+ b′′ /update oracle calls expended
8 until Ḡk,n(XNE) = Ḡk,n(XSPLI) or b∗ > b /find a local solution or time out
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neighborhood point, or to certify a local minimum has been found. We refer the reader to

Wang et al. (2013) for detailed listings and further explanations of SPLI and NE.

6. The RLE Algorithm for Many Objectives

The RLE algorithm is the second algorithm in the PERLE solver. The collection of sample-

path Na-LWEP’s found by the PE algorithm is sent to RLE to certify that this collection of

points is indeed an ALES, or to create an ALES using this collection of points as an initial set.

Without RLE to certify an ALES, an algorithm like PE that relies only on collecting sample-

path Na-LWEP’s may “get stuck” by returning points that do not belong to the same, or to

any, sample-path Na-local weakly efficient set. For example, in Figure 1, the PE algorithm

may return S = {xmin
1,f ,x

∗
g,x

min
2,e }, which is a set of Na-LWEP’s containing a minimum on each

objective but that is not an Na-local weakly efficient set. The RLE algorithm is designed to

crawl out of the sample-path version of this scenario when the completeness function is small

enough. In what follows, we first define a key concept used in RLE called the sample-path

non-conforming neighborhood. Then, we discuss the RLE algorithm in detail.

6.1. The Sample-Path Non-Conforming Neighborhood

Suppose we have a set of points S ⊆X such that none of the estimated images of points in

S dominate the estimated images of other points in S. The non-conforming neighborhood of

S is the set of points in the deleted neighborhood of S that prevent it from being an ALES.

Definition 8. Let S ⊆X be a collection of feasible points such that no points in Ḡn(S)

dominate other points in Ḡn(S). Then given a completeness function δ : X →Rd such that

0d 5 δ(x) for all x ∈ X , define the sample-path non-conforming neighborhood (NCN) of S,
N nc
a (S), as all feasible points in the deleted neighborhood of S, x∈N ′a(S)∩X , such that

(a) ∃x̃∈ S such that x∈Na(x̃) and Ḡn(x)< Ḡn(x̃), or

(b) (i) @x̃ ∈ S such that Ḡn(x̃) 5 Ḡn(x), and (ii) @x̃ ∈ S such that (Ḡn(x) ≤ Ḡn(x̃) and

Ḡn(x̃)− δ(x̃)5 Ḡn(x) + δ(x)), and (iii) ∃x̃ ∈ S such that Ḡn(x)5 Ḡn(x̃), or @x̃ ∈ S
such that Ḡn(x̃)− δ(x̃)5 Ḡn(x) + δ(x) or Ḡn(x)− δ(x)5 Ḡn(x̃) + δ(x̃).

First, Definition 8(a) adds x ∈ N ′a(S) ∩ X to the NCN if it prevents a point in S from

being a sample-path Na-LWEP. Definition 8(b) also adds a feasible deleted-neighborhood

point to the NCN if it violates the conditions of Definition 7(b), that is, the point (i) is not

weakly dominated by any points in S, and (ii) does not dominate any points in S by less

than a certain amount, and (iii) weakly dominates a point in S, or would not either weakly

dominate or be weakly dominated by a point in S if both were moved by a certain amount.
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Ḡ1,n

Ḡ
2,
n Ḡn(x̃)

Ḡn(x̃)+δ(x̃)

Ḡn(x̃)−δ(x̃)

δ2(x̃)

δ1(x̃)

Figure 3 Let S = {x̃} with two objectives, and let x∈N ′a(S)∩X be in the deleted neighborhood of S. Def. 8(a) adds
x to the NCN if x ∈Na(x̃) and Ḡn(x) is in the light gray area. If x does not satisfy Def. 8(a), Def. 8(b)

adds x to the NCN if its δ box, defined by corners Ḡn(x)± δ(x), is contained in the dark gray area.

Given a single point S = {x̃} ⊆ X , Figure 3 shows regions of the objective space that

correspond to a feasible point in the deleted neighborhood of S, x ∈ N ′a(S) ∩ X , being
declared a member of the NCN. Definition 8(a) implies x is in the NCN if it is anNa-neighbor
of x̃ and Ḡn(x) is in the light gray region of Figure 3. If x does not meet the requirements of

Definition 8(a), Definition 8(b) implies that x is in the NCN if its entire “δ box,” defined by

the corners Ḡn(x)±δ(x), is completely contained in the dark gray shaded region of Figure 3.

Thus there is no overlap between the δ boxes of x and x̃ on any objective. Henceforth, we

use δ̂(x) = f̂(x, βδ) for all x∈X (see §3.2) as the NCN completeness function.

6.2. RLE Algorithm Listing

We now discuss RLE (Algorithm 5) in detail. To guarantee an ALES, in Step 1, RLE first

removes any points in S whose estimated objective vectors are dominated by the estimated

objective vectors of other points in S. Then, in Step 2, RLE calculates the NCN of the

remaining points using the function GetNCN. If the NCN is empty in Step 2, then RLE

certifies an ALES and the algorithm terminates; otherwise, RLE enters a search phase.

The “outer” RLE search phase, which begins in Step 4, checks to see if any members of

the NCN are also sample-path Na-LWEP’s using RemoveNonLWEP. The RemoveNonLWEP

function takes an input set of feasible points and outputs three quantities: (a) the number

of simulation replications expended, (b) the set of sample-path Na-LWEP’s in the input

set, and (c) a set of points in the neighborhood of the input set whose images sample-path

dominate the images of the members of the input set. Thus when RemoveNonLWEP is passed

a non-empty NCN, it enumerates the neighborhood of the NCN; these points are neighbors

of neighbors of the original set. If the NCN contains sample-path Na-LWEP’s in Step 5, RLE

adds them to S in Step 6. If no members of the NCN are sample-path Na-LWEP’s in Step 7,
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Algorithm 5: ÂALES = RLE(S, n, b, βδ)
Input: set of points S ⊂X ; limit on search oracle calls, b; ALES completeness parameter βδ
Output: ÂALES, which is an ALES for the sample-path problem with sample size n

1 S = RemoveDominated(Ḡn(S ∪{x0}))
2 N nc =GetNCN(S, βδ) /get non-conforming neighborhood
3 Initialize: outer search oracle calls spent so far b∗← 0
4 while b∗ ≤ b and N nc 6= ∅ do /search: traverse sample-path Na-LWEP chains
5 [b′,Nw,N ∗2 ] = RemoveNonLWEP(N nc)
6 S ←S ∪Nw /add neighborhood sample-path Na-LWEP’s to S
7 if Nw = ∅ then /the neighbors are dominated by their neighbors: N ∗2 6= ∅
8 Initialize: X new←N ∗2 , Xw←∅, and inner search oracle calls spent so far b∗∗← 0
9 while b∗∗ ≤ b and Xw = ∅ do /search: traverse dominating chains

10 [b′′′,Xw,N ∗2 ] =RemoveNonLWEP(X new)
11 X new←N ∗2 and b∗∗← b∗∗+ b′′′

12 S ←S ∪Xw

13 if Xw = ∅ then S ←S ∪X new /keep progress if search times out

14 S = RemoveDominated(Ḡn(S ∪{x0}))
15 [b′′,N nc] =GetNCN(S, βδ) /get non-conforming neighborhood
16 b∗← b∗+ b′+ b′′

17 return ÂALES←S

there must exist neighbors of the NCN that dominate points in the NCN, denoted as N ∗2 in

Steps 5 and 8. If this is the case, RLE enters an “inner” search phase.

The “inner” RLE search phase, which begins in Step 9, allows the algorithm to find new

sample-path Na-LWEP’s by traversing points whose estimated images are sample-path dom-

inated. Once a sample-path Na-LWEP is found or the inner search times out, the new points

are added to S in Steps 12 and 13. After removing points whose images are sample-path

dominated by the images of other points in S, in Step 15, RLE checks the new set S to see

if it is an ALES. If not, this process repeats until a complete ALES is found, or a total outer

search budget has been exhausted. Since the search budget sequence is non-binding in the

limit, for large enough RA iteration number ν, RLE guarantees an ALES.

7. Other Algorithms: R-PE and R-MinRLE

To assess and understand the performance of R-PERLE, we find it helpful to define and

analyze two other RA algorithms: R-PE and R-MinRLE, which we discuss in this section.

We discuss R-PE for two objectives first, followed by R-MinRLE for many objectives.

First, we define the R-PE algorithm for two objectives as identical to R-PERLE (Algo-

rithm 1), except without the call to RLE in Step 4. To show that the PE algorithm delivers

“good points” to the RLE algorithm, in §8, we prove convergence of the R-PE algorithm
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Algorithm 6: The R-MinRLE Algorithm for d≥ 2

Input: initial point x0 ∈X ; sequence of sample sizes to expend at each visited point, {mν};
sequence of limits on oracle calls during search, {bν}; ALES completeness parameter, βδ

1 Initialize: Â0 = {x0} and set x0 as a global variable
2 for ν = 1,2, . . . with CRN do
3 Âmin = Min(Âν−1,mν , bν) /update the sample-path Na-local minimizers
4 Âν = RLE(Âmin,mν , bν , βδ) /guarantee the returned set is an ALES

under a set of fairly restrictive assumptions; these assumptions are violated in the example

in Figure 1. R-PE is also useful for numerically analyzing the βε parameter in §9.3.

The R-MinRLE algorithm, listed in Algorithm 6, is arguably the most general algorithm

we propose, since it is defined for d≥ 2 objectives. R-MinRLE is like R-PERLE except that

instead of obtaining a set of sample-path Na-LWEP’s from PE on each RA iteration, R-

MinRLE uses the Min algorithm (Algorithm 3) to update the sample-pathNa-local minimizer

on each objective before invoking RLE. We define the sample-path solver MinRLE as calling

Min followed by RLE within an RA iteration; the MinRLE algorithm locates an ALES for

sample-path Problem Md,mν for d≥ 2 and each ν = 1,2, . . ..

Loosely speaking, for two objectives, notice that R-MinRLE is likely to exhibit “outside-in”

convergence behavior. That is, because R-MinRLE only guarantees locating the sample-path

Na-local minimizers on each RA iteration, if the completeness parameter βδ is “small” so

that RLE crawls less, MinRLE locates the sample-path Na-local minimizers and perhaps

a few points nearby to complete an ALES. All externalities being equal, this ALES is less

likely to contain points that map to the “center” of a sample-path Na-local Pareto set than a

corresponding ALES located by PERLE. Therefore in our numerical experiments, compar-

isons with R-MinRLE demonstrate the usefulness of using the PE algorithm as a precursor

to RLE within an RA iteration, as opposed to the naïve Min algorithm.

