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ABSTRACT

We consider the context of multi-objective simulation optimization (MOSO) with strictly convex objectives.
We show that under certain types of scalarizations, a (1−α)-confidence region on the efficient set can
be constructed if the scaled error field (over the scalarization parameter) associated with the estimated
efficient set converges weakly to a mean-zero Gaussian process. The main result in this paper proves such
a “Central Limit Theorem.” A corresponding result on the scaled error field of the image of the efficient set
also holds, leading to an analogous confidence region on the Pareto set. The suggested confidence regions
are still hypothetical in that they may be infinite-dimensional and therefore not computable, an issue under
ongoing investigation.

1 INTRODUCTION

We consider the construction of a Central Limit Theorem (CLT) on the empirical mean of the error when
estimating the efficient and Pareto sets in strictly convex multi-objective simulation optimization (MOSO)
with continuous decision variables (Pasupathy and Henderson 2006; Hunter et al. 2019). Such a CLT is a
first step toward our ultimate goal of creating an appropriate statistic for constructing asymptotically valid,
frequentist, (1−α)-confidence regions on the solution and optimal value of a MOSO problem.

The general MOSO problem takes the following form:

minimize { f (x) = ( f1(x), . . . , fd(x)) = (E[F1(x,Y )], . . . ,E[Fd(x,Y )])} s.t. x ∈ X, (M)

where f : D→Rd ,D⊆Rq,d ≥ 2 is a vector-valued function comprised of unknown, real-valued, continuous
objective functions fk : D→R, k = 1, . . . ,d, that can only be observed with stochastic error as the output
of a Monte Carlo simulation oracle. Each objective k = 1, . . . ,d is an expected value

fk(x) = E[Fk(x,Y )] =
∫
Y

Fk(x,y)P(dy)

where Fk : D×Y→R and P is the probability measure induced by the random element Y : Ω → Y. We
denote as F : D×Y→Rd the vector-valued function comprised of real-valued F1, . . . ,Fd . The feasible set
X⊆D is specified by a collection of deterministic functions. (We formalize our assumptions in §3.3.)

The solution to Problem (M) is the efficient set E ⊆ X, which is the set of all feasible points whose
images are non-dominated,

E := {x∗ ∈ X : ∄x ∈ X such that f (x)≤ f (x∗)}.
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This set is also called the set of all expected value efficient solutions (Caballero et al. 2001). (We use
the notation f (x) ≤ f (x∗) to imply that fk(x) ≤ fk(x∗) for all k ∈ {1, . . . ,d} and f (x) ̸= f (x∗); we use
f (x)≦ f (x∗) when equality is allowed and f (x)< f (x∗) when all inequalities are strict.) The Pareto set, also
called the Pareto front, is the image of the efficient set, P= { f (x∗) : x∗ ∈ E}. When solving Problem (M),
we characterize the entire efficient and Pareto sets as input to the decision-making process.

1.1 Problem Statement

Suppose we are given a significance level α ∈ (0,1) and a stochastic oracle that, for any point x ∈ X,
sample size n, and random objects Y1, . . . ,Yn identically distributed to Y , returns the output random variables
F(x,Y1), . . . , F(x,Yn) having common mean f (x). Let X̃⊆X be some nonempty subset of the feasible set
for which we are able to query the simulation oracle and observe its output data. Our problem is to find,
using only the available output data {F(x,Y1), . . . ,F(x,Yn) : x ∈ X̃},

1. a set Ên,1−α ⊂ X such that limn→∞P{E⊂ Ên,1−α}= 1−α;
2. a set P̂n,1−α ⊂ { f (x) : x ∈ X} such that limn→∞P{P⊂ P̂n,1−α}= 1−α .

1.2 Motivation

Since the objective functions in Problem (M) are unknown and can only be estimated, providing some form
of confidence regions on the efficient and Pareto sets is crucial to quantifying the uncertainty in a real-world
estimated solution to (M). Many, if not most, real-world problems naturally involve both uncertainty and
multiple competing objectives. Examples include maximizing the mean and minimizing the variance of
the return in portfolio allocation (Markowitz 1952; Steinbach 2001), determining power plant designs that
maximize the expected efficiency while minimizing the expected carbon dioxide emissions (Subramanyan
et al. 2011), and determining irrigation designs that balance expected economical, environmental, and
social performance metrics (Crespo et al. 2010); see Hunter et al. (2019) for other applications. While
only one solution can be implemented in practice, it is often desirable to provide decision-makers with
a characterization of the entire efficient and Pareto sets; such a practice often allows decision-makers
to account for factors external to the model in selecting a solution. In such a context, the estimated
characterization of the efficient and Pareto sets should also include a characterization of the uncertainty.
Further, such theory can later be used as a basis for sequential-sampling algorithms that efficiently estimate
the Pareto set in MOSO problems.

1.3 Related Work and Our Contributions

Despite the importance and prominence of the MOSO problem class, the development of theory, methods,
and algorithms for MOSO is just beginning. Very little work toward quantifying uncertainty has been
done to date. While Zhang et al. (2017) and Rojas-Gonzalez and Van Nieuwenhuyse (2020) quantify
uncertainty in MOSO using bootstrapping and stochastic kriging, respectively, neither work’s goal is to
provide a complete theory for constructing confidence regions as detailed in §1.1.

