
An intelligent cloud management approach for the workflow-cloud
framework WFCF

Eric Kübler1, Mirjam Minor1

1Institute of Informatics, Goethe University, Robert-Mayer-Str.10, Frankfurt am Main, Germany
{ekuebler, minor}@informatik.uni-frankfurt.de

Keywords: cloud management, workflows, WFaaS, BPMN tools, automated techniques

Abstract: Workflow as a service is a recent trend in cloud computing. The opportunity to execute a workflow in a cloud
is very attractive for business. There is, however, a lack of concepts for an integration of clouds and workflow
management systems. Todays solutions are often not very effective in terms of resource usage. Further, they
are not flexible enough to exchange the workflow management system, the cloud or multi-cloud environment.
In this work, we evaluate WFCF our connector based integration framework for workflow management tools
and clouds. WFCF uses intelligent methods to manage cloud resources with respect to monitoring information
from both, the workflow and the cloud system. We introduce the architecture of WFCF and test the prototypical
implementation. The evaluation is based on workflows from the music mastering domain.

1 INTRODUCTION

Cloud Computing is a field that has grown over the
last few years. More and more companies use clouds
for their business. Cloud computing opens new fields
of business solutions. One of the new fields is work-
flow as a Service (WFaaS) as introduced by (Wang
et al., 2014; Korambath et al., 2014). The Work-
flow Management Coalition (Workflow Management
Coalition, 1999) defines a workflow as “the automa-
tion of a business process, in whole or part, during
which documents, information or tasks are passed
from one participant to another for action, according
to a set of procedural rules”. A task, also called ac-
tivity, is defined as “a description of a piece of work
that forms one logical step within a process. An ac-
tivity may be a manual activity, which does not sup-
port computer automation, or a workflow (automated)
activity. A workflow activity requires human and/or
machine resources(s) to support process execution”
(Workflow Management Coalition, 1999). An exam-
ple for a workflow is the step-ba-step editing of raw
music files to improve the audio quality. An example
task within this workflow could be to add a fading ef-
fect at the end of the song, so that the music slowly
becomes quieter at the end. The basic idea of WFaaS
is to execute such tasks within the cloud. The im-
plementation of the example may use a web service
which receives the music file, manipulates the file and
returns it. The web service could be hosted on a PaaS

container or on an IaaS virtual machine (VM).
However, it is not an easy task to provide cloud
resources in a way that not more resources are
started than necessary (over-provisioning), but also
not less than necessary (under-provisioning). Over-
provisioning leads to additional costs and should be
avoided. On the other hand, under-provisioning may
slow down workflow execution since not enough re-
sources are provided. In the best case, this will frus-
trate the user, in the worst case it can lead to violations
of the Service Level Agreements (SLA), under which
the WFaaS is offered as a service to the costumer. A
SLA defines agreements between the provider and the
customer about different aspects of the quality of ser-
vice. Violations of a SLA may cause high costs and a
significant loss of reputation for the provider (Shoaib
and Das, 2014). It is difficult to determine how many
resources are required if the status of the currently
ongoing workflows is unknown. Thus, a solution
that monitors the ongoing workflows and manages the
cloud resources is required. A suitable management
strategy should consider both, cloud and workflows in
an integrated manner.
Several challenges arise for the integration of work-
flows and clouds. To avoid the vendor lock-in prob-
lem, a solution should be capable of handling differ-
ent clouds. A WFaaS provider may decide to switch
the cloud provider to save costs or to include different
clouds for different services. The multi-cloud prob-
lem as described by (Ferry et al., 2013), means that



a user interacts with several different clouds, each
individually. Recently, each cloud has its own API
and standards, which complicates the situation for a
system that operates on multiple clouds. Further, a
WFaaS provider may intend to change the used work-
flow management system for reasons of performance.
An alternative scenario is that a company aims to run
an integrated cloud and workflow solution but still has
its own workflow management tool and does not want
to substitute the legacy tool. In both cases, an inte-
gration of workflows and cloud should allow the ex-
change of the used workflow tool, without the need
for re-coding the core management system.
In our previous work (Kübler and Minor, 2017),
we introduced the architecture of our Workflow
Cloud Framework (WFCF), a connector-based inte-
gration framework for workflow management tools
and clouds that aims to optimize the resource uti-
lization of cloud resources for workflows. In this
work, we have implemented a prototype of WFCF
and evaluate how long it takes from the registration
of a new workflow instance to the start of the required
resources. The remainder of the work is organized as
follows. In Section 2 we will discuss related work.
In Section 3, we explain the core concepts of WFCF
and the architecture. In Section 4, we will present our
experimental setup and the test results together with
a discussion of the results. In Section 5, we draw a
conclusion.