8. Asymptotic Behavior

We now study the asymptotic behavior of our RA algorithms and show that, under appropri-

ate regularity conditions, R-PERLE, R-PE, and R-MinRLE converge to an Na-local efficient

set w.p.1. In what follows, first, we discuss the assumptions required for our results. Then,

we prove the convergence of RA algorithms that rely on RLE. The proof is general in the

sense that, under our regularity conditions, any RA algorithm with a sample-path solver con-

sisting of an accelerator that returns a candidate ALES in finite time and invokes RLE last
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using the completeness function δ̂ = f̂(x, βδ) with βδ ∈ (0,∞] will converge. We also prove

the convergence of R-PE under fairly restrictive assumptions. Finally, in §8.4, we provide

sampling efficiency results. Throughout this section, we assume the search budget sequence

{bν , ν = 1,2, . . .} is non-binding w.p.1 for all ν large enough, under our regularity conditions.

Thus we ignore issues related to binding budget sequences for small ν.

8.1. Preliminaries and Assumptions

We require several regularity conditions on both the true, unknown objective functions and

the sample-path objective functions. We require Assumptions 1–3 in all of our results.

Assumption 1. (Wang et al. 2013, p. 12) For each x∈X and k ∈ {1, . . . , d}, there exists

αk > 0, dependent on x, such that Sk(x, αk) := {x′ ∈X : gk(x
′)≤ gk(x) +αk} is finite.

Assumption 2. (Wang et al. 2013, p. 12) For each k ∈ {1, . . . , d}, we assume the fol-

lowing. Let Sk(x, αk) be as in Assumption 1, and define Ŝk,ν(x) := {x′ ∈X : Ḡk,mν (x
′) ≤

Ḡk,mν (x)} for all ν = 1,2, . . .. Given x∈X , there exists a sequence {pν}∞ν=1 such that P{x̃∈
Ŝk,ν(x)} ≤ pν and

∑∞
ν=1 pν <∞ for all x̃∈X \Sk(x, αk).

Assumption 3. All variances are finite, that is, maxk∈{1,...,d} σ
2
k(x)<∞ for all x∈X .

First, Assumption 1 implies that at each feasible point x ∈ X and for every objective k,

there exists a constant such that the level set created by adding the constant to gk(x) is finite.

Since this property holds for every objective k, then under Assumption 1, the union of the

level sets over the objectives k is also finite. That is, for each x∈X , define α := (α1, . . . , αd),

where α also depends on x. Define the set S(x,α) :=∪dk=1Sk(x, αk) as the set of all feasible

points that map to objective values that are not strictly dominated by the point g(x) +α;

notice that g(Sc(x,α)) = {g(x) +α}+ {y ∈Rd : 0d < y} is the set of points that g(x) +α

strictly dominates for all x∈X . Then under Assumption 1, S(x,α) is finite for all x∈X .
Assumption 1 implies the nonempty global weakly efficient set exists and all Na-local

weakly efficient sets are finite. We present this result in Lemma 1 without proof; we first define

the following notation. Given a neighborhood size a∈ (0,∞], let Wa and La be the collection

of all possible Na-local weakly efficient sets and Na-local efficient sets for Problem Md,

respectively, where La ⊆Wa. Since the global weakly efficient set is also an Na-local weakly
efficient set for a≥ 1, notice that |Wa| ≥ 1 if the global weakly efficient set exists.

Lemma 1. Under Assumption 1, given a≥ 1, the following hold:
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(a) The global weakly efficient set, Ew ⊆X , exists and is nonempty.

(b) All Na-local weakly efficient sets are finite; that is, 1≤ |Wa|<∞ for all Wa ∈Wa.

Now, let us turn our attention to Assumption 2, which is a condition defined by Wang

et al. (2013) ensuring that the probability of incorrectly estimating a level set decays suffi-

ciently fast. Wang et al. (2013) provide a detailed discussion of the conditions under which

Assumption 2 holds. For completeness, we include the conditions below as Lemma 2; recall

that the variance σ2
k(x) is V(Gk(x, ξ)) for each x ∈ X and objective k ∈ {1, . . . , d}. Essen-

tially, Lemma 2 implies that Assumption 2 holds under a large-deviations regime or under

the conditions of the Central Limit Theorem, whenever the sample size sequence increases

at a sufficiently fast rate. For compactness, we refer the reader to Wang et al. (2013) for

additional explanation of Assumption 2 and Lemma 2.

Lemma 2. (see Wang et al. 2013, p. 13–14) Assumption 2 holds if one of the following

two sets of conditions holds:

C1. (a) for all k ∈ {1, . . . , d}, the sequence of random variables {Ḡk,mν (x)− gk(x)} is gov-

erned by a large-deviation principle with rate function Ik,x(s) (Dembo and Zeitouni

1998); (b) each Ik,x(s) is such that for any ε > 0, infx∈X , k∈{1,...,d}min(Ik,x(ε), Ik,x(−ε)) =

η > 0; and (c) the sequence of sample sizes {mν} increases faster than logarithmically,

that is, lim supν→∞(mν)
−1(log ν)1+∆1 = 0 for some ∆1 > 0.

C2. (a) for all k ∈ {1, . . . , d}, a central limit theorem holds on the sequence of random vari-

ables {Ḡk,mν (x)} for each x∈X , that is, √mν(σk(x))−1(Ḡk,mν (x)− gk(x))⇒Z, where

σk(x) > 0 satisfies supx∈X σ
2
k(x) <∞, and (b) as ν →∞, supy |Fk,x,mν (y) − Φ(y)| =

O(1/
√
mν) for all x∈X , where Fk,x,mν (·) denotes the cumulative distribution function of

the random variable
√
mν(σk(x))−1(Ḡk,mν (x)− gk(x)), and (c) the sequences of sample

sizes {mν} satisfies lim supν→∞(mν)
−1ν2+∆2 = 0 for some ∆2 > 0.

The primary implication of Assumptions 1 and 2 is the convergence of the estimated level

sets into the true level sets, as described in the following Lemma 3. Before we present the

lemma, recall that S(x,α) =∪dk=1Sk(x, αk) is finite, and define Ŝν(x) :=∪dk=1Ŝk,ν(x) as the

set of all decision points estimated as being at least as good as x on at least one objective.

A proof sketch for Lemma 3 appears in the Online Appendix.

Lemma 3. Under Assumptions 1 and 2,
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(a) (see Wang et al. 2013, p. 15) for each k ∈ {1, . . . , d} and any x ∈ X , the sets Ŝk,ν(x)

converge almost surely into the set Sk(x, αk), that is, P{Ŝk,ν(x) 6⊆ Sk(x, αk) i.o.}= 0;

(b) the sets Ŝν(x) converge almost surely into the sets S(x,α) for any x ∈ X , that is,

P{Ŝν(x) 6⊆ S(x,α) i.o.}= 0.

Finally, we need our last required assumption, Assumption 3, because our ε-placement

and ALES completeness parameters rely on the estimated standard errors of the objective

function values. Notice that Assumption 3 is implied under the conditions of Lemma 2.

In addition to Assumptions 1–3 discussed above, some of our results require additional

structure on the true, unknown objective functions in ProblemMd. We present these assump-

tions as Assumptions 4–6, and then we discuss their implications.

Assumption 4. For all x,x′ ∈X , if g(x) = g(x′), then x = x′.

Assumption 5. There exists κ > 0 such that mink∈{1,...,d} inf{|gk(x) − gk(x
′)| : x,x′ ∈

X ,x 6= x′}>κ.

Assumption 6. Given a ∈ [1,∞), all Na-LWEP’s are global efficient points and there

exists exactly one Na-local efficient set that solves Problem Md which is also the global effi-

cient set, E.

Assumption 4 ensures that two or more decision points in the feasible space do not map to

the same point in the objective space. Under this assumption, the following Lemma 4 holds

regarding the existence of an Na-local efficient set within each Na-local weakly efficient set.

We present the result without proof; intuitively, it follows because Assumption 4 prevents the

points in the Na-local weakly efficient set from having identical objective vector values. Thus

the set must contain Na-LEP’s, from which the Na-local efficient set can be constructed.

Lemma 4. Under Assumptions 1 and 4, given a∈ (0,∞], all Na-local weakly efficient sets

contain an Na-local efficient set; that is, for each Wa ∈Wa, ∃L∗a ∈La such that Wa ⊇L∗a.

Finally, we remark on Assumptions 5 and 6. Assumption 5, which subsumes Assumption 4,

ensures that each feasible point is distinguishable on each objective. Under this assumption,

every Na-LWEP is an Na-LEP, and every Na-local weakly efficient set is an Na-local efficient

set. Assumption 6 is required for the convergence of R-PE, and stipulates that every Na-
LWEP is a global efficient point, and there exists exactly one Na-local efficient set, which is

also the global efficient set. Under this assumption, the R-PE algorithm cannot “get stuck”

by returning parts of different Na-local efficient sets.
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8.2. Convergence of R-PERLE and R-MinRLE

We now consider the convergence of the algorithms R-PERLE and R-MinRLE under the

regularity conditions discussed in the previous section. These algorithms invoke RLE to

guarantee that the set of points returned at the end of each RA iteration is an ALES.

Theorem 1 and its proof are presented for d≥ 2 since R-MinRLE converges for two or more

objectives; the proof appears in the Online Appendix. Given appropriate parameter values,

the proof of convergence of Theorem 1 holds for any RA algorithm with a sample-path solver

that ensures the accelerator returns a set in finite time and invokes RLE last.

Theorem 1. Let Assumptions 1–3 hold. For any neighborhood size a ∈ [1,∞), initial

point x0 ∈ X , ε-placement rule βε ∈ (0,∞), and completeness parameter βδ ∈ (0,∞], R-

PERLE (d = 2) and R-MinRLE (d ≥ 2) generate a sequence of estimated solutions {Âν}
such that

(a) {Âν} converges into an Na-local weakly efficient set almost surely, that is, ∃Wa ∈Wa

such that P{Âν 6⊆Wa i.o.}= 0;

(b) under Assumption 4, {Âν} contains an Na-local efficient set infinitely often almost

surely, that is, ∃La ∈La such that P{La 6⊆ Âν i.o.}= 0;

(c) under Assumption 5, {Âν} converges to an Na-local efficient set almost surely, that is,

∃La ∈La such that P{Âν 6=La i.o.}= 0.

(d) under Assumptions 5 and 6, {Âν} converges to the global efficient set almost surely,

that is, P{Âν 6= E i.o.}= 0.

Theorem 1 presents a series of convergence results that require increasingly stringent

assumptions on ProblemMd. At a minimum, under our required Assumptions 1–3, R-PERLE

and R-MinRLE converge into an Na-local weakly efficient set almost surely.

8.3. Convergence of R-PE

We now consider the convergence of R-PE, which does not rely on RLE to certify that each

RA iteration returns an ALES. To show the convergence of R-PE in Theorem 2, first, we

notice that for each objective k ∈ {1,2}, the sequence of sample-path Na-local minimizers

produced by PE in Step 1 across RA iterations, defined as {Mν , ν = 1,2, . . .} whereMν =

{Xmin
1,mν ,X

min
2,mν} for all ν = 1,2, . . ., converges into the set of all true Na-local minimizers of

objective gk over the feasible set X , M∗
a ⊆ X , almost surely as ν →∞. Since this result,

presented in Lemma 5, follows almost directly from Wang et al. (2013) under Assumptions 1
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and 2, we do not provide a proof. The proof of convergence of R-PE, which requires our most

restrictive assumptions on the underlying Problem M2, appears in the Online Appendix.