Most related to our work is Vogel (2017) which, to the best of our knowledge, is the first paper to
address confidence regions in the context of multi-objective optimization with objective functions that can
only be observed with stochastic error. The confidence regions constructed in Vogel (2017) are valid for
each n and do not rely on any assumptions about the distribution of a suitably constructed statistic. Thus,
as noted by the author, the resulting confidence regions are conservative.

In this paper, we lay the groundwork for developing a theory for constructing asymptotically valid
frequentist confidence regions on the efficient and Pareto sets for Problem (M). The key step in our proposed
methodology involves constructing certain scalarized sample average estimators of the efficient and Pareto
sets, and then demonstrating that under common regularity conditions, a centered and scaled version of
these estimators converges to a mean-zero Gaussian process. The implication of such a result is that a
(1−α)-confidence region on the efficient and Pareto sets can then be constructed in a manner analogous
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to what is done in classical settings, provided the second moment associated with the limiting Gaussian is
appropriately handled; see §2 for more detail. Finally, we remark that such a sample average framework
is among the most popular approaches for solving MOSO problems; see, e.g., Fliege and Xu (2011), Kim
and Ryu (2011a), Kim and Ryu (2011b), Bonnel and Collonge (2014), Wang (2017), Cooper et al. (2020).

We organize the remainder of the paper as follows. §2, contains an overview of confidence regions
for MOSO and motivates the weak convergence results. In §3, we provide some mathematical prelimi-
naries, characterize the error when solving Problem (M) with and without parameterization, and detail the
assumptions required for our main results. We provide the main results in §4 and concluding remarks in §5.

2 CONSTRUCTING CONFIDENCE REGIONS ON THE EFFICIENT AND PARETO SETS

In this section, we lay the foundations for constructing confidence regions on the efficient and Pareto sets
associated with MOSO. In the process, we motivate the main results of the paper, which appear in §4.

2.1 Classical Confidence Regions

Recall the three heuristic steps for constructing a confidence region on an unknown parameter using observed
data: (a) choose an appropriate random object called the root or the statistic that is some convenient function
of the parameter, (b) identify (or approximate) the root’s distribution, and (c) “invert” the expression for
the root to obtain the (1−α)-confidence region (Politis et al. 1999).

For example, in the familiar setting of estimating the mean θ of a real-valued random variable Y using
data Y1, . . . ,Yn, the frequently chosen root is the Studentized statistic (

√
n/σ̂n)(Ȳ −θ) for Ȳ = n−1

∑
n
i=1Yi and

σ̂n =
√

n−1 ∑
n
j=1(Yj − Ȳ )2. If a CLT on (

√
n/σ̂n)(Ȳ −θ) holds, then we can approximate the distribution

of the root using the standard normal cdf Φ(·), yielding P(θ ∈ (Ȳ ±zα/2σ̂n/
√

n))→ 1−α as n → ∞, where
zα/2 := Φ−1(1−α/2). This justifies the classical (1−α)-confidence interval (Ȳ ± zα/2σ̂n/

√
n)).

In a more general context, suppose the desired parameter is θ ∈Rd , and that the chosen root is the Lp
norm of the scaled error

τn∥θ̂n −θ∥p, (1)

where θ̂n estimates θ , τn > 0 is a scaling parameter and p ≥ 1 is fixed. If τn∥θ̂n − θ∥p exhibits weak
convergence to a real-valued random variable with distribution FT , then an asymptotically valid (1−α)-
confidence region on θ is {y ∈Rd : τn∥θ̂n − y∥p ≤ F−1

T (1−α)}.

2.2 Confidence Regions in MOSO

Now consider our MOSO context, in which the desired parameters are the efficient set E and the Pareto set
P. First, we construct estimators for E and P by replacing the objective f in Problem (M) with its estimated
counterpart F̄n(x) :=

(
n−1

∑
n
i=1 F1(x,Yi), . . . ,n−1

∑
n
i=1 Fd(x,Yi)

)
, yielding the sample-path problem,

minimize F̄n(x) s.t. x ∈ X. (M(n))

Implicit in (M(n)) is the fact that we use the same set of iid random variables Y1, . . . ,Yn at each x. Then,
natural estimators for E,P are the solution to (M(n)) and its image, constructed as

Ên := {X∗ ∈ X : ∄x ∈ X such that F̄n(x)≤ F̄n(X∗)}, P̂n = {F̄n(X∗) : X∗ ∈ Ên}.

Now if we attempt to construct a root as in (1), e.g. as τn∥Ên−E∥ for appropriate scaling τn and norm ∥·∥,
the subtraction is not well-defined: Ên and E are sets that have no clear mapping between them. While
we could try to subtract them anyway using, e.g., the Minkowski difference (Molchanov 2017), doing so
would result in an undesirable increase in the “size” of the set under consideration.