2 RELATED WORK

In this section, we introduce and briefly discuss
related work. The management of cloud resources is
a difficult task, as mentioned above. There is several
work in the literature that addresses the problem of
resource provisioning in the cloud (Shoaib and Das,
2014; Pousty and Miller, 2014; Quiroz et al., 2009;
Bala and Chana, 2011; Rodriguez and Buyya, 2017).
These approaches have the problem that the provi-
sioning is either very static, does not make use of the
capabilities of a cloud, or that the approaches are not
implemented yet and therefore rather theoretically.
Another alternative could be case-based reasoning
(CBR). The idea of CBR is that similar problems
have similar solutions (Aamodt and Plaza, 1994). We
discussed the feasibility of CBR for cloud manage-
ment in our work (Kübler and Minor, 2016).

Other approaches aim at a deeper integration of
clouds and workflows (Wang et al., 2014; Korambath
et al., 2014; Liu et al., 2010). They deeply integrate
workflow and cloud technology, reducing the occur-

rence of over-provisioning and under-provisioning.
However, they strongly depend on the used cloud
and workflow management tools. Therefore, they
are very limited in their options to exchange either
the used cloud or workflow management tool or
both. This leads tho a high risk of vendor lock-in. A
solution for this problem should be a more flexible
integration of different workflow management tools
and clouds. This is the goal of WFCF.
Closely related to the concept of WFCF is the
CloudSocket project(clo, 2018). CloudSocket is a
tool for end users to design their workflows and
deploy them to the cloud. This is very similar to
WFCF, but the main focus of CloudSocket is the user
aspect. The main concern is that a user can design
own workflows and deploy them fast, while WFCF
rather focuses on the aspect of flexible integration of
different workflow tools and clouds, to provide more
freedom in chosing the tools.

3 WFCF CONCEPTS AND
ARCHITECTURE

In this section, we will explain the basic concepts
of WFCF, followed by the overall architecture. First
we will introduce in short the model we use for the
representation of the cloud and the workflows. Then
we will explain the core concepts of WFCF, followed
by the architecture.

3.1 Placement model

The first step towards an optimal usage of resources is
a representation of the actually used cloud resources
and the active tasks, or the task that will be active
soon. We call this the placement model. This model
contains the started virtual machines (VMs) on the
IaaS layer, containers from the PaaS layer and de-
pendencies between them. We call this sub-model
the cloud model. The other part of the placement
model is the workflow model. This includes the cur-
rently ongoing tasks, but also the tasks that will be
started next. One benefit of workflows is that the
shape of the workflow is known and defined in the
workflow definition. Thus, it is possible to determine
a set of tasks that are potentially following the cur-
rently active tasks. If the workflow comprises only a
sequence of tasks, or only contains sections with par-
allel tasks, all tasks within the set of following tasks
will be executed for sure. If the workflow contains OR
or XOR sections, the set of following tasks may con-
tain tasks, that will not be executed next. The cloud
model also contains references to the workflow model



to determine the place (VM or container) where a par-
ticular task is executed. Figure 1 shows an illustra-
tion of a sample placement model. The entire fig-
ure depicts the placement model. The lower part is
the cloud model and the upper part is the workflow
model. The sample cloud model includes several lay-
ers. The workflow model shows the currently active
tasks (task1 only) and which container executes the
task (con2). Task 2 and task 3 will be executed af-
ter task 1 has been finished. The plus symbol in the
gateway indicates that the gateway is a parallel split.
This means that both, task 2 and 3 will be executed for
sure. If this gateway was an XOR gateway, task 2 or
task 3 will be executed alternatively. At the moment,
we are satisfied by knowing all potenitally following
tasks. Future work will include research on heuris-
tic methods to determine in more detail which of the
tasks will be executed most likely. The figure does not
show the detailed information that is stored for each
element (tasks, VM, container ...). A VM for exam-
ple includes information about the available resources
like disk space, memory, number of cpu cores, the
used operating system and so on. It also includes the
usage of this resources in percentage.