Lemma 5. Under Assumptions 1 and 2, for d= 2, any neighborhood size a∈ [1,∞), initial

point x0 ∈ X , and ε-placement rule, across RA iterations, PE Step 1 generates a sequence

of sample-path Na-local minimizers {Mν} that converges into M∗
a almost surely, that is,

P{Mν 6⊆M∗
a i.o.}= 0.

Theorem 2. Under Assumptions 1–6, for d= 2, any neighborhood size a∈ [1,∞), initial

point x0 ∈ X , and ε-placement rule specified by βε ∈ (0,∞), R-PE generates a sequence of

estimated solutions {Âν} that converges almost surely to the global efficient set E, in the

sense that P{Âν 6= E i.o.}= 0.

These results imply that R-PE provides “good” starting points to RLE. If βε = βδ and

Assumptions 1–6 hold, RLE should be mostly inactive in R-PERLE.

8.4. Sampling Efficiency

Finally, we provide a result on the sampling efficiency of our algorithms. This result provides

insight into how to set the algorithm parameter values in §9.1 to achieve exponential con-

vergence. In Theorem 3, let Xw denote the set of all N1-LWEP’s for Problem Md, and let

X̄w
ν denote the set of all sample-path N1-LWEP’s on the νth RA iteration. Further, let Âν

denote the solution returned on the νth RA iteration of R-PERLE (d= 2), R-PE (d= 2), or

R-MinRLE (d≥ 2) for any x0 ∈X , ε-placement rule βε ∈ (0,∞), and completeness parameter

βδ ∈ (0,∞]. A proof of Theorem 3 appears in the Online Appendix.

Theorem 3. Let the neighborhood size a= 1 and suppose the feasible set X ⊂Zq is finite
with maxk∈{1,...,d} supx∈X σ

2
k(x) <∞. For all objectives k ∈ {1, . . . , d}, let the sequence of

random variables {Ḡk,mν (x) − gk(x)} be governed by a large-deviation principle with rate

function Ik,x(s), as stipulated in Lemma 2. Then the following hold:

(a) P{X̄w
ν 6⊆ Xw}=O(e−γmν ) for some γ > 0.

(b) If the sequence of sample sizes increases to infinity at least linearly in R-PERLE, R-PE,

and R-MinRLE, that is, if lim supν→∞m
−1
ν ν <∞, then

(i) P{Âν 6⊆ Xw}=O(e−γmν ) for some γ > 0,

(ii) under Assumption 5 and 6, P{Âν 6= E}=O(e−γmν ) for some γ > 0.



30 Cooper, Hunter, and Nagaraj: Bi-objective SO on Integer Lattices using the ε-Constraint Method in an RA Framework

9. Numerical Experiments

We conduct numerical experiments to compare our main algorithm, R-PERLE, to our bench-

mark algorithm, R-MinRLE, and to the current state-of-the-art, MO-COMPASS. First, in

§9.1, we discuss algorithm implementation and parameters. Then, in §9.2, we compare the

performance of these algorithms on three test problems with known solutions. In §9.3, we

explore the performance of R-PERLE on the same three test problems across a variety of

β = (βε, βδ) values. To demonstrate our algorithms on a real-world SO problem, we also cre-

ate a new bi-objective bus scheduling problem based on the single-objective version in Wang

et al. (2013). We run R-PERLE on the bi-objective 9-bus problem, for which the N1-local

weakly efficient sets are unknown. A description of the bi-objective bus scheduling problem

and all corresponding numerical results appear in the Online Appendix.

Finally, while the overhead required to run a MOSO algorithm is often considered negligible

relative to the computational time required to obtain one simulation replication, there may

be scenarios in which the relative computational overhead of each algorithm becomes a con-

sideration. The Online Appendix contains information on the computational time required

to run our algorithms and MO-COMPASS on our test problems.

9.1. R-PERLE and R-MinRLE Implementation and Parameters

While our definitions and algorithms allow a flexible neighborhood size a, Wang et al. (2013)

note the tension between the faster convergence enabled by a= 1 and the certification of the

local solution as optimal in a larger neighborhood. By default, we set a= 1.

To improve algorithmic efficiency, recall from §4 that we store (x, Ḡn(x), ŝ.e.(Ḡn(x)))

at all feasible points visited within an RA iteration; we clear this list between RA itera-

tions. We remark here that we could also modify the algorithms GetNCN and the version

of RemoveNonLWEP implemented in RLE to return only a subset of the non-conforming

points encountered in the neighborhood and the first sample-path Na-LWEP encountered,

respectively, rather than all such points. (Note that we require a full RemoveNonLWEP for

use in PE Step 2.) Further, we could update the initial point, x0, to a sample-path Na-LWEP

a finite number of times before fixing it at a particular value for the remainder of the algo-

rithm. These modifications would not affect the convergence properties of the algorithm and

may improve algorithmic efficiency, especially in higher dimensions. In the current numerical

experiments, we implement the algorithms as written in the pseudocode.
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In the numerics that follow, we set the monotone-increasing sample size sequence as mν =

d2×1.1νe for all ν ≥ 1. This sequence satisfies the requirements of Lemma 2 and Theorem 3

in §8. To ensure every search terminates in finite time, but that for large enough ν, the

sample size limit bν will not be reached, we set the sequence bν = d8× 1.2νe for all ν ≥ 1.

Each search we conduct inside PE, Min, and RLE gets a fresh limiting sample size.

We control the placement of the ε values in PE and the completeness of the ALES returned

by RLE using the parameters βε and βδ. There is considerable flexibility in setting these

parameters; by default, we use βε = βδ = 1/2 unless otherwise specified, as in §9.3.

9.2. Algorithm Performance on Test Problems with Known Solutions

We compare the performances of R-PERLE, R-MinRLE, and MO-COMPASS on three

increasingly-complicated test problems. These test problems were chosen for their known fea-

tures and diverse properties. In each independent run of an algorithm, we use an initial point

x0 that is generated uniformly from the feasible set X , which is finite in our test problems.

Within an algorithm run, we use CRN across points visited. We configure MO-COMPASS,

including its Simulation Allocation Rule, as close as possible to Li et al. (2015a, p. 10). In

the following plots, the algorithm performance at each value of the total simulation budget t

is dependent on its previous performance.

9.2.1. Test Problem A Our first test problem is a modified version of a problem that

appears in Kim and Ryu (2011). We define Problem TA as

Problem TA: minimizex∈X




g1(x) =E[(x1/10− 2ξ1)

2 + (x2/10− ξ2)
2]

g2(x) =E[x2
1/100 + (x2/10− 2ξ3)

2]

where X = X̃A1×X̃A2 and X̃A1 = X̃A2 = {0,1,2, . . . ,50}, |X |= 2601, and ξi are independent

chi-squared random variables with one degree of freedom so that E [ξi] = 1 and V(ξi) = 2

for all i ∈ {1,2,3}. Thus the random objective values returned by the simulation oracle are

independent for each x ∈ X . Problem TA has one N1-local efficient set which equals the

global efficient set, but it also has N1-LEP’s that do not belong to this set. Problem TA

satisfies only Assumptions 1–3, although Assumption 4 holds for points that are members

of the global efficient set. A picture of Problem TA appears in Figure 4.

We measure the solution quality returned by each algorithm using sample quantiles of

the coverage error. The coverage error is defined by Hunter et al. (2019) as the Hausdorff



32 Cooper, Hunter, and Nagaraj: Bi-objective SO on Integer Lattices using the ε-Constraint Method in an RA Framework

0 10 20 30 40 50
x1

0

10

20

30

40

50
x

2

10 18 26 35
g1

8

19

30

42

g 2
Figure 4 Problem TA: The black dots represent points in the

global efficient set (left) and their images (right). The

global efficient set is the only N1-local efficient set.
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Figure 5 Problem TA: Sample quantiles (.25, .5,

.75) of the coverage error across 1,000

independent runs per algorithm.

distance between the image of the set returned by the algorithm and the image of the true

efficient set as a function of t, dH(g(Â(t)),g(E)), where Â(t) denotes the set returned by

an algorithm after expending a total of t simulation replications. Figure 5 shows the sample

quantiles of the coverage error for 1,000 independent runs each of R-PERLE, R-MinRLE,

and MO-COMPASS on Problem TA.

Figure 5 shows that R-PERLE and R-MinRLE out-perform MO-COMPASS on Prob-

lem TA. The performances of R-PERLE and R-MinRLE are similar, with R-PERLE per-

forming slightly better for lower simulation budgets t.

9.2.2. Test Problem B Our second test problem is a modified version of a test problem

that appears in Ryu and Kim (2014). We define Problem TB as

Problem TB: minimizex∈X




g1(x) =E [ξ1h1(x1)]

g2(x) =E [ξ1ξ2f(x2)h2(h1(x1), f(x2))]

where X = X̃B1×X̃B2 and X̃B1 = X̃B2 = {0,1, . . . ,100}, |X |= 10,201, h1(x1) = 4x1/100, and

h2(h1, f) and f(x2) are defined as

h2(h1, f) =





1− (h1/f)α if h1 ≤ f,
0 otherwise;

f(x2) =





4− 3 exp
{
−
(
x2−20

2

)2
}
if 0≤ x2 ≤ 40,

4− 2 exp
{
−
(
x2−70

20

)2
}
if 40<x2 ≤ 100;

and α= 0.25+3.75(f(x2)−1). As in the previous test problem, ξ1 and ξ2 are independent chi-

squared random variables with one degree of freedom. Unlike in Problem TA, Problem TB has

dependence between the random objective function values returned by the simulation oracle.

Problem TB has two N1-local weakly efficient sets, one of which is the global weakly efficient



Cooper, Hunter, and Nagaraj: Bi-objective SO on Integer Lattices using the ε-Constraint Method in an RA Framework 33

0 20 40 60 80 100
x1

0

20

40

60

80

100
x

2

0 1 2 4
g1

0

1

2

4

g 2
Figure 6 Problem TB: The black dots and gray stars represent

points in the global efficient set and the N1-local effi-

cient set, respectively (left) and their images (right).
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.75) of the local coverage error across

1,000 independent runs per algorithm.

set. Since Problem TB has global weakly efficient points that are not also global efficient

points, it satisfies only Assumptions 1–4. A picture of Problem TB appears in Figure 6.

By Theorem 1 Parts (a) and (b), our algorithms converge into an N1-local weakly effi-

cient set almost surely, and contain an N1-local efficient set almost surely. Nevertheless,

for this problem, we use the local coverage error as our solution quality metric (Hunter

et al. 2019). In our context, the local coverage error is the Hausdorff distance from the set

g(Â(t)) to the nearest N1-local Pareto set as a function of the total simulation work done,

minL1∈L1 dH(g(Â(t)),g(L1)). This metric penalizes all algorithms for returning the points

that are global weakly efficient set members but not global efficient set members, which

may not be distinguishable with finite sample size. Figure 7 shows the sample quantiles

of the local coverage error for 1,000 independent runs each of R-PERLE, R-MinRLE, and

MO-COMPASS on Problem TB.