To create a clear mapping between the sets E,P and their estimators, we parameterize (or scalarize)
the objective functions, which effectively transforms Problem (M) into a collection of single-objective
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problems indexed by the parameter s in the parameter set S. (The linear weighted sum is arguably the most
common scalarization approach: each objective k ∈ {1, . . . ,d} is multiplied by a weight sk ∈R+, yielding
sk fk(x), and the weighted objectives are summed to form a new single-objective problem ∑k sk fk(x). Often,
s = (s1, . . . ,sd) ∈ Rd and S ⊂ Rd ; if we require that the weights sum to one, S ⊂ Rd−1. We discuss
parameterization/scalarization and the linear weighted sum in more detail in §3.2.2.) Let (M(s)), s ∈ S
denote the true scalarized problems, and suppose both f and the scalarization are such that the solution to
each scalarized problem x∗s is unique and the sets E,P can be written as the sets

E= {x∗s : s ∈ S}, P= { f (x∗s ) : s ∈ S}. (2)

(Whether or not we can write (2) depends on both the nature of the function f and the nature of the
scalarization; see, e.g., Miettinen (1999). For instance, sufficient conditions for these requirements include
that f is strictly convex and the scalarization is the linear weighted sum. We formalize our assumptions
in §3.3.) Likewise, let (M(s,n)), s ∈ S denote the scalarized sample-path problems, where both F̄ and the
scalarization are such that the solution to each scalarized problem X∗

s (n) is unique almost surely and the
estimators for E,P can be written as

Ên = {X∗
s (n) : s ∈ S}, P̂n = { f (X∗

s (n)) : s ∈ S}. (3)

Now there is a clear correspondence between E,P and their respective estimators Ên, P̂n: For each s ∈ S,
there is a point x∗s ∈ E and a corresponding estimator X∗

s (n) ∈ Ên. Thus, we construct the scaled error fields

{
√

n(X∗
s (n)− x∗s ) ,s ∈ S} and {

√
n( f (X∗

s (n))− f (x∗s )) ,s ∈ S}. (4)

These scaled error fields represent the error in the estimated efficient and Pareto sets, respectively, and
form the basis for constructing a root in our MOSO context. (As a word on terminology, by a field, we
mean a collection of random variables indexed by some variable. In this sense, {

√
n(X∗

s (n)− x∗s ) ,s ∈ S}
is a field of random variables indexed by s ∈ S; {

√
n(X∗

s (n)− x∗s ) ,s ∈ S} is also a stochastic process.)
Suppose we are able to demonstrate the weak convergence (as n → ∞) of the scaled error field

{
√

n(X∗
s (n)− x∗s ) ,s ∈ S} to a characterizable stable random object such as a zero-mean Gaussian process

{W (s),s ∈ S} (see §3); that is, suppose C(S) is the space of Rq-valued continuous functions on S equipped
with an appropriate norm ∥ · ∥ and we can show that

{
√

n(X∗
s (n)− x∗s ) ,s ∈ S} d−→{W (s),s ∈ S} in C(S), (5)

then a (1−α)-confidence region on E is

Ên,1−α :=
{
X̃= {x̃s : s ∈ S} ⊂Rq :

√
n
∥∥Ên − X̃

∥∥≤ w1−α

}
, (6)

where w1−α is the radius of the ball to which the process {W (s),s ∈ S} assigns probability (1−α); that is,

w1−α := inf{r > 0: P(∥W∥ ≤ r)} ≥ 1−α.

In writing (6) we assume, again for ease of exposition, that the positive definite kernel associated with
{W (s),s ∈ S} is known when computing w1−α . The reader should recognize the weak convergence result
in (5) and the confidence region in (6) as the infinite-dimensional analogues of the CLT and the confidence
interval, respectively, in the classical case presented in §2.1. In the rest of the paper, we undertake the
rigorous demonstration of (5).

3 PRELIMINARIES

In this section, we discuss preliminaries for our main results. First, in §3.1, we discuss mathematical
preliminaries. In §3.2, we characterize the error in solving Problem (M) using the sample-path problem
(M(n)) with and without parameterization. Finally, in §3.3, we discuss our assumptions and their implications.
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3.1 Mathematical Preliminaries

Definition 1 (ε-net, Billingsley 1999, p. 239) Let (M,ρ) be a metric space. An ε-net for a set A⊆ M is
a set of points {x j} with the property that for each x ∈A, there is an x j such that ρ(x,x j)< ε .
Definition 2 (Total boundedness, Billingsley 1999, p. 239) Let (M,ρ) be a metric space. A set A⊆ M is
totally bounded if for every ε > 0, it has a finite ε-net.
Definition 3 (Weak convergence, Billingsley 1999, p. 26) For random variables Xn,n ≥ 1 and X in a σ -field
M, we say that Xn converges weakly to X , denoted Xn

d−→X , if P(Xn ∈ A)→ P(X ∈ A) for X-continuity
sets A, that is, sets A ∈M such that P(X ∈ ∂A) = 0, where ∂A is the boundary of A.
Note that several other equivalent notions of weak convergence exist.

Let (Cd(D),∥·∥) be a Banach space of all Rd-valued continuous functions on D⊂Rq, and let Cd(D)∗

denote its dual space, that is, the space of bounded linear functionals on Cd(D). Recall that a linear
functional J ∈ Cd(D)∗ is bounded if and only if it is continuous with respect to the operator norm
∥J∥∗ := sup{|Jx| : x ∈Cd(D), ∥x∥= 1} (Kreyszig 1978).
Definition 4 (Gaussian element) A Cd(D)-valued random element W is a Gaussian element if for any
J ∈Cd(D)∗, the random variable JW ∈R is normally distributed.