Figure 1: Illustration of a sample placement model.

3.2 The connector concept of WFCF

The goal of WFCF is to allow the usage of different
clouds with different workflow management systems,
in a way, that it can be extended later on and as easily
as possible. An internal abstract representation that is
independent from the actually used provider is a first

necessary step. This may lead to the lost of some spe-
cial ability of an actual cloud, but the abstract repre-
sentation will help to manage different clouds without
the need for adjustments within the model for each
new cloud. However, even with an abstract represen-
tation of the cloud infrastructure there is the need to
handle the actual systems. WFCF use the concept of
connectors to overcome the gap between the abstract
model and the actual system.
Figure 2 shows a simple example of the concept, with
OpenShift 1 and Amazon Web Service (AWS)2 as
clouds in a UML like notation. The remaining com-
ponents of WFCF use abstract connectors to interact
with the multi-cloud. The connectors have methods
to provide WFCF with information about the resource
utilization (cpu usage, memory usage...), which kind
of cloud is connected (IaaS or PaaS) and the ability
to manage the clouds in an abstract way (start or stop
VMs or containers, change resources...). Which cloud
exactly is connected to WFCF, however, is not known
for most parts of WFCF. The concrete connectors (in
this example the OpenShift connector and the AWS
EC2 connector), inherit from the abstract connector
and implement the methods. We will explain later on,
which parts of the WFCF framework create and con-
figure the concrete connectors. We also use the same
concept for monitoring the workflow engine, with an
abstract workflow monitoring connector and concrete
connectors which implement the required methods.

Figure 2: Simple illustration of the connector concept.

3.3 The architecture of WFCF

Having introduced the core concepts of WFCF, we
will now explain the architecture of WFCF. The
WFCF framework can be divided into three parts. The

1OpenShift: https://www.openshift.com
2AWS: https://aws.amazon.com



monitoring part, the management part and the envi-
ronment part, including the cloud and the workflow
engine. Figure 3 shows an overview of the architec-
ture of WFCF and its most important components.
The monitoring aspect is managed by CWorkload.
This component monitors the cloud resources and the
workflow management tool. CWorkload uses the con-
nector concept as explained above. The main tasks of
CWorkload is to collect all necessary information and
build the placement model. This includes the resource
utilization and the tasks that are currently started or
will be possibly started next. In addition, CWorkload
also investigates the available workflow definitions. A
workflow definition contains all information about the
structure of the workflow. For example, the name of
the tasks and their order. There are several formats to
define a workflow definition. These could be, for ex-
ample, BPMN or acyclic directed graphs. We assume
that the workflow definition is either available as file
or within a database. Again, WFCF use a connec-
tor based concept to parse the information form the
workflow definition file, using an abstract parser with
concrete parser that implements the parsing methods,
depending on the used workflow definition notation.
Another task of CWorkload is the storage of execu-
tion information for tasks and the resource utiliza-
tion. This includes, for example, the duration of a
task. With this information, a task can be annotated
with several characteristics. The characteristics de-
scribe the prospective behavior of a task. For exam-
ple, the characteristic may describe whether the exe-
cution of the task usually needs more than 30 minutes
or whether it is very disc intensive. In our previous
works (Kübler and Minor, 2016; Kübler and Minor,
2017), we discuss our concept of tasks characteristics
in more depth.
The management component of WFCF contains four
parts: CProblem, CSimu, Solver and Configurator.
The placement model which is created from CWork-
load, will be investigated by CProblem. CProblem
has all constraints and SLA’s that are required. A con-
straint could be that if a task requires a web service
then at least one instance of this web service is avail-
able in the cloud. Another constraint could be that the
resource utilization of a VM is not higher than 90%.
The constraints and SLA’s have to be defined by the
system administrator who manages WFCF. However,
some problems may be hard to detect with only the
placement model as reference. For example, to de-
cide if the start of some very resource intensive tasks
will lead to a SLA or constraint violation is not as
easy as to recognize whetehr a web service has not
yet been started. A simulation seems a proper way to
identify these kind of problems. Therefore, CProb-