Figure 7 shows that R-PERLE out-performs both R-MinRLE and MO-COMPASS on

Problem TB. R-MinRLE eventually out-performs MO-COMPASS, but initially suffers from

high variance in its performance. We believe this behavior occurs because R-MinRLE crawls

from the “outside in,” and the sample path N1-local minimizers on each objective may be

members of the global weakly efficient set and not the global efficient set. Also, R-MinRLE

may not retrieve the “middle” of the N1-local Pareto set until the sample sizes become large

enough that the completeness function values are small enough for RLE to crawl there. Thus

R-PERLE’s ability to retrieve the middle of the N1-local Pareto set is likely a crucial aspect

of its speedy convergence in Problem TB.
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9.2.3. Test Problem C Our third test problem, Problem TC , is also a modified version

of a test problem that appears in Ryu and Kim (2014). We define Problem TC as

Problem TC : minimizex∈X




g1(x) =E

[∑2
i=1−10ξiexp

{
−0.2

√
x2
i +x2

i+1

}]

g2(x) =E
[∑3

i=1 ξi(|xi|0.8 + 5 sin3(xi))
]

where X = X̃C1 × X̃C2 × X̃C3, X̃Ci = {−5,−4.5,−4.0,−3.5, . . . ,5} for all i ∈ {1,2,3}, |X |=
9,261, and ξ1, ξ2, and ξ3 are independent chi-squared random variables with one degree of

freedom so that E [ξi] = 1 and V(ξi) = 2 for all i ∈ {1,2,3}. We map Problem TC to an

integer lattice so that the N1-neighborhood corresponds to points within distance 0.5 in the

original feasible space. Like Problem TB, Problem TC has dependence between the random

objective function values returned by the simulation oracle. Problem TC has multiple feasible

points that map to the same objective vector value. Therefore Problem TC only satisfies

Assumptions 1–3. Problem TC appears in Figure 8.

By Theorem 1 Part (a), our algorithm returns a solution that converges into an N1-

local weakly efficient set w.p.1., with no guarantees on completeness. Nevertheless, we

use the local weakly coverage error as our solution quality metric, which we define as

minW1∈W1 dH(g(Â(t)),g(W1)). Since all N1-local efficient sets are also N1-local weakly effi-

cient sets, this metric is less stringent than local coverage error. Algorithm performances

based on the local weakly coverage error, calculated across a collection of 516 unique N1-

local weakly efficient sets, appear in Figure 9. Our method for locating the N1-local weakly

efficient sets for Problem TC appears in the Online Appendix.
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Figure 8 Problem TC : Black circles and gray stars represent

points in the global weakly efficient set and the N1-

local weakly efficient set members, respectively (left)

and their images (right).
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Figure 9 shows that both R-PERLE and R-MinRLE out-perform MO-COMPASS on Prob-

lem TC . In many of the N1-local weakly efficient sets, the N1-local weakly efficient set mem-

bers are not neighbors. Thus the N1-local weakly efficient set members may be far away

from each other in the feasible space, and often are isolated, as seen in Figure 8. We believe

the relative efficiency of R-PERLE and R-MinRLE occurs because RLE crawls to find a

sample-path N1-LWEP that completes the sample-path N1-local weakly efficient set, even if

the required sample-path N1-LWEP is far away in the feasible space. Since MO-COMPASS

operates by updating a region of the feasible space called the Most Promising Area, we sus-

pect that the isolated, scattered nature of the N1-local weakly efficient set members reduces

the likelihood that all set members are contained within the Most Promising Area.

9.3. R-PERLE Performance Across a Range of β Values

We explore R-PERLE’s performance on our test problems across a variety of β = (βε, βδ)

values. Recall that for PE, smaller βε values result in solving fewer sample-path ε-constraint

problems, and larger βε values correspond to solving more sample-path ε-constraint problems.

For the RLE algorithm, smaller βδ implies less crawling and a less-complete ALES, and larger

βδ corresponds to more crawling and a more-complete ALES. Across 1,000 independent runs

of R-PE or R-PERLE on Problems TA, TB, and TC , Figures 10, 11, and 12 show the sample

quantiles of the respective coverage errors at the total simulation budget of t = 0.4× 106

(corresponding to the first t-axis tick mark in Figures 5, 7, and 9) across a variety of parameter

settings. Each independent run uses CRN across the β values.

At total simulation budget t= 0.4× 106 on Problem TA, there seems to be a “sweet spot”

for setting βε in the interval (0.2,0.4), as seen in the left and center panels of Figure 10.

Relative to our sampling error, βε < 0.2 causes the algorithm to find too few sample-path

N1-LWEP’s, while βε > 0.4 cause the algorithm to find too many. Given that βε = 0.5, the
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Figure 10 Problem TA: Sample quantiles (0.25, 0.50, 0.75) of the coverage error at t = 0.4 × 106 across 1,000

independent runs of R-PE (left), R-PERLE, βδ = 0.5 (center), R-PERLE, βε = 0.5 (right).
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Figure 11 Problem TB: Sample quantiles (0.25, 0.50, 0.75) of the local coverage error at t= 0.4× 106 across 1,000

independent runs of R-PE (left), R-PERLE, βδ = 0.5 (center), R-PERLE, βε = 0.5 (right).

R-PERLE performance in the right panel of Figure 10 is fairly robust to different values of

βδ. Notice that with βε = 0.5, for small values of βδ, R-PE and R-PERLE return similar sets.

On Problem TB, however, solving more ε-constraint problems and crawling more in RLE

seems to improve algorithm performance. We suspect that here, correlation between the

objectives and using CRN implies each sample-path problem is similar to the true problem.

Thus the ordering of the points in the sample-path problem is similar to the ordering of the

points in the true problem with high probability, except among the global weakly efficient

points. Thus finding more N1-LWEP’s in PE and crawling more in RLE is usually better.

Problem TC is a difficult problem for which R-PE is not guaranteed to converge. In the

left panel of Figure 12, like in the left panel of Figure 10, R-PE exhibits u-shaped behavior

as a function of βε. However, the center and right panels of Figure 12 tell an interesting story

for R-PERLE. It seems that in Problem TC , it is best to solve few ε-constraint problems

(smaller βε) and let RLE do the work of finding the disconnected N1-local weakly efficient set

members, with the sweet spot for βδ shown in the right panel of Figure 12. Interestingly, that

more effort should be expended in RLE and less effort in PE explains the good performance

of R-MinRLE in Figure 9. Finally, we remark that across all the problems, without prior

knowledge of the problem structure, our default βε and βδ values seem reasonable.

0.1 0.5 1 1.5βε
0

0.5

1.0

1.5

2.0

2.5

m
in
W

1
∈W

1
d
H

(g
(Â
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Figure 12 Problem TC : Sample quantiles (0.25, 0.50, 0.75) of the local weakly coverage error at t= 0.4×106 across

1,000 independent runs of R-PE (left), R-PERLE, βδ = 0.5 (center), R-PERLE, βε = 0.5 (right).
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10. Concluding Remarks

We propose R-PERLE, a new, provably-convergent algorithm for bi-objective SO on integer

lattices. We also propose R-MinRLE as a benchmark algorithm for MOSO on integer lattices

with two or more objectives. R-PERLE out-performs both R-MinRLE and the current state-

of-the-art algorithm, MO-COMPASS, on our test problems. This work points to a family of

RA algorithms for MOSO on integer lattices that employ an accelerator plus RLE for sample-

path certification of an ALES, where the convergence guarantees are provided by Theorem 1.

Both R-PERLE and R-MinRLE, as well as infrastructure for creating new accelerators, are

publicly available in the PyMOSO software package (Cooper and Hunter 2019).

Acknowledgments
The authors thank Eric Applegate for suggesting improvements to our algorithm implementations, Raghu

Pasupathy for discussions about the bi-objective bus scheduling problem, and the associate editor and anony-

mous referees for comments that improved the paper. S. R. Hunter and K. Nagaraj were supported by the

National Science Foundation grant CMMI-1554144.

References
Andersson M, Grimm H, Persson A, Ng A (2007) A web-based simulation optimization system for industrial

scheduling. Henderson SG, Biller B, Hsieh MH, Shortle J, Tew JD, Barton RR, eds., Proceedings of the

2007 Winter Simulation Conference, 1844–1852 (Piscataway, NJ: IEEE).

Applegate EA, Feldman G, Hunter SR, Pasupathy R (2019) Multi-objective ranking and selection: Optimal

sampling laws and tractable approximations via SCORE. Journal of Simulation URL http://dx.doi.

org/10.1080/17477778.2019.1633891.

Audet C, Hare W (2017) Derivative-Free and Blackbox Optimization. Springer Series in Operations Research

and Financial Engineering (Switzerland: Springer).

Bertsimas D, Farias VF, Trichakis N (2013) Fairness, efficiency, and flexibility in organ allocation for

kidney transplantation. Operations Research 61(1):73–87, URL http://dx.doi.org/10.1287/opre.

1120.1138.

Branke J, Zhang W (2015) A new myopic sequential sampling algorithm for multi-objective problems. Yilmaz

L, Chan WKV, Moon I, Roeder TMK, Macal C, Rossetti MD, eds., Proceedings of the 2015 Winter

Simulation Conference, 3589–3598 (Piscataway, NJ: IEEE).

Branke J, Zhang W, Tao Y (2016) Multiobjective ranking and selection based on hypervolume. Roeder

TMK, Frazier PI, Szechtman R, Zhou E, Huschka T, Chick SE, eds., Proceedings of the 2016 Winter

Simulation Conference, 859–870 (Piscataway, NJ: IEEE).

Chen T, Wang C (2016) Multi-objective simulation optimization for medical capacity allocation in emergency

department. Journal of Simulation 10(1):50–68, URL http://dx.doi.org/10.1057/jos.2014.39.



38 Cooper, Hunter, and Nagaraj: Bi-objective SO on Integer Lattices using the ε-Constraint Method in an RA Framework

Chew EP, Lee LH, Teng S, Koh CH (2009) Differentiated service inventory optimization using nested par-

titions and MOCBA. Computers & Operations Research 36(5):1703–1710, URL http://dx.doi.org/

10.1016/j.cor.2008.04.006.

Conn AR, Scheinberg K, Vicente LN (2009) Introduction to Derivative-Free Optimization. MOS-SIAM Series

on Optimization (Philadelphia, PA: Society for Industrial and Applied Mathematics and Mathematical

Programming Society), URL http://dx.doi.org/10.1137/1.9780898718768.

Cooper K, Hunter SR (2019) PyMOSO: Software for multi-objective simulation optimization with R-PERLE

and R-MinRLE. INFORMS Journal on Computing URL http://dx.doi.org/10.1287/ijoc.2019.