Notice that any random element W in Cd(D) can be seen both as a random function W : D→Rd and
as a stochastic process {W (x) : x ∈D}. Therefore, a Gaussian process in Cd(D) is a Gaussian random
element in Cd(D).

Further, W is said to be centered or mean-zero if E[JW ] = 0 for all J ∈ Cd(D)∗. For a fixed x =
(x1, . . . ,xq) ∈D and α = (α1, . . . ,αd) ∈Rd , the functional Jα,x : h = (h1, . . . ,hd) 7→ ∑

d
i=1 αihi(x) ∈Cd(D)∗

and Jα,xW = ∑
d
i=1 αiWi(x) is univariate Gaussian. However, α is arbitrary and thus W (x) is d-variate

Gaussian. Similarly, for fixed x = (x1, . . . ,xn) ∈ Rd ×Rn, and any d × n matrix (of reals) α , since the
functional Jα,x : h = (h1, . . . ,hd) 7→ ∑

d
i=1 ∑

n
j=1 αihi(x j) ∈Cd(D)∗, we see that Jα,xW = ∑

d
i=1 ∑

n
j=1 αiWi(x j)

is normally distributed and thus (W (x1), . . . ,W (xn)) is vector-valued multivariate normal.

3.2 Error Characterizations

In this section, we characterize the error in solving Problem (M) using the sample-path problem (M(n)).
We also discuss parameterization and characterize the error under parameterization.

3.2.1 The Function Estimator’s Error

When solving the sample-path problem (M(n)), let G : D×Y→Rd be a vector-valued function that specifies
the error. Thus, for each (x,Y ) ∈D×Y, we have G(x,Y ) := F(x,Y )− f (x). For notational convenience,
for each x ∈D, further define Gx : Y→Rd so that for each Y ∈ Y,

Gx(Y ) := G(x,Y ) = F(x,Y )− f (x).

Then, we can think of Gx as a random vector that specifies the error for a given x ∈D. Let

G := {Gx,x ∈ X}
be a random field where x is the index labeling the collection of random vectors.

For Y1, . . . ,Yn and for each x ∈ D, define the empirical mean of the function estimator’s error as
Ḡ(x) := n−1

∑
n
i=1 G(x,Yi), so that

Ḡx := Ḡ(x) = n−1
∑

n
i=1 G(x,Yi) = n−1

∑
n
i=1 Gx(Yi).

Thus, the oracle allows us to observe the estimator F̄n(x) = f (x)+ Ḡ(x). (For notational simplicity, we
omit the implied subscript of n on Ḡ(x).) Since we have the same Y1, . . . ,Yn at each x in (M(n)), when we
perform any operation across the index set, such as writing Ḡx1 − Ḡx2 for x1,x2 ∈D, we have the same
Y1, . . . ,Yn at each point in the index set. For example, Ḡx1 − Ḡx2 = n−1

∑
n
i=1
(
Gx1(Yi)−Gx2(Yi)

)
.
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3.2.2 The Parameterized Function Estimator’s Error

As discussed in §1.3, we require a mapping between the efficient set E and its estimator Ên. We achieve
this mapping through parameterization, which we describe first. Then, we define the function estimator’s
error under parameterization.

We parameterize the objective functions for the true multi-objective Problem (M) and the sample-path
multi-objective problem (M(n)) as follows. For some parameter set S, we assume the existence of a
parameterization φ taking the form of an operator φ : S×Cd(D)→C1(D). Such a parameterization may
arise from special structure in Problem (M) or from scalarization (Miettinen 1999; Marler and Arora 2004;
Audet et al. 2008; Eichfelder 2008), which is used to convert the multi-objective problem in (M) into a
single-objective stochastic optimization problem (Romanko et al. 2012).

In our context, given s ∈ S, the parameterized true objective function f is the function φ(s, f ) ∈C1(D),
and the parameterized version of F(·,Y ) is the function φ(s,F(·,Y )), where φ(s,F(·,Y )) ∈C1(D) for a.e.
Y ∈ Y. Further, given a parameter value s ∈ S, the scalarized version of Problem (M) is

minimize φ(s, f )(x) s.t. x ∈ X, (M(s))

and, given a parameter value s ∈ S and sample size n, the scalarized version of (M(n)) is

minimize φ(s, F̄n)(x) s.t. x ∈ X. (M(s,n))

(This notation is not ideal, but it is well-considered; see Kreyszig (1978) for examples of similar notation.)
Example 1 (Linear weighted sum) Given a parameter value s in the simplex S= {s∈Rd : ∑

d
i=1 si = 1,0≤ s}

and a vector-valued function f ∈Cd(D), the linear weighted sum parameterization implies that for x ∈D,
we have: φ(s, f )(x) = ⟨s, f (x)⟩, φ(s,F(·,Y ))(x) = ⟨s,F(x,Y )⟩, and φ(s, F̄n)(x) = ⟨s, F̄n(x)⟩. Given these
parameterizations, scalarized versions of Problems (M) and (M(n)) are formulated as above.