lem interacts with CSimu. We are planning to use
CloudSim (clo, 2016) as the core of our simulation
part. CSimu will simulate the execution of the tasks
with the current cloud status and will show if this will
lead to a SLA violation. If a problem is found, for ex-
ample a missing web service, CProblem notifies the
Solver. This component has the placement model and
receives from CProblem the problems with the place-
ment. The solver then searches for a feasible solution
that solves the problems that occurred. There are sev-
eral possible solutions, how the Solver can solve the
problems in the placement model. At the moment, we
use a simple rule based implementation of the Solver.
We will later on exchange it by a more intelligent
method. emphCase-based Reasoning (CBR) (Aamodt
and Plaza, 1994) could be such an intelligent alterna-
tive. The core idea is to retrieve similar situations and
their solutions from the past in order to reuse them for
the current situation. CBR has been considered for in-
telligent cloud management in the literature (Maurer
et al., 2013). We think that the CBR approach works
very well with the concept of the abstract represen-
tation of the environment. Future experiments will
show whether this is correct. Similar to CProblem,
the Solver has access to the simulation component to
simulate the solution and also to trigger CProblem to
check whether the solution has new Problems. If the
solution is feasible, the Configurator will reconfigure
the cloud. For instance, reconfiguration may include
to start or stop VM’s or containers. The Configurator
is the only component in WFCF that knows the actu-
ally used clouds. The Configurator also has a list with
all available images for containers and VM’s and the
necessary parameters. These parameters are currently
saved as .txt files and are passed to a HashMap. This
allows in a very flexible way to enter all parameters
for an image without the need for re-writing program-
code. For a more detailed discussion about the archi-
tecture of CWorkload, please take a look at our previ-
ous work (Kübler and Minor, 2017).

Figure 3: Overview of the architecture of WFCF



4 EXPERIMENTAL SETUP

In this section, we present our evaluation. The goal
of the evaluation is to test if our implementation
of WFCF is capable to detect and monitor new in-
stances of workflows and handle the missing require-
ments correctly. We test WFCF with six workflows
and compare the results with a setup without WFCF
and dynamically started containers. The experimental
workflows are based on the music mastering domain.
A raw music file can not be used directly but must
post processed. This can include several steps, rang-
ing from normalizing the volume, change the sample
rate, the playback speed or adding effects like a fad-
ing effect at the end of the song.
Four our first tests we used workflows with some ini-
tial tasks and a single processing step only. A sample
workflow is shown in Figure 4. The workflow starts
with the task ”Init Workflow Parameters” as an initial
task. In this task we define some parameters for ex-
ample the url of the web service, which kind of music
files we use (e.g. midi files) and so on. The next task,
”Generate random variable set” randomizes some pa-
rameters. For the normalize task we randomize the
value to which the volume of the song should be nor-
malized. In the following task, the ”Read data”’ task,
we load the file that will be processed. After that fol-
lows the actual ”normalize” task. This is the process-
ing task. The processing tasks use a web service that
is not hosted on the same machine as the workflow
engine. As said before, the task normalizes the vol-
ume. The last task, the ”write data” task, saves the
modified music file to the storage disk. During the

Figure 4: Example workflow with volume normalizing task.

Name run 1 run 2 run 3 run 4 run 5 average

Limiter 33/34 17/18 17/18 17/18 17/18 20,2/21,2
Fading 19/20 17/18 19/20 17/18 17/18 17,8/18,8

Channels 13/14 12/13 12/13 13/14 12/13 12,4/13,4
Normalize 21/22 17/18 16/17 17/18 17/18 17,6/18,6

SampleRate 15/16 12/13 12/13 12/13 12/13 12,6/13,6
SampleSize 18/19 16/17 16/17 15/16 17/18 16,4/17,4

Table 1: Experiment 1 without WFCF and with pre-started
containers.