0902.

Cooper K, Hunter SR, Nagaraj K (2017) An epsilon-constraint method for integer-ordered bi-objective

simulation optimization. Chan WKV, D’Ambrogio A, Zacharewicz G, Mustafee N, Wainer G, Page E,

eds., Proceedings of the 2017 Winter Simulation Conference, 2303–2314 (Piscataway, NJ: IEEE), URL

http://dx.doi.org/10.1109/WSC.2017.8247961.

Custódio AL, Madeira JFA, Vaz AIF, Vicente LN (2011) Direct multisearch for multiobjective optimization.

SIAM Journal on Optimization 21(3):1109–1140, URL http://dx.doi.org/10.1137/10079731X.

Dembo A, Zeitouni O (1998) Large Deviations Techniques and Applications (New York: Springer), 2nd

edition.

Feldman G, Hunter SR (2018) SCORE allocations for bi-objective ranking and selection. ACM Transactions

on Modeling and Computer Simulation 28(1):7:1–7:28, URL http://dx.doi.org/10.1145/3158666.

Fu MC (2002) Optimization for simulation: theory vs. practice. INFORMS Journal on Computing 14:192–

215, URL http://dx.doi.org/10.1287/ijoc.14.3.192.113.

Fu MC, ed. (2015) Handbook of Simulation Optimization, volume 216 of International Series in Operations

Research & Management Science (New York: Springer).

Gropp W, Snir M (2013) Programming for exascale computers. Computing in Science & Engineering

15(6):27–35, URL http://dx.doi.org/10.1109/MCSE.2013.96.

Henderson SG, Pasupathy R (2019) Simulation optimization library. URL http://www.simopt.org.

Hong LJ, Nelson BL (2006) Discrete optimization via simulation using COMPASS. Operations Research

54(1):115–129, URL http://dx.doi.org/10.1287/opre.1050.0237.

Huang H, Zabinsky ZB (2014) Multiple objective probabilistic branch and bound for Pareto optimal

approximation. Tolk A, Diallo SY, Ryzhov IO, Yilmaz L, Buckley S, Miller JA, eds., Proceed-

ings of the 2014 Winter Simulation Conference, 3916–3927 (Piscataway, NJ: IEEE), URL http:

//dx.doi.org/10.1109/WSC.2014.7020217.

Hunter SR, Applegate EA, Arora V, Chong B, Cooper K, Rincón-Guevara O, Vivas-Valencia C (2019) An

introduction to multi-objective simulation optimization. ACM Transactions on Modeling and Computer

Simulation 29(1):7:1–7:36, URL http://dx.doi.org/10.1145/3299872.



Cooper, Hunter, and Nagaraj: Bi-objective SO on Integer Lattices using the ε-Constraint Method in an RA Framework 39

Hunter SR, McClosky B (2016) Maximizing quantitative traits in the mating design problem via

simulation-based Pareto estimation. IIE Transactions 48(6):565–578, URL http://dx.doi.org/10.

1080/0740817X.2015.1096430.

Kim S, Pasupathy R, Henderson SG (2015) A guide to sample average approximation. Fu M, ed.,

Handbook of Simulation Optimization, volume 216 of International Series in Operations Research

& Management Science, 207–243 (New York: Springer-Verlag), URL http://dx.doi.org/10.1007/

978-1-4939-1384-8_8.

Kim S, Ryu J (2011) The sample average approximation method for multi-objective stochastic optimization.

Jain S, Creasey RR, Himmelspach J, White KP, Fu M, eds., Proceedings of the 2011 Winter Simula-

tion Conference, 4026–4037 (Piscataway, NJ: IEEE), URL http://dx.doi.org/10.1109/WSC.2011.

6148092.

Larson J, Menickelly M, Wild SM (2019) Derivative-free optimization methods. arXiv URL https://arxiv.

org/abs/1904.11585.

Law AM (2015) Simulation Modeling and Analysis (New York: McGraw Hill Education), 5 edition.

Le Digabel S, Wild SM (2015) A taxonomy of constraints in simulation-based optimization. arXiv URL

https://arxiv.org/abs/1505.07881.

Lee LH, Chew EP, Teng S, Goldsman D (2010) Finding the non-dominated Pareto set for multi-

objective simulation models. IIE Transactions 42:656–674, URL http://dx.doi.org/10.1080/

07408171003705367.

Li H, Lee LH, Chew EP, Lendermann P (2015a) MO-COMPASS: A fast convergent search algorithm for

multi-objective discrete optimization via simulation. IIE Transactions 47(11):1153–1169, URL http:

//dx.doi.org/10.1080/0740817X.2015.1005778.

Li H, Zhu Y, Chen Y, Pedrielli G, Pujowidianto NA, Chen Y (2015b) The object-oriented discrete event

simulation modeling: a case study on aircraft spare part management. Yilmaz L, Chan WKV, Roeder

TMK, Macal C, Rosetti M, eds., Proceedings of the 2015 Winter Simulation Conference, 3514–3525

(Piscataway, NJ: IEEE).

Li J, Liu W, Pedrielli G, Lee LH, Chew EP (2018) Optimal computing budget allocation to select the

non-dominated systems – a large deviations perspective. IEEE Transactions on Automatic Control

63(9):2913–2927, URL http://dx.doi.org/10.1109/TAC.2017.2779603.

Liuzzi G, Lucidi S, Rinaldi F (2018) An algorithmic framework based on primitive directions and non-

monotone line searches for black box problems with integer variables. Optimization Online URL

http://www.optimization-online.org/DB_HTML/2018/02/6471.html.

Miettinen K (1999) Nonlinear Multiobjective Optimization (Boston: Kluwer Academic Publishers).

Nsoesie EO, Beckman RJ, Shashaani S, Nagaraj KS, Marathe MV (2013) A simulation optimization approach

to epidemic forecasting. PloS one 8(6):e67164.



40 Cooper, Hunter, and Nagaraj: Bi-objective SO on Integer Lattices using the ε-Constraint Method in an RA Framework

Osorio C, Bierlaire M (2013) A simulation-based optimization framework for urban transportation problems.

Operations Research 61(6):1333–1345, URL http://dx.doi.org/10.1287/opre.2013.1226.

Pasupathy R (2010) On choosing parameters in retrospective-approximation algorithms for stochastic root

finding and simulation optimization. Operations Research 58(4):889–901, URL http://dx.doi.org/

10.1287/opre.1090.0773.

Pasupathy R, Ghosh S (2013) Simulation optimization: a concise overview and implementation guide.

Topaloglu H, ed., TutORials in Operations Research, chapter 7, 122–150 (Catonsville, MD: INFORMS),

URL http://dx.doi.org/10.1287/educ.2013.0118.

Pasupathy R, Henderson SG (2006) A testbed of simulation-optimization problems. Perrone LF, Wieland

FP, Liu J, Lawson BG, Nicol DM, Fujimoto RM, eds., Proceedings of the 2006 Winter Simulation

Conference, 255–263 (Piscataway, NJ: IEEE), URL http://dx.doi.org/10.1109/WSC.2006.323081.

Pasupathy R, Henderson SG (2011) SimOpt: A library of simulation optimization problems. Jain S, Creasey

RR, Himmelspach J, White KP, Fu M, eds., Proceedings of the 2011 Winter Simulation Conference,

4075–4085 (Piscataway, NJ: IEEE), URL http://dx.doi.org/10.1109/WSC.2011.6148097.

Powers MJ, Sanchez SM, Lucas TW (2012) The exponential expansion of simulation in research. Laroque C,

Himmelspach J, Pasupathy R, Rose O, Uhrmacher AM, eds., Proceedings of the 2012 Winter Simula-

tion Conference, 1552–1563 (Piscataway, NJ: IEEE), URL http://dx.doi.org/10.1109/WSC.2012.

6465125.

Ralphs TK, Saltzman MJ, Wiecek MM (2006) An improved algorithm for solving biobjective integer pro-

grams. Annals of Operations Research 147(1):43–70, ISSN 0254-5330, URL http://dx.doi.org/10.

1007/s10479-006-0058-z.

Royset JO, Szechtman R (2013) Optimal budget allocation for sample average approximation. Operations

Research 61(3):762–776, URL http://dx.doi.org/10.1287/opre.2013.1163.

Ryu J, Kim S (2014) A derivative-free trust-region method for biobjective optimization. SIAM J. Optim.

24(1):334–362, URL http://dx.doi.org/10.1137/120864738.

Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on Stochastic Programming: Modeling and Theory.

MPS-SIAM Series on Optimization (Philadelphia, PA: Society for Industrial and Applied Mathematics).

Singh A, Minsker BS (2008) Uncertainty-based multiobjective optimization of groundwater remediation

design. Water Resources Research 44, URL http://dx.doi.org/10.1029/2005WR004436.

Wang H, Pasupathy R, Schmeiser BW (2013) Integer-ordered simulation optimization using R-SPLINE: Ret-

rospective Search using Piecewise-Linear Interpolation and Neighborhood Enumeration. ACM Trans-

actions on Modeling and Computer Simulation 23(3), URL http://dx.doi.org/10.1145/2499913.

2499916.

Xu J, Nelson BL, Hong LJ (2010) Industrial Strength COMPASS: A comprehensive algorithm and software

for optimization via simulation. ACM Transactions on Modeling and Computer Simulation 20:1–29.



Online Appendices for
Bi-objective Simulation Optimization on Integer Lattices

using the Epsilon-Constraint Method
in a Retrospective Approximation Framework

Kyle Cooper
School of Industrial Engineering, Purdue University and Tata Consultancy Services, coope149@purdue.edu

Susan R. Hunter
School of Industrial Engineering, Purdue University, susanhunter@purdue.edu

Kalyani Nagaraj
School of Industrial Engineering & Management, Oklahoma State University, kalyani.nagaraj@okstate.edu

A. Proof Sketch of Lemma 3

Proof Sketch. The proof of Lemma 3 Part (a) is provided in Wang et al. (2013, p. 15) and

follows from the first Borel-Cantelli lemma (Billingsley 1995, p. 59). By Lemma 3 Part (a), for

each objective k ∈ {1, . . . , d}, there exists ν̃k, dependent on α, x, and the random realization,

such that for all ν ≥ ν̃k, Ŝk,ν(x)⊆Sk(x, αk) w.p.1. Let ν̃ := maxk{ν̃k}, so that for all ν ≥ ν̃,
Ŝν(x)⊆S(x,α) w.p.1. �

B. Proof of Theorem 1

Proof of Theorem 1 Part (a). For every ν, R-PERLE and R-MinRLE return a set Âν in

finite time. Thus both algorithms produce an infinite sequence of solutions {Âν}. Further,
notice that R-PERLE and R-MinRLE never return a set Âν containing a point whose esti-

mated objective vector is dominated by Ḡmν (x0) (see Algorithm 5, RLE Steps 1 and 14).