Now to characterize the parameterized function estimator’s error, let V : S×D×Y→R be a real-valued
random variable that specifies the error; for each (s,x,Y ) ∈ S×D×Y, let V (s,x,Y ) := φ(s,F(·,Y ))(x)−
φ(s, f )(x). For notational convenience, for each (s,x) ∈ S×D, further define Vs,x : Y→R so that for each
Y ∈ Y,

Vs,x(Y ) :=V (s,x,Y ) = φ(s,F(·,Y ))(x)−φ(s, f )(x).

Then, we can think of Vs,x as a random variable that specifies the error for a given (s,x) ∈ S×D. For a
given parameterization φ , let

V := {Vs,x,(s,x) ∈ S×X}

be a random field where (s,x) is the index labeling the collection of random variables.
For Y1, . . . ,Yn and for each (s,x) ∈ S×D, likewise define the empirical mean of the parameterized

estimator’s error as V (s,x) := n−1
∑

n
i=1V (s,x,Yi), so that

V s,x :=V (s,x) = n−1
∑

n
i=1V (s,x,Yi) = n−1

∑
n
i=1Vs,x(Yi).

Example 2 (Linear weighted sum, continued) Given (s,x)∈ S×X, the linear weighted sum parameterization
implies that the error random variable is Vs,x(Y ) = ⟨s,F(x,Y )⟩−⟨s, f (x)⟩= ⟨s,F(x,Y )− f (x)⟩= ⟨s,G(x,Y )⟩,
and the empirical mean of the parameterized estimator’s error is V s,x = ⟨s, F̄n(x)⟩−⟨s, f (x)⟩= ⟨s, F̄n(x)−
f (x)⟩= ⟨s, Ḡ(x)⟩= φ(s, Ḡ)(x).

Recall that we have the same Y1, . . . ,Yn at each point x in (M(n)). Likewise, when we perform any
operation across the index set, such as writing V s1,x1 −V s2,x2 for (s1,x1),(s2,x2) ∈ S×D, we have the same
Y1, . . . ,Yn at each point in the index set. For example, V s1,x1 −V s2,x2 = n−1

∑
n
i=1
(
Vs1,x1(Yi)−Vs2,x2(Yi)

)
.
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3.3 Assumptions and Their Implications

In this section, we formalize our standing assumptions about the functions that comprise the true problem
(M), the sample-path problem (M(n)), and the parameterization resulting in problems (M(s)) and (M(s,n)).
In brief, we require compactness, Lipschitz continuity, and uniqueness for the solutions to the parameterized
problems and the estimated parameterized problems. We also discuss some implications of these assumptions.

3.3.1 Compactness and Lipschitz Continuity

To begin, Assumption 1 details sufficient conditions for a CLT to hold on the random field that specifies the
error V= {Vs,x,(s,x) ∈ S×X}. In brief, we require the feasible set and the parameter set to be compact,
and we also require Lipschitz continuity.
Assumption 1 We assume the random elements Y1, . . . ,Yn are iid copies of Y having probability measure
P and the following:

1. The feasible set X⊂Rq and the real-valued parameter set S are compact. (Typically, for d objectives,
the parameter set S is such that S⊂Rd or S⊂Rd−1.)

2. The vector-valued function F(·,Y ) is L(Y )-Lipschitz continuous for a.e. Y ∈ Y under the Euclidean
norm; that is, for all x1,x2 ∈ D and a.e. Y ∈ Y, ∥F(x1,Y )−F(x2,Y )∥ ≤ L(Y )∥x1 − x2∥ where
0 < E[L(Y )2]< ∞ and ℓ := E[L(Y )]> 0.

3. The parameterization φ preserves Lipschitz continuity on S×D (to be defined in Definition 5)
where the resulting Lipschitz constant for φ(·,F(·,Y )), called Λ(Y ), is such that 0 < E[Λ(Y )2]< ∞

and λ := E[Λ(Y )]> 0.
Under Assumption 1, Problem (M) is well-posed in the sense that it implies the efficient and Pareto sets

exist and are bounded. In particular, Assumption 1 Part 2 implies the following Lemma 1 which provides
several implications of Lipschitz continuity. The proof for Lemma 1 appears in §A.1.
Lemma 1 Suppose Assumption 1 Part 2 holds, so that F(·,Y ) is L(Y )-Lipschitz continuous for a.e. Y ∈ Y.
Let L̄ := n−1

∑
n
i=1 L(Yi). Then

1. f is ℓ-Lipschitz continuous,
2. G(·,Y ) is (L(Y )+ ℓ)-Lipschitz continuous for a.e. Y ∈ Y, and
3. Ḡ(·) is (L̄+ ℓ)-Lipschitz continuous a.s.
Further, in Assumption 1 Part 3, we require the parameterization φ to preserve Lipschitz continuity, a

term we define in Definition 5.
Definition 5 We say that the parameterization φ preserves Lipschitz continuity on S×D if for each ℓ-
Lipschitz continuous function h∈Cd(D), there exists λ (h)∈ (0,∞) such that the function φ(·,h) : S×D→R

is λ (h)-Lipschitz continuous; that is, for all (s1,x1),(s2,x2) ∈ S×D,

|φ(s1,h)(x1)−φ(s2,h)(x2)| ≤ λ (h)∥(s1,x1)− (s2,x2)∥.