experiment, we execute six different workflows. All
of them have the same structure as described above
but with different processing task. This includes the
following processing task:

normalize normalize the volume

limiter limit the signal of the song by an upper and
lower barrier

channels chose how many channels are used, for ex-
ample mono or stereo

fading add a fading effect to the end of the file

sample rate determine the sample rate. If the sample
rate is high, the song will be played faster.

sample size determine the number of bits that are
used, for example 8bit or 16bit

All of the processing tasks are hosted as web ser-
vices within a docker container with a tomcat 9 as
web server and are managed by an OpenShift 3 pri-
vate cloud (ope, 2018). OpenShift was executed on a
PC with 4 x2GHz CPUs and 8GB RAM. None of the
containers had resource restrictions activated.
First, we tested what is the average run time of the
workflows. In preparation for this, all necessary web
services are pre-started on OpenShift. All tests were
conducted using the same music file with a size of
35kb. The workflows were executed by a jBPM 6
workflow engine (jbp, 2018).
During the tests, we executed every workflow five
times and measured the overall run time of the work-
flow and the execution time of the processing task.
Table 1 shows the results. All results are described in
seconds. The first value in every cell is the processing
time of the web service, i.e. how long it takes to build
the connection to the web service, transfer the mu-
sic file, process the music file, send the file back and
close the connection. The second value is the overall
time of the entire workflow. The latter includes the
parameter initialization and the loading and saving of
the file.

As we can see, the overall run time was in every
run, one second higher than the processing time. The
overhead could be expected, because the processing
task was not the only task that was executed. But
with always the same file to process it is not surpris-
ing that the effort was constant. The processing time



differs slightly from run to run. Even with the same
file to process, it took not always the same execution
time. A slight difference could be explained by the
network. However, if we take a look at run 1 for ev-
ery workflow, we can see it was always higher than
the following runs. We explain this effect by the used
web server. If a connection to a Apache web server is
recently established, following connections are done
faster than for the first time.
In order to test WFCF we repeated the experiment
with the only difference that the necessary web ser-
vices are not pre-started. Instead, WFCF monitors if
a new jBPM workflow instance is started. To do so,
its searches for new log files, created by jBPM and
determines which kind of workflow has been logged.
The structure of the six used workflows is similar,
however, it makes a difference which workflow ex-
actly is started because of the different web services
that are needed. WFCF scans the log file to deter-
mine which task is currently running. WFCF is able
to determine the requirements for these tasks (if there
are any), or whether the task after the currently active
task has any requirements. For our tests, the process-
ing tasks have the requirement for an individual web
service, based on the processing task. The normalize
task needs the normalize web service, the fading task
the web service for fading and so on. WFCF scans ev-
ery 5 seconds for a new log file. If a new file is found,
a monitoring connector checks every 5 seconds if a
new task is started. If a new task was detected, CProb-
lem checks if there is any unsolved requirement. In
our tests this will be the missing web services. The
solver then will solve the problem with a simple rule
based approach. It looks which web service is miss-
ing and adds a solution to the WFCF Configurator
which web service should be started. In contrast to the
Solver, the Configurator knows which cloud is used
and which container images are available. Each im-
age is tagged with information, including the avail-
able web services on the image. The Configurator fi-
nally has for every image a config file that specifies
information that is required for starting a container
in OpenShift3. This specification could be extended
to further clouds than OpenShift in the future. The
results of our tests are depicted in Table 2. As pre-
viously, all results are provided in seconds. The first
number in each cell is the time how long it takes for
WFCF to detect a new workflow instance. The sec-
ond number is the time how long it needs to deploy
the OpenShift container with the Apache server. The
third number is the time to process the request to the
web service, just like in the first experiment. The last
number is the overall execution time of the workflow.
We can see that the minimum time and the maximum

Name run 1 run 2 run 3

Limiter 5/11/28/44 5/11/26/42 5/12/28/46
Fading 5/12/26/44 3/10/26/40 5/10/25/42

Channels 2/16/21/39 3/16/22/41 5/15/21/43
Normalize 5/13/26/45 3/11/24/41 5/11/28/44

SampleRate 5/15/20/42 4/11/20/38 3/16/21/40
SampleSize 2/16/24/43 2/10/24/37 2/16/25/44