Now consider the union of the level sets corresponding to the starting point x0, S(x0,α). By

Lemma 3, there exists ν̃ such that for all ν ≥ ν̃, Âν ⊆ Ŝν(x0)⊆S(x0,α) w.p.1. Since S(x0,α)

is finite, then any sequence of estimated efficient points {X∗ν :X∗ν ∈ Âν for all ν = 1,2, . . .} is
bounded w.p.1. Using an argument similar to that in Wang et al. (2013, Theorem 5.4, p. 15),

we now prove that {Âν} converges into an Na-local weakly efficient set w.p.1.

Since S(x0,α) is finite and a∈ (0,∞), then Na(S(x0,α))∩X is also finite. Thus for all k ∈
{1, . . . , d}, Ḡk,mν (·) uniformly converges to gk(·) w.p.1 as ν→∞ on the setNa(S(x0,α))∩X .
Let the set Dk := {(x,x′) : x,x′ ∈ Na(S(x0,α)) ∩ X , gk(x′) 6= gk(x)} be the set of all pairs
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of feasible points in the level set neighborhood that have different true objective function

values on objective k, and let κ1 = mink∈{1,...,d} infDk |gk(x) − gk(x′)| > 0 be the smallest

difference in objective values across these pairs; Assumption 1 implies κ1 > 0. Then w.p.1,

there exists ν ′ (dependent on neighborhood size a, initial point x0, the constants κ1 and

α, and the random realization) such that for all ν ≥ ν ′, maxk∈{1,...,d} |Ḡk,mν (x)− gk(x)| <
κ1/4 for all x∈Na(S(x0,α))∩X . Since βδ ∈ (0,∞], the ALES completeness function δ̂k(·) =

f̂k(·, βδ) = σ̂k,mν (·)/mβδ
ν uniformly converges to zero w.p.1 on the finite set Na(S(x0,α))∩X

as ν→∞ for all k ∈ {1, . . . , d}. Then w.p.1, there exists ν ′′ (dependent on the same quantities

as ν ′ and dependent on βδ) such that for all ν ≥ ν ′′, maxk∈{1,...,d} δ̂k(x) < κ1/4 for all x ∈
Na(S(x0,α))∩X .
Henceforth, let ν ≥max{ν ′, ν ′′}. Combining the above results, for all x∈Na(S(x0,α))∩X ,

maxk∈{1,...,d}
∣∣|Ḡk,mν (x)− δ̂k(x)| − gk(x)

∣∣<κ1/2 w.p.1. Thus for all k ∈ {1, . . . , d} and for all

x,x′ ∈Na(S(x0,α))∩X , the following hold:

R1. if gk(x)< gk(x
′), then Ḡk,mν (x) + δ̂k(x)< Ḡk,mν (x

′)− δ̂k(x′) w.p.1;

R2. if Ḡk,mν (x) + δ̂k(x)≤ Ḡk,mν (x
′)− δ̂k(x′), then gk(x)≤ gk(x′) w.p.1.

Further, for all x,x′ ∈ Na(S(x0,α)) ∩ X , if Ḡmν (x) � Ḡmν (x
′), then ∃k ∈ {1, . . . , d} such

that Ḡk,mν (x
′)< Ḡk,mν (x), implying that gk(x′)≤ gk(x) w.p.1. This result, along with results

R1 and R2 above, imply that for all x,x′ ∈Na(S(x0,α))∩X ,
R3. if Ḡmν (x)� Ḡmν (x

′), then g(x) 6< g(x′) w.p.1;

R4. if Ḡmν (x) + δ̂(x)5 Ḡmν (x
′)− δ̂(x′), then g(x)5 g(x′) w.p.1.

Now let ν ≥max{ν̃, ν ′, ν ′′}. Then by Lemma 3, the set of decision points Âν returned by

each algorithm lie in S(x0,α) w.p.1. We now consider all parts of the definition of an ALES

(Definition 7). First, Algorithm 5 ensures no points in Ḡn(Âν) dominate other points in

Ḡn(Âν) (RLE Steps 1 and 14). Thus result R3 above implies that no points in g(Âν) strictly
dominate other points in g(Âν). Second, Algorithm 5 ensures each point in Xw

ν ∈ Âν is a

sample-path Na-LWEP (e.g., RLE Steps 2, 5, 10, and 15). Thus result R3 above implies that

all points in Âν are Na-LWEP’s. Third, Algorithm 5 ensures that the NCN of Âν is empty

(RLE Steps 2 and 15). Then applying results R3 and R4 above, for all X ∈ N ′a(Âν) ∩ X ,
(i) ∃Xw

ν ∈ Â such that g(Xw
ν )5 g(X) w.p.1, or (ii) ∃Xw

ν ∈ Â such that (g(X)5 g(Xw
ν ) and

Ḡmν (X
w
ν )− δ̂(Xw

ν ) 5 Ḡmν (X) + δ̂(X)) w.p.1, which happens with probability zero unless

g(X) = g(Xw
ν ), or (iii) employing the complements of the previous two conditions, ∀Xw

ν ∈ Â,
g(Xw

ν ) � g(X) � g(Xw
ν ), and ∃X̃w

ν ∈ Â such that Ḡmν (X̃
w
ν )− δ̂(X̃w

ν ) 5 Ḡmν (X) + δ̂(X) or
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Ḡmν (X)− δ̂(X) 5 Ḡmν (X̃
w
ν ) + δ̂(X̃w

ν ) w.p.1, which happens with probability zero. To see

this, let X ∈ N ′a(Âν)∩X and notice that the condition ∀Xw
ν ∈ Â, g(Xw

ν )� g(X)� g(Xw
ν )

w.p.1 implies that ∀Xw
ν ∈ Â, ∃k1, k2 ∈ {1, . . . , d} such that gk1(Xw

ν )> gk1(X) and gk2(Xw
ν )<

gk2(X) w.p.1, and hence by result R1 above, Ḡk1,mν (X
w
ν )− δ̂k1(Xw

ν ) > Ḡk1,mν (X) + δ̂k1(X)

and Ḡk2,mν (X)− δ̂k2(X)> Ḡk2,mν (X
w
ν ) + δ̂k2(X

w
ν ) w.p.1.

Therefore when ν ≥max{ν̃, ν ′, ν ′′}, R-PERLE and R-MinRLE certify that w.p.1, all points

in Âν are Na-LWEP’s, no points in g(Âν) strictly dominate other points in g(Âν), and for

all X ∈ N ′a(Âν) ∩ X , ∃Xw
ν ∈ Â such that g(Xw

ν ) 5 g(X). Thus by Definition 5, Âν is an

Na-local weakly efficient set w.p.1. Further, each Âν is such that there does not exist a pair

of points X∗ν−1 ∈ Âν−1 and X∗ν ∈ Âν such that g(X∗ν−1) < g(X∗ν) w.p.1. (The second part

follows because we carry forward the points from Âν−1 into the νth iteration, and we ensure

that no points in Ḡn(Âν) dominate other points in Ḡn(Âν) in Algorithm 5, RLE Steps 1

and 14.) Therefore if ν ≥ max{ν̃, ν ′, ν ′′}, there exists Wa ∈Wa such that R-PERLE and

R-MinRLE returns Âν ⊆Wa ⊆S(x0,α) w.p.1.

Proof of Theorem 1 Part (b). Let ν ≥max{ν̃, ν ′, ν ′′}. By the proof of Theorem 1 Part (a),

Âν is an Na-local weakly efficient set w.p.1. Under Assumption 4, by Lemma 4, there exists

La ∈La such that Âν ⊇La w.p.1, and the result holds.

Proof of Theorem 1 Part (c). Assumption 5 implies that all Na-local weakly efficient sets

are Na-local efficient sets. Thus Wa = La, and the result follows from Theorem 1 Parts (a)

and (b).

Proof of Theorem 1 Part (d). Assumptions 5 and 6 imply that the Na-local efficient set

in Theorem 1 Part (c) is the global efficient set, and the result follows. �

C. Proof of Theorem 2

Proof. For every ν, R-PE returns a set Âν in finite time, thus producing an infinite

sequence of solutions {Âν}. Further, R-PE never returns a set Âν containing a point whose

estimated objective vector is dominated by Ḡmν (x0) (see Algorithm 2, PE Step 26). Recall

that for all ν ≥ ν̃, Âν ⊆ Ŝν(x0) ⊆ S(x0,α) w.p.1, and since S(x0,α) is finite, then any

sequence of estimated efficient points {X∗ν : X∗ν ∈ Âν for all ν = 1,2, . . .} is bounded w.p.1.

As in the proof of Theorem 1 Part (a), for all k ∈ {1,2}, Ḡk,mν (·) uniformly converges

to gk(·) w.p.1 as ν → ∞ on the finite set Na(S(x0,α)) ∩ X . Since there are only two

objectives and βε ∈ (0,∞), the maximum ε-placement distance maxkcon∈{1,2} f̂kcon(·, βε) =
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maxkcon∈{1,2} σ̂kcon,mν (·)/mβε
ν also uniformly converges to zero w.p.1 as ν → ∞ on

Na(S(x0,α)) ∩X . Let κ > 0 be as in Assumption 5. Then w.p.1, there exists ν ′PE (depen-

dent on a,x0, κ,α, and the random realization) such that for all ν ≥ ν ′PE and all x ∈
Na(S(x0,α)) ∩ X , we have maxk∈{1,2} |Ḡk,mν (x) − gk(x)| < κ/4 w.p.1. Also w.p.1, there

exists ν ′′PE (dependent on the same quantities as ν ′PE and dependent on βε) such that for all

ν ≥ ν ′′PE, maxkcon∈{1,2} f̂kcon(x, βε)< κ/4 for all x ∈Na(S(x0,α))∩X . Combining the above

results, if ν ≥max{ν ′PE, ν
′′
PE}, then for all x∈Na(S(x0,α))∩X , maxkcon∈{1,2}

∣∣|Ḡkcon,mν (x)−
f̂kcon(x, βε)| − gkcon(x)

∣∣< κ/2 w.p.1. Henceforth, let ν ≥max{ν ′PE, ν
′′
PE}. Then for all x,x′ ∈

N (S(x0,α))∩X , the following hold w.p.1:

R5. ∀k ∈ {1,2}, gk(x)< gk(x
′) if and only if Ḡk,mν (x) + f̂k(x, βε)< Ḡk,mν (x

′)− f̂k(x′, βε);
R6. if Ḡmν (x)� Ḡmν (x

′), then g(x)� g(x′), that is, ∃k ∈ {1,2} such that gk(x′)< gk(x).