Lemma 2 states that the linear weighted sum parameterization preserves Lipschitz continuity under
Assumption 1 Part 1; a proof of this lemma appears in §A.2.
Lemma 2 If Assumption 1 Part 1 holds, so that S and D are compact, then the linear weighted sum
parameterization preserves Lipschitz continuity on S×D.

Now, the following Lemma 3 regarding the Lipschitz continuity of the error also holds, in a similar
fashion to Lemma 1. The proof for Lemma 3 appears in §A.3.
Lemma 3 Suppose Assumption 1 Parts 2 and 3 hold, so that F(·,Y )∈Cd(D) is L(Y )-Lipschitz continuous
for a.e. Y ∈ Y and φ preserves Lipschitz continuity on S×D. Let Λ̄ := n−1

∑
n
i=1 Λ(Yi). Then

1. φ(·, f ) is λ -Lipschitz continuous,
2. V (·, ·,Y ) is (Λ(Y )+λ )-Lipschitz continuous for a.e. Y ∈ Y, and
3. V (·, ·) is (Λ̄+λ )-Lipschitz continuous a.s.
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3.3.2 Uniqueness of the Solution Under Parameterization

Next, Assumption 2 details conditions that, together with Assumption 1, are sufficient for a CLT to hold
on the infinite-dimensional root {

√
n(X∗

s (n)− x∗s ) ,s ∈ S}.
Assumption 2 We assume the following:

1. Every objective function f1, . . . , fd is strictly convex.
2. Every sample-path objective function F̄1,n, . . . , F̄d,n is strictly convex almost surely.
3. The parameterization φ is the linear weighted sum.
Under Assumptions 1 and 2, for each s ∈ S, φ(s, f )(·) and φ(s, F̄n)(·) are strictly convex problems.

Thus, the solution to the parameterized true problem x∗s := arginf{φ(s, f )(x) : x ∈ X} exists and is unique,
and the solution to the parameterized sample-path problem X∗

s (n) := arginf{φ(s, F̄n)(x) : x ∈X} exists and
is unique almost surely; see, e.g., Miettinen (1999), Fliege and Xu (2011).

4 MAIN RESULTS

We are now ready to present the main results of the paper. First, as background information, §4.1 provides
a CLT on the empirical mean of the function estimator’s error; the proofs in §4.2 follow similar steps to
those presented here. Thus, this section builds intuition and preliminary results for the remainder of the
paper in a slightly simpler setting than the one we ultimately consider. Then, the main CLT on the empirical
mean of the parameterized function estimator’s error appears in §4.2. Finally, we present the main weak
convergence result in §4.3.

4.1 CLT on the Empirical Mean of the Function Estimator’s Error

For Gx1 ,Gx2 ∈ G, define the L2(P)-distance on G as

ρ(Gx1 ,Gx2) :=
√

E[∥Gx1 −Gx2∥2] :=
(∫

Y
∥Gx1(y)−Gx2(y)∥2P(dy)

)1/2

,

so that (G,ρ) is a metric space. Also, we define the terms ε-net and totally bounded in Definitions 1 and 2.
The following theorem is an analogue of Theorem 6.1 on p. 89 of van de Geer (2000); see also van

der Vaart and Wellner (1996), van der Vaart (1998).
Theorem 1 Let Y1, . . . ,Yn be iid, and let B(δ ) := {(x1,x2) : x1,x2 ∈ X, ρ(Gx1 ,Gx2)≤ δ} . Suppose that

1. G= {Gx,x ∈ X} is totally bounded and
2. for all η > 0, there exists a δ > 0 such that

limsup
n→∞

P

(
sup

(x1,x2)∈B(δ )

{√
n
∥∥Ḡx1 − Ḡx2

∥∥> η
})

< η .

Then G is P-Donsker; that is, as n → ∞, the random field {
√

nḠx,x ∈ X} converges in distribution to a
zero-mean Gaussian process {Wx ∈Rd ,x ∈ X}.

We now demonstrate conditions under which the postulates of Theorem 1 are satisfied.
Proposition 1 The postulates of Theorem 1 hold under Assumption 1; that is, if Y1, . . . ,Yn are iid, the
feasible set X is compact, and F(·,Y ) is L(Y )-Lipschitz continuous for a.e. Y ∈ Y where 0 < E[L(Y )2]< ∞.

Proof. We demonstrate the second postulate of Theorem 1, then the first.
Let η > 0. Then for each x1,x2 ∈D, since G(·,Y ) is (L(Y )+ℓ)-Lipschitz continuous for a.e. Y ∈ Y by

Lemma 1, we have

ρ(Gx1 ,Gx2) =
√

E[∥Gx1 −Gx2∥2]≤
√

E[(L(Y )+ ℓ)2]∥x1 − x2∥.
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Let δ > ∥x1 − x2∥
√

E[(L(Y )+ ℓ)2]. For a.e. Y ∈ Y, Lemma 1 also implies that for every x1,x2 ∈ X,

√
n
∥∥Ḡx1 − Ḡx2

∥∥≤√
n(L̄+ ℓ)∥x1 − x2∥<

√
n

(
L̄+ ℓ√

E[(L(Y )+ ℓ)2]

)
δ .