Name run 4 run 5 average

Limiter 5/11/26/42 3/11/26/41 4,6/11,2/26,8/43,0
Fading 4/11/28/43 3/11/26/41 4,0/10,8/26,2/42,0

Channels 3/16/21/41 3/15/27/37 3,2/15,6/21,2/40,8
Normalize 1/11/26/40 4/11/27/37 3,6/11,4/26,6/41,4

SampleRate 4/11/20/36 5/12/21/38 4,2/13,0/20,4/38,8
SampleSize 1/16/24/43 5/16/25/46 2,4/14,8/24,4/42,6

Table 2: Experiment 2 with WFCF and without started con-
tainers

time before a new workflow instance as noticed by
WFCF vary from one to five seconds. Since WFCF
searches for new log files all five seconds the result is
not surprising. The time it takes to deploy the Open-
Shift container also varies from web service to web
service, but also from run to run for the same web
service. This might be caused by small inaccuracies
in the time measurement (we only measured in sec-
onds, not in milliseconds). Another aspect is Open-
Shift. We observed that deploying a docker container
from OpenShift with the same conditions varies in
its duration. A very interesting aspect is the time
to process the request. We excepted that the time is
nearly the same as in the previous experiment. How-
ever, the time was always a bit longer. The reason for
this is partly based on the side-effect that an Apache
server builds a connection faster if a connection was
established recently. Since the containers are always
freshly started, this effect could not occur and, thus,
the time was increased. However, even with this ef-
fect in mind, the processing time is higher than ex-
cepted. The processing time for Normalize, for in-
stance, took in the worst case (the first connection) 22
seconds. The average time for the second experiment
for Normalize was 26,4. We assume this additional
time comes from the fact that the container is freshly
started. Even if the Apache server is working it seems
that either OpenShift or the docker container needs
some additional time to work with full capacity, after
having started a new container. The overall run time
of the workflows is nearly the same time it takes to
detect the new workflow instance plus the deployment
time plus the request processing time. This result was
excepted. Compared to the overall run time of the
workflows in experiment one, the time to execute the
whole workflow is more than twice in average. How-
ever, if the processing time will be increased the ad-
ditional time of the detection and deploying will have
less impact in comparison.



The results indicate that WFCF may not be the
best choice in cases where the workload of the sys-
tem is very stable or does not change over time. If
for example a particular web service is needed all the
time, without break, is this not an optimal situation
for WFCF. Alternatively, if the time between two re-
quests to the web service is so small, that it is not
preferable to stop and restart a container or VM, the
overhead that WFCF generates is probably not appro-
priate. However, if a web service is not needed all
the time, the costs for running a, for example, EC2
instance is much higher, than just starting the service
if necessary. In this case, the additional time that is
consumed to start the container or VM is acceptable
if it reduces the overall costs. Another problem could
arise, if the timing of an request is critical. In this case
the additional time to start a container or VM could
be a problem. Therefore WFCF is an solution for sit-
uations where the resources and especially the costs
should be optimized without time critical operations.

5 CONCLUSION

In this paper, we introduce and test WFCF, a
connector-based integration framework for workflow
management tools and clouds. The behavior of the
prototype of WFCF is promising and provides first
evidence that we can accomplish the goal of WFCF
to provide a way to integrate different workflow tools
and clouds. We introduce different concepts of WFCF
and describe their implementation. The connector
concept works well with OpenShift. We did not in-
clude a recent version of the Eucalyptus cloud (euc,
2018) in our current experiment. However, WFCF
works with an older version of the Eucalyptus cloud.
We will include further clouds in the near future. The
monitoring of the workflows works very well. WFCF
detects and monitors different workflows and identi-
fies the status of the active instances. WFCF uses the
status information to start the required docker con-
tainers via OpenShift. The results of the experiments
show that WFCF requires some time to detect and
start a new web service. This latency could be a prob-
lem if the timing is important. In case the overall
workload of the system does not change much, the
overhead caused by WFCF could be a waste of time
and effort. In other cases, WFCF could reduce the
over provisioning and the costs for the owner. We will
conduct further experiments considering the volatil-
ity of the system’s workload in the future. There are
other aspects of WFCF we have not implemented yet.
Currently, the solver works with a simple rule based
approach. In our future work, we aim to exchange it
by a CBR approach. Another aspect is the simulation
of the solution. The simulation component is not in-
cluded yet. The analysis of the run time behavior of
tasks and the automated annotation with task charac-
teristics is also ongoing work. The experimental re-

sults highlight the feasibility of the tool-independent,
connector-based approach. The work makes a contri-
bution to automate the monitoring and management
of cloud workflows towards intelligent cloud manage-
ment in WFCF.