Under Assumption 1, for any x0 ∈X , E ⊆ S(x0,α). Therefore results R5, R6 and Assump-

tions 5–6 imply that all points in E are both sample-path Na-LWEP’s and sample-path

global efficient points w.p.1. Further, all points in N ′a(E) are not sample-path Na-LWEP’s

w.p.1. Let cε := |E| ≥ 1, and for any objective k ∈ {1,2}, sort the elements of E on objective

k so that gk(x∗k(1)) < . . . < gk(x
∗
k(cε)

), where x∗k(i) denotes the ith ordered element of E on

objective k, i= 1, . . . , cε. If cε ≥ 2, then result R5 implies that w.p.1 for all i= 1, . . . , cε− 1,

Ḡkcon,mν (x
∗
k(i)) + f̂kcon(x∗k(i), βε)< Ḡk,mν (x

∗
(i+1))− f̂kcon(x∗(i+1)). (1)

By Lemma 5, w.p.1 there exists ν ′′′ (dependent on the same quantities as ν ′PE) such that for

all ν ≥ ν ′′′, the updated sample-pathNa-local minimizers returned as part of PE Step 1, which

we call Mν , are such that Mν ⊆M∗
a. Under Assumptions 5–6, the set M∗

a = {xmin
1 ,xmin

2 }
contains the unique global minimizers for each objective k ∈ {1,2}.
Henceforth, let ν > max{ν̃, ν ′PE, ν

′′
PE, ν

′′′}, and let {k∗ν , ν = 1,2, . . .} be any sequence of

objectives minimized, where kcon
ν 6= k∗ν for each ν. Then by Lemma 3, the set of decision

points Âν returned by R-PE lie in S(x0,α) w.p.1, as does the set of points used to set the ε

values in Algorithm 2, PE Step 2, which is a set of sample-path Na-LWEP’s we call Âw
ν . Since

all points in Âw
ν are sample-path Na-LWEP’s, then results R5, R6 and Assumptions 5–6

ensure that Âw
ν ⊆E w.p.1; further,Mν ⊆ Âw

ν , whereMν = {xmin
1 ,xmin

2 } w.p.1. If cε ∈ {1,2},
the proof is complete, since Âw

ν is returned as Âν in Algorithm 2, PE Step 26, and no other

points have entered the set w.p.1. Now suppose cε ≥ 3. All points in Âw
ν ∪E can be ordered

on kcon as in line (1). Points in E \ Âw
ν are retrieved by Algorithm 2, PE Steps 15–25, and
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carried forward to Âν+1; no other points enter the set w.p.1. Then it follows that for all

ν∗ > ν+ 1, Âν∗ = E w.p.1, and the result holds. �

D. Proof of Theorem 3

Proof of Theorem 3 Part (a). Let D ⊆ X be any subset of the feasible set. Since X is

finite, D is finite. Let B̄∗k,ν(D) denote the set of sample-path global minimizers of objective

gk, k ∈ {1, . . . , d} on the set D, and let B∗k(D) denote the corresponding set of true global

minimizers on D. Then under our assumptions, by Wang et al. (2013, p. 16), for all k ∈
{1, . . . , d} and all D⊆X , there exists η > 0 such that for large enough ν,

P{B̄∗k,ν(D) 6⊆ B∗k(D)} ≤ |D|e−mνη. (2)

Recall that X ⊂Zq and let x ∈ X be a feasible point. Letting ei denote a q-dimensional

vector of zeros with one in the ith place, divideN1(x) into 2q sub-neighborhoods that include

x and exactly one other neighborhood point in each direction, N1,+i(x) := {x,x + ei} and

N1,−i(x) := {x,x− ei} for all i∈ {1, . . . , q}.
For every non-N1-LWEP x ∈ X \ Xw, there must exist x′ ∈ N1(x) ∩ X such that g(x′)

strictly dominates g(x). Then for every x ∈ X \ Xw, there exists j ∈ {−q, . . . ,−1,1, . . . , q}
and x′ ∈N1(x)∩X such that N1,j(x) = {x,x′} and g(x′) strictly dominates g(x). Thus x is

not a global minimizer on N1,j(x) on any objective. If x ∈ X \Xw is nonetheless estimated

as an N1-LWEP, that is, x ∈ X̄w
ν on its N1-neighborhood, there must exist an objective

k ∈ {1, . . . , d} such that B̄∗k,ν(N1,j(x)) 6⊆ B∗k(N1,j(x)). Then for large enough ν,

P{X̄w
ν 6⊆ Xw} ≤ ∑

x∈X\Xw
P{x∈ X̄w

ν }

≤ ∑
x∈X\Xw

∑
j∈{−q,...,−1,1,...,q}

∑
k∈{1,...,d}

P{B̄∗k,ν(N1,j(x)) 6⊆ B∗k(N1,j(x))}

≤ ∑
x∈X\Xw

∑
j∈{−q,...,−1,1,...,q}

∑
k∈{1,...,d}

2e−mνη ≤ |X |4qde−mνη,

where η > 0 denotes the relevant constant from line (2).

Proof of Theorem 3 Part (b). We begin by noticing that item (i) follows from Theorem 3

Part (a), along with the assumption that sample sizes increase at least linearly and the fact

that our algorithms guarantee Âν contains only sample-path N1-LWEP’s.

To prove item (ii), notice that under our assumptions, all N1-LWEP’s are global efficient

points. Therefore by item (i), P{Âν 6⊆ E} = O(e−γmν ) for some γ > 0. We now consider
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P{E 6⊆ Âν}, where P{E 6⊆ Âν} ≤
∑

x∈E P{x 6∈ Âν}. Notice that if x ∈ E is not in Âν , then it

must have been incorrectly estimated as dominated by at least one point in its neighborhood.

Then by a proof similar to that of Theorem 3 Part (a), it follows that P{E 6⊆ Âν}=O(e−γmν )

for some γ > 0, which implies the result. �

E. Finding N1-local weakly efficient sets in Problem TC

To calculate the collection of all possible N1-local weakly efficient sets in Problem TC , we first

locate all N1-LWEP’s; we find 512. Then, starting from each N1-LWEP, we run a program

similar to RLE with no relaxation to find the smallest complete N1-local weakly efficient

set that contains the N1-LWEP. We refer to these N1-local weakly efficient sets as level-1

N1-local weakly efficient sets ; after removing duplicate sets, we find 39. Then, we take all

possible unions of two level-1 N1-local weakly efficient sets, remove any dominated points,

and check if this set is a new, unique N1-local weakly efficient set. We refer to all new,

unique N1-local weakly efficient sets that are found by taking the union of two level-1 N1-

local weakly efficient sets as level-2 N1-local weakly efficient sets. We repeat this process for

level-3 and so on, up to level-8. We found one level-7 N1-local weakly efficient set and no

level-8 N1-local weakly efficient sets. The total number of unique N1-local weakly efficient

sets found in this manner, up to level-8, was 516. All together, these 516 N1-local weakly

efficient sets contain just 73 points; we call these points N1-local weakly efficient set members

in Figure 8. Recall that there are 512 N1-LWEP’s, so not all N1-LWEP’s are members of an

N1-local weakly efficient set.

F. A Bi-objective Integer Bus Scheduling Problem

We create a bi-objective version of the integer bus-scheduling problem described by Wang

et al. (2013), as follows. Suppose passengers arrive to a bus station according to a Poisson

process with arrival rate λ = 10 people per time unit. During a day that is τ = 100 time

units long, the decision-maker would like to schedule b∈ {1,2, . . . , q} infinite-capacity buses

so that the expected cost of operating the buses, g1(x), and the passengers’ expected total

waiting time, g2(x), are minimized. The decision variable x = (x1, x2, . . . , xq) is an integer

bus schedule, where we assume there is a no-cost bus at time 0 and a pre-scheduled bus at

time τ . Scheduling one of the q total buses at time 0 or τ , or at the same time as any other

bus, corresponds to not using that bus. The feasible set is X = {0,1, . . . ,100}q. We note here

that this problem has a many-to-one mapping, and thus violates Assumptions 4 and 5.
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We define the objective functions implicitly through a Monte Carlo simulation model. To

specify the simulation model, without loss of generality, label the buses so that x0 := 0 ≤
x1 ≤ x2 ≤ . . . ≤ xq ≤ xq+1 := τ , and let Ni(x`)−Ni(x`−1) denote the number of passenger

arrivals between bus ` − 1 and bus ` on the ith day, ` = 1,2, . . . , q + 1. On the ith day

and given an integer bus schedule x, the simulation model returns (a) the cost G1(x, ξi) =
∑q+1

`=1 c0I{x`−x`−1 > 0}+(Ni(x`)−Ni(x`−1))
γ, where c0 is a constant operating cost per bus

and γ is a constant, and (b) the observed total waiting time G2(x, ξi) =
∑Ni(τ)

j=1 Wij, where

Wij is the wait time of the jth passenger for j = 1,2, . . . ,Ni(τ) passengers on the ith day.

We implement the 9-bus scheduling problem with c0 = 100 and γ = 1/2. For any feasible

x, we approximate the true expected cost as

g1(x) =E[G1(x, ξi)] =
∑q+1

`=1 c0I{x`−x`−1 > 0}+E
[√

Ni(x`)−Ni(x`−1)
]

≈∑q+1
`=1 c0I{x`−x`−1 > 0}+

√
λ(x`−x`−1),

where the approximation to the expected value of the square root of a Poisson random

variable is better for larger values of (x`−x`−1). Since λ(x`−x`−1)≥ 10 whenever x` 6= x`−1,

the approximation error is relatively small for the values we consider. We calculate the true

expected wait time as

g2(x) =E [G2(x, ξi)] =E
[∑Ni(τ)

j=1 Wij

]
= (λ/2)

∑q+1
`=1(x`−x`−1)

2.

The points that minimize the g1 objective correspond to scheduling none of the q buses,

xmin
1 = (0,0, . . . ,0) or xmin

1 = (100,100, . . . ,100). The global solution on the g2 objective is

known to be xmin
2 = (10,20,30,40,50,60,70,80,90). Thus under our approximation of the

true expected cost, the ideal point is (g1(x
min
1 ), g2(x

min
2 )) = (131.6, 5,000), and the nadir

point is (g1(x
min
2 ), g2(x

min
1 )) = (1,100, 50,000).

Since the feasible set is large (|X |= 1.0937× 1018) and there is a many-to-one mapping,

it is too computationally intensive to locate all possible N1-local weakly efficient sets, as we

did in Test Problem C. Therefore, the collection of N1-local weakly efficient sets remains

unknown. However, to gain intuition on the structure of this problem, it is conceptually

helpful to constrain the problem into ten sub-problems that correspond to the exact number

of buses scheduled at non-null times: zero, one, two, and so on, up to nine.

For example, suppose we constrain ourselves to scheduling exactly one bus at a non-null

time. The point (0,0,0,0,0,0,0,0,1) puts the non-null bus as close as possible to zero, which
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Figure 13 The figure shows enumerated non-dominated points for the constrained 9-bus scheduling problem in which

exactly one bus is scheduled at a non-null time (left) and exactly two buses are scheduled at non-null times

(right). We emphasize that these sets are not necessarily N1-local weakly Pareto sets for the unconstrained

9-bus scheduling problem.

is a local minimizer for the expected cost. The point (0,0,0,0,0,0,0,0,50) places the bus

in the middle of the time interval and is a local minimizer for the expected total wait time.