Then

P

(
sup

(x1,x2)∈B(δ )

{√
n
∥∥Ḡx1 − Ḡx2

∥∥> η
})

≤ P

(
√

n

(
L̄+ ℓ√

E[(L(Y )+ ℓ)2]

)
>

η

δ

)
.

Under the postulates of the proposition, L̄ obeys a CLT. Thus, for small enough δ , the second postulate of
Theorem 1 holds.

Next, we show that G is totally bounded by constructing a finite ε-net. Let ε > 0 and Gx ∈ G. Then
if, for some j ∈ {1,2, . . .}, we have an x j such that ∥x− x j∥< ε/

√
E[(L(Y )+ ℓ)2], it follows that

ρ(Gx,Gx j) =
√

E[∥Gx −Gx j∥2]≤
√

E[(L(Y )+ ℓ)2]∥x− x j∥< ε.

Then we construct a finite ε-net {Gx j , j = 1, . . . ,r} by selecting {x j} so that

dist(X,{x j}) = sup
x∈X

inf
j
∥x− x j∥< t := ε/

√
E[(L(Y )+ ℓ)2];

then, ∪ j int(B(x j, t)) ⊇X is an open cover of X. Since X is compact, every open cover has a finite subcover.
Thus, ∃r < ∞ large enough that ∪ j≤r int(B(x j, t)) ⊇ X, implying {x j, j = 1, . . . ,r} is a finite ε-net.

4.2 CLT on the Empirical Mean of the Parameterized Function Estimator’s Error

In this section, we derive a CLT on the empirical mean of the parameterized function estimator’s error.
This section mirrors §4.1 in intuition, but with an extra index due to the parameterization.

For Vs1,x1 ,Vs2,x2 ∈ V, recall that the L2(P)-distance on V is ρ(Vs1,x1 ,Vs2,x2) =
√

E[(Vs1,x1 −Vs2,x2)
2], so

that (V,ρ) is a metric space. As with Theorem 1, in the context of parameterization, we also have the
following Theorem 2, which is an analogue of Theorem 6.1 on p. 89 of van de Geer (2000).
Theorem 2 Let Y1, . . . ,Yn be iid and let

B̃(δ ) := {((s1,x1),(s2,x2)) : (s1,x1),(s2,x2) ∈ S×X, ρ(Vs1,x1 ,Vs2,x2)< δ}.

Suppose that

1. V= {Vs,x,(s,x) ∈ S×X} is totally bounded and
2. for all η > 0, there exists a δ > 0 such that

limsup
n→∞

P

(
sup

((s1,x1),(s2,x2))∈B̃(δ )

{√
n |V s1,x1 −V s2,x2 |> η

})
< η .

Then V is P-Donsker; that is, the random field {
√

nV s,x,(s,x) ∈ S×X} converges in distribution to a
zero-mean Gaussian process {Ws,x ∈R,(s,x) ∈ S×X}.

The following Proposition 2 states conditions under which the postulates of Theorem 2 are satisfied.
Proposition 2 The postulates of Theorem 2 hold under Assumption 1; that is, if Y1, . . . ,Yn are iid, the
feasible set X and the parameter set S are compact, F(·,Y ) is L(Y )-Lipschitz continuous for a.e. Y ∈ Y
where 0 < E[L(Y )2] < ∞, and φ preserves Lipschitz continuity on S×D where the resulting Lipschitz
constant for φ(·,F(·,Y )), called Λ(Y ), is such that 0 < E[Λ(Y )2]< ∞ and λ := E[Λ(Y )]> 0.
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4.3 CLTs on the Solutions to the Estimated Scalarized Problems and Their Images

Equipped with the general result that the random fieldV= {Vs,x,(s,x)∈ S×X} is P-Donsker from Theorem 2,
next, we employ the continuous mapping theorem (see, e.g., Billingsley 1999, p. 21) to obtain a CLT-type
result on the solutions to the scalarized problems (M(s)), indexed by the parameters s ∈ S. We present this
result as the following Theorem 3, without proof.
Theorem 3 Let Assumptions 1 and 2 hold. Then

{
√

n(X∗
s (n)− x∗s ) ,s ∈ S} d−→{Ws,s ∈ S},

where {Ws,s ∈ S} is a mean-zero Gaussian process; recall Ws ∈ Rq for each s ∈ S. Furthermore, if f
is Fréchet differentiable at each x ∈ D, that is, there exists a d × q matrix ∇ f (x) such that for u ∈ Rq,
∥ f (x+u)− ( f (x)+∇ f (x)u)∥= o(∥u∥), then

{
√

n( f (X∗
s (n))− f (x∗s )) ,s ∈ S} d−→{∇ f (x∗s )Ws,s ∈ S}.

A proof of the first part of Theorem 3 follows from the application of the continuous mapping theorem to
Theorem 2. The proof of the second part follows from the first part and from Taylor’s theorem; heurisically,
due to Fréchet differentiability, we see f (X∗

s (n))− f (x∗s )≈ ∇ f (x∗s )(X
∗
s (n)− x∗s ); then apply the first part.