REFERENCES

(2016). The CLOUDS lab: Flagship projects - gridbus and
cloudbus.

(2018). Cloudsocket project. https://site.cloudsocket.eu,
2018-04-08.

(2018). Eucalyptus iaas cloud.
https://github.com/eucalyptus/eucalyptus/wiki,
2018-04-08.

(2018). jBPM. https://www.jbpm.org, 2018-04-08.
(2018). OpenShift. https://www.openshift.com/, 2018-04-

08.
Aamodt, A. and Plaza, E. (1994). Case-based reasoning:

Foundational issues, methodological variations, and
system approaches. 7(1):39–59.

Bala, A. and Chana, I. (2011). A survey of various work-
flow scheduling algorithms in cloud environment. In
2nd National Conference on Information and Commu-
nication Technology (NCICT), pages 26–30. sn.

Ferry, N., Rossini, A., Chauvel, F., Morin, B., and Solberg,
A. (2013). Towards model-driven provisioning, de-
ployment, monitoring, and adaptation of multi-cloud
systems. In Cloud Computing (CLOUD), 2013 IEEE
Sixth International Conference on, pages 887–894.
IEEE.

Korambath, P., Wang, J., Kumar, A., Hochstein, L., Schott,
B., Graybill, R., Baldea, M., and Davis, J. (2014). De-
ploying kepler workflows as services on a cloud in-
frastructure for smart manufacturing. 29:2254–2259.

Kübler, E. and Minor, M. (2016). Towards a case-based rea-
soning approach for cloud provisioning. In CLOSER
2016 - Proceedings of the 6th International Con-
ference on Cloud Computing and Services Science,
Rome, Italy 23-25 April, 2016, volume 2, pages 290–
295. SciTePress.

Kübler, E. and Minor, M. (2017). WFCF - a workflow cloud
framework. In Ferguson, D., Muoz, V. M., Cardoso,
J. S., Helfert, M., and Pahl, C., editors, CLOSER 2017
- Proceedings of the 7th International Conference on
Cloud Computing and Services Science, Porto, Portu-
gal, April 24-26, 2017, pages 518–523. SciTePress.

Liu, X., Yuan, D., Zhang, G., Chen, J., and Yang, Y. (2010).
SwinDeW-c: A peer-to-peer based cloud workflow
system. In Furht, B. and Escalante, A., editors, Hand-
book of Cloud Computing, pages 309–332. Springer
US.

Maurer, M., Brandic, I., and Sakellariou, R. (2013). Adap-
tive resource configuration for cloud infrastructure
management. 29(2):472–487.

Pousty, S. and Miller, K. (2014). Getting Started with Open-
Shift. ”O’Reilly Media, Inc.”.



Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N.,
and Sharma, N. (2009). Towards autonomic workload
provisioning for enterprise grids and clouds. In Grid
Computing, 2009 10th IEEE/ACM International Con-
ference on, pages 50–57. IEEE.

Rodriguez, M. A. and Buyya, R. (2017). A taxonomy and
survey on scheduling algorithms for scientific work-
flows in IaaS cloud computing environments: Work-
flow scheduling algorithms for clouds. 29(8):e4041.

Shoaib, Y. and Das, O. (2014). Performance-oriented cloud
provisioning: Taxonomy and survey. abs/1411.5077.

Wang, J., Korambath, P., Altintas, I., Davis, J., and Crawl,
D. (2014). Workflow as a service in the cloud: Archi-
tecture and scheduling algorithms. 29:546–556.

Workflow Management Coalition (1999). Workflow
management coalition glossary & terminology.
http://www.wfmc.org/resources 2016-12-15.