These minimizers are not unique. Then, we enumerate the points (0,0,0,0,0,0,0,0, i) for

i= 1,2, . . . ,50, and plot the points on the left-hand side Figure 13. Likewise, for the problem

of scheduling exactly two buses at non-null times, the point (0,0,0,0,0,0,0,1,2) clusters the

non-null buses as close as possible to zero and is a local minimizer for the expected cost.

The point (0,0,0,0,0,0,0,33,66) evenly spaces the two buses and is a local minimizer for

the expected total wait time. These minimizers are not unique. Then, we enumerate the

points (0,0,0,0,0,0,0, i, j) for i= 1,2, . . . ,33 and j = i+1, . . . ,66, remove the duplicate and

dominated points, and plot their values in the right-hand side of Figure 13; we calculate

that there are 212 points in this graph. We did not enumerate the corresponding values for

scheduling three or more non-null buses.

While the plots in Figure 13 and the constrained sub-problems are helpful for understand-

ing the structure of the problem, the points (0,0,0,0,0,0,0,0,1) and (0,0,0,0,0,0,0,1,2) are

not actually an N1-local minimizers on the cost objective in the unconstrained 9-bus schedul-

ing problem — their neighbors, (0,0,0,0,0,0,0,0,0) and (0,0,0,0,0,0,0,1,1), respectively,

have a lower expected cost value. Since the scheduling of an additional non-null bus incurs an

immediate cost of c0 = 100 monetary units, we expect that the global Pareto set will consist

of nine such clusters of Pareto points, plus one global minimum point on the expected cost

objective corresponding to scheduling zero buses at non-null times.
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We perform 24 independent runs of R-PERLE on this difficult problem using a total sim-

ulation effort of t= 1×106 simulation oracle calls. We configure R-PERLE as described in

§9.1, and we use CRN across points visited. For consistency with the R-SPLINE implemen-

tation of the bus scheduling problem in Wang et al. (2013), we start all 24 runs from the

initial feasible point x0 = (1,1, . . . ,1), which Raghu Pasupathy confirmed through personal

communication as the starting points for the numerical runs in Wang et al. (2013). Since this

problem violates Assumptions 4 and 5, we remark here that at best, R-PERLE converges

into an N1-local weakly efficient set w.p.1 as the simulation budget increases to infinity.

We are not able to run MO-COMPASS on this problem because our current implementa-

tion of the algorithm cannot handle a problem with a feasible set of this size. We know of no

publicly available version of MO-COMPASS code that could run on this problem, therefore,

we omit a comparison with MO-COMPASS.

The following 24 plots report our results, where each plot is the result of one independent

R-PERLE run. Since the N1-local weakly efficient sets are unknown, we report only the true

objective function values of the ALES returned at the end of each R-PERLE run, g(Â(t)).

The plots also display the number of RA iterations completed, the cardinality of the returned

ALES, and the ideal and nadir points for reference. As expected, the performance of R-

PERLE varies across sample paths. However, R-PERLE seems to find points across a variety

of the Pareto “clusters” corresponding to scheduling different numbers of non-null buses.
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ν=31, |Â(t)| =141

200 400 600 800 1000
g1(Â(t))
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g1(Â(t))

10,000

20,000

30,000

40,000

50,000
g 2

(Â
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g1(Â(t))

10,000

20,000

30,000

40,000

50,000
g 2

(Â
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G. Computational Time

As noted in the main body of the paper, usually, the time required to obtain one simula-

tion replication is so much larger than the overhead required by a MOSO algorithm that

the overhead is considered negligible. However, in the event that obtaining one simulation

replication is very fast, the computational overhead of the algorithm may become a relevant

characteristic for practitioners to consider when selecting an algorithm. In this section, we

report statistics on the time it takes to run one sample path of each algorithm on each of

the Test Problems A, B, and C. We also report statistics on the time it takes to run the

bus-scheduling problem.

To obtain our results, we take a fixed-budget approach. That is, we fix the total simulation

budget for all algorithms on all test problems to be t simulation replications. Given the

total simulation budget t, we complete 100 independent runs of each algorithm on each

test problem, and record statistics regarding the computational time required and solution

quality achieved for all problems with known solutions.

For Test Problems A, B, and C, which have known solutions, we use t = 5 × 106. We

select this simulation budget because it is the total simulation budget we used in §9.2 to

numerically demonstrate the convergence of our algorithms, before we cropped the figures

down to reflect a total simulation budget of 4× 106. Further, this budget will provide an

upper bound for smaller total simulation budget values on the same problems and using the

same or similar algorithm implementations. For the bi-objective 9-bus scheduling problem,

we use t= 1× 106, which is consistent with the results in §F.

To measure computational time, let the random variable T denote the computational

time required for one independent run of one algorithm on one test problem. Notice that T

depends on the particular path taken by the algorithm in response to the random variables in

the current run, as well as the time required to obtain one simulation replication. In our Test
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Problems A, B, and C, obtaining one simulation replication is fast — as fast as generating

several chi-squared random variates and performing the algebra required to evaluate the

objective functions. Obtaining one simulation replication in the bi-objective 9-bus scheduling

problem requires running a Monte Carlo simulation that, for a given bus schedule, simulates

the arrival of passengers and collects the observed cost and wait times.

To measure solution quality, we use the metrics for Test Problems A, B, and C from the

main body of the paper. For brevity, we define the random variables representing quality as

QA = dH
(
g(Â(t)),g(E)

)
, QB = min

L1∈L1

dH
(
g(Â(t)),g(L1)

)
, QC = min

W1∈W1

dH
(
g(Â(t)),g(W1)

)
,

for Test Problems A, B, and C, respectively. We do not report solution quality for the 9-bus

scheduling problem because the collection of N1-local weakly efficient sets is unknown.

Given an algorithm and a test problem, we calculate the following statistics regarding com-

putational time and solution quality across the 100 independent runs, where each run collects

up to t simulation replications. To measure computational time, let T̄ = (100)−1
∑100

i=1 Ti be

the average time required to perform an independent run up to t simulation replications.

Let ŝ.d.(T ) =
√

(99)−1
∑100

i=1(Ti− T̄ )2 denote the estimated standard deviation of T , and

let ŝ.e.(T̄ ) = ŝ.d.(T )/
√

100 be the estimated standard error of T̄ . Likewise, for each quality

metric QJ, J ∈ {A,B,C}, the average solution quality achieved by an independent run up

to t simulation replications is Q̄J := (100)−1
∑100

i=1Q
J
i . Let the estimated standard deviation

of QJ be ŝ.d.(QJ) =
√

(99)−1
∑100

i=1(Q
J
i − Q̄J)2, and let the estimated standard error of Q̄J be

ŝ.e.(Q̄J) = ŝ.d.(QJ)/
√

100.

All algorithms are coded in Python. The runs for R-PERLE and R-MinRLE were com-

pleted using the PyMOSO software package (Cooper and Hunter 2019). Our code for MO-

COMPASS is compatible with PyMOSO and uses its infrastructure for random number

stream management. To obtain 100 runs of each algorithm on each test problem, we use 5

nodes of a high-performance computing cluster, where each node has two Haswell CPU’s

at 2.60GHz, 20 cores, and 128GB of memory per node. We obtain the independent runs in

an embarrassingly parallel fashion, with one run per core. We complete all runs of a single

algorithm on a single test problem before proceeding to the next algorithm and test problem

combination. We report the results of our numerical experiments on Test Problems A, B,

and C in Tables 1, 2, and 3. We report the results for the bus scheduling problem in Table 4.
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Table 1 Test Problem A: The table reports computational time and solution quality statistics calculated across 100

independent runs of each algorithm using a total simulation budget of t= 5× 106 simulation replications.

Performance Metric Statistic R-PERLE R-MinRLE MO-COMPASS

Time in Minutes T̄ 38.46 39.20 37.43

ŝ.d.(T ) 1.20 0.84 0.68

ŝ.e.(T̄ ) 0.12 0.08 0.07

Solution Quality Q̄A 0.209 0.202 1.958

ŝ.d.(QA) 0.144 0.113 1.627

ŝ.e.(Q̄A) 0.014 0.011 0.163

Table 2 Test Problem B: The table reports computational time and solution quality statistics calculated across 100

independent runs of each algorithm using a total simulation budget of t= 5× 106 simulation replications.

Performance Metric Statistic R-PERLE R-MinRLE MO-COMPASS

Time in Minutes T̄ 33.13 34.03 34.72

ŝ.d.(T ) 0.83 0.84 0.98

ŝ.e.(T̄ ) 0.08 0.08 0.10

Solution Quality Q̄B 0.000 0.000 0.653

ŝ.d.(QB) 0.000 0.000 0.680

ŝ.e.(Q̄B) 0.000 0.000 0.068

Table 3 Test Problem C: The table reports computational time and solution quality statistics calculated across 100

independent runs of each algorithm using a total simulation budget of t= 5× 106 simulation replications.

Performance Metric Statistic R-PERLE R-MinRLE MO-COMPASS

Time in Minutes T̄ 39.44 39.69 46.32

ŝ.d.(T ) 1.04 0.81 3.31

ŝ.e.(T̄ ) 0.10 0.08 0.33

Solution Quality Q̄C 0.227 0.264 4.476

ŝ.d.(QC) 0.222 0.229 3.524

ŝ.e.(Q̄C) 0.022 0.023 0.352



A-14 Cooper, Hunter, and Nagaraj: Bi-objective SO on Integer Lattices using the ε-Constraint Method in an RA Framework

Table 4 Bi-objective 9-Bus Scheduling Problem: The table reports computational time and solution quality

statistics calculated across 100 independent runs of each algorithm using a total simulation budget of t= 1× 106

simulation replications.

Performance Metric Statistic R-PERLE R-MinRLE MO-COMPASS

Time in Hours T̄ 16.43 15.25 −a

ŝ.d.(T ) 0.97 0.35 −
ŝ.e.(T̄ ) 0.10 0.03 −

a Results are not available due to large computational time or memory limitations.

Tables 1, 2, and 3 show that R-PERLE, R-MinRLE, and MO-COMPASS require similar

computational time for problems with low-dimensional feasible spaces. The feasible spaces

for Test Problems A and B are both subsets of Z2. While all algorithms are slower on Test

Problem C, which has a feasible space that is a subset of Z3, MO-COMPASS is slower than

R-PERLE and R-MinRLE and has a larger estimated standard deviation of the runtime.

We believe that MO-COMPASS is relatively slower because the speed of the calculations

required to update the Most Promising Area may be more sensitive to the dimensionality of

the feasible space than the calculations required by R-PERLE and R-MinRLE.

Table 4 shows that R-PERLE and R-MinRLE require similar computational time for

problems with large, higher-dimensional feasible spaces, with R-MinRLE being slightly faster.

While R-PERLE and R-MinRLE require an average computational time of just over 30

minutes for a total budget of 5 million simulation replications on Test Problems A, B,

and C, the bi-objective 9-bus scheduling problem takes much longer: Both R-PERLE and

R-MinRLE require over 15 hours, on average, for a total budget of 1 million simulation

replications.
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