5 CONCLUDING REMARKS

We provide weak convergence results that lay the foundation for confidence regions on the efficient and
Pareto sets in MOSO. Future research includes translating these objects into something computable, e.g.,
through a sequence of finite-dimensional approximations and ensuring tightness.
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A APPENDICES

We present the proofs of Lemmas 1–3 below.

A.1 Proof of Lemma 1

Proof. Let x1,x2 ∈D, and suppose the postulates hold. Proof of Part 1. Using Jensen’s inequality,

∥ f (x1)− f (x2)∥= ∥E[F(x1,Y )−F(x2,Y )]∥ ≤ E[∥F(x1,Y )−F(x2,Y )∥] (7)

≤ E[L(Y )∥x1 − x2∥] = E[L(Y )]∥x1 − x2∥.
Proof of Part 2. Now consider G(x,Y ) = Gx(Y ). Then for a.e. Y ∈ Y, we have

∥Gx1(Y )−Gx2(Y )∥= ∥F(x1,Y )−F(x2,Y )+( f (x2)− f (x1))∥ ≤ ∥F(x1,Y )−F(x2,Y )∥+∥ f (x2)− f (x1)∥
≤ (L(Y )+E[L(Y )])∥x1 − x2∥.

Proof of Part 3. Finally, consider Ḡ(x) = Ḡx. Then almost surely,

∥Ḡx1 − Ḡx2∥=
∥∥n−1

∑
n
i=1 Gx1(Yi)−Gx2(Yi)

∥∥= ∥∥ f (x2)− f (x1)+n−1
∑

n
i=1 F(x1,Yi)−F(x2,Yi)

∥∥
≤ ∥ f (x2)− f (x1)∥+n−1

∑
n
i=1 ∥F(x1,Yi)−F(x2,Yi)∥

≤ (E[L(Y )]+n−1
∑

n
i=1 L(Yi))∥x1 − x2∥= (L̄+E[L(Y )])∥x1 − x2∥.
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A.2 Proof of Lemma 2

Proof. Without loss of generality, let S= {s ∈Rd : ∑
d
i=1 si = 1,0 ≤ s}. Let D be compact, let h ∈Cd(D)

be an ℓ-Lipschitz continuous function, and set u := supx∈D∥h(x)∥< ∞. Set λ =
√

2max{ℓ
√

d,u}, which
depends on h. Then for (s1,x1), (s2,x2) ∈ S×D,

|φ(s1,h)(x1)−φ(s2,h)(x2)|= |⟨s1,h(x1)⟩−⟨s2,h(x2)⟩|
≤ |⟨s1,h(x1)⟩−⟨s1,h(x2)⟩|+ |⟨s1,h(x2)⟩−⟨s2,h(x2)⟩|= |⟨s1,h(x1)−h(x2)⟩|+ |⟨s1 − s2,h(x2)⟩|
≤ ∥s1∥∥h(x1)−h(x2)∥+∥s1 − s2∥∥h(x2)∥ by Cauchy-Schwartz

≤ ℓ
√

d∥x1 − x2∥+u∥s1 − s2∥ ≤ max{ℓ
√

d,u}(∥x1 − x2∥+∥s1 − s2∥)

≤
√

2max{ℓ
√

d,u}
√
∥x1 − x2∥2 +∥s1 − s2∥2 = λ∥(s1,x1)− (s2,x2)∥.

A.3 Proof of Lemma 3

Proof. Suppose the postulates hold. Proof of Part 1. Since F(·,Y ) is L(Y )-Lipschitz continuous for a.e.
Y ∈ Y, then f is ℓ-Lipschitz continuous by Lemma 1. Since φ preserves Lipschitz continuity on S×D,
by Definition 5, then there exists λ ∈ (0,∞) such that φ(·, f ) is λ -Lipschitz continuous; that is, for all
(s1,x1), (s2,x2)∈ S×D, |φ(s1, f )(x1)−φ(s2, f )(x2)| ≤ λ∥(s1,x1)−(s2,x2)∥, where λ depends on ℓ. Proof
of Part 2. Let (s1,x1),(s2,x2) ∈ S×D and consider Vs,x(Y ) =V (s,x,Y ). Then for a.e. Y ∈ Y,

|Vs1,x1(Y )−Vs2,x2(Y )|= |φ(s1,F(·,Y ))(x1)−φ(s1, f )(x1)− (φ(s2,F(·,Y ))(x2)−φ(s2, f )(x2))|
≤ |φ(s1,F(·,Y ))(x1)−φ(s2,F(·,Y ))(x2)|+ |φ(s2, f )(x2)−φ(s1, f )(x1)|
≤ (Λ(Y )+λ )∥(s1,x1)− (s2,x2)∥.

Proof of Part 3. Let (s1,x1),(s2,x2) ∈W×D and consider V s,x =V (s,x). Then almost surely,

|V s1,x1 −V s2,x2 |= |n−1
∑

n
i=1(Vs1,x1(Yi)−Vs2,x2(Yi))|

≤ |φ(s2, f )(x2)−φ(s1, f )(x1)|+n−1
∑

n
i=1|φ(s1,F(·,Yi))(x1)−φ(s2,F(·,Yi))(x2)|

≤ (Λ̄+λ )∥(s1,x1)− (s2,x2)∥.
